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An extension of the univalence criterion
for a family of integral operators

Abstract. The main object of the present paper is to extend the univalence
condition for a family of integral operators. Relevant connections of some of
the results obtained in this paper with those in earlier works are also provided.

1. Introduction and preliminaries. Let A denote the class of functions
f normalized by

(1.1) f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and
satisfy the conditions f(0) = f ′(0)− 1 = 0.

Consider S = {f ∈ A : f is a univalent function in U}.
A function f(z) ∈ A is said to be a member of the class B(γ) if and only

if

(1.2)
∣∣∣∣z2f ′(z)f2(z)

− 1

∣∣∣∣ < 1− γ, 0 ≤ γ < 1.

Recently, Frasin and Darus (see [6]) defined and studied the class B(γ).
In his paper Frasin (see [4]) obtained some results for functions belonging
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to this class and also he showed that if f(z) ∈ B(γ) then f(z) satisfies the
following inequality

(1.3)
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (1− γ)(2 + |z|)
1− |z|

(z ∈ U).

For γ = 0 the class B(0) = T was studied by Ozaki and Nunokawa
(see [8]).

We denote byW the class of functions w which are analytic in U satisfying
the conditions |w(z)| < 1 and w(0) = w′(0) = 0 for all z ∈ U .

Now, by Schwarz’s lemma, it follows that

(1.4) |w(z)| < |z| .

In [7], we see that if w(z) ∈ W, then w(z) satisfies

(1.5)
∣∣w′(z)∣∣ ≤ 1− |w(z)|2

1− |z|2
(z ∈ U).

In [11], N. Seenivasagan and D. Breaz considered the following family of
integral operators Fα1,α2,...,αn,β(z) defined as follows

(1.6) Fα1,α2,...,αn,β(z) :=

β z∫
0

tβ−1
n∏
i=1

(
fi(t)

t

) 1
αi

dt

 1
β

,

where fi ∈ A, f ′′i (0) = 0 and α1, α2, . . . , αn, β ∈ C for all i ∈ {1, 2, . . . , n}.
When αi = α for all i ∈ {1, 2, . . . , n}, Fα1,α2,...,αn,β(z) becomes the inte-

gral operator Fα,β(z) considered in (see [1]).
We begin by recalling each of the following theorems dealing with univa-

lence criterion, which will be required in our present paper.
In [10], Pascu proved the following theorem.

Theorem 1 (Pascu [10]). Let β be a complex number with Re(β) > 0 and
f ∈ A. If

1− |z|2Re(β)

Re(β)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1,

for z ∈ U , then the function

Fβ(z) :=

β z∫
0

tβ−1f ′(t)dt

 1
β

belongs to S.

In [9], Pascu and Pescar obtained the next result.
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Theorem 2 (Pascu and Pescar [9]). Let β and µ be complex numbers, and
g ∈ S. If Re(β) > 0 and |µ| ≤ min

{
1
2 Re(β);

1
4

}
, then the function

Gβ,µ(z) :=

β z∫
0

tβ−1
(
g(t)

t

)µ
dt

 1
β

belongs to S.

Note that Theorem 2 includes the special case of Pascu and Pescar’s
theorem (see [9]) when Re(α) = Re(β).

In the present paper, we propose to investigate further univalence condi-
tion involving the general a family of integral operators defined by (1.6).

2. Main results. In this section, we first state an inclusion for f(z) ∈
B(γ), then we give the main univalence condition involving the general in-
tegral operator given by (1.6).

Theorem 3. If f(z) ∈ B(γ), then the inequality is satisfied

(2.1)
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ ≤ (1− γ)(1 + |z|)
1− |z|

for all z ∈ U .

Proof. Let f(z) ∈ B(γ). Then we have

(2.2)
z2f ′(z)

f2(z)
= 1 + (1− γ)w(z),

where w(z) ∈ W. By applying the logarithmic differentiation, we obtain
from (2.2) that

zf ′′(z)

f ′(z)
=

(1− γ)zw′(z)
1 + (1− γ)w(z)

+
2zf ′(z)

f(z)
− 2

and
zf ′(z)

f(z)
− 1 =

1

2

(
zf ′′(z)

f ′(z)
− (1− γ)zw′(z)

1 + (1− γ)w(z)

)
,

thereby, it follows that∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ = ∣∣∣∣12
(
zf ′′(z)

f ′(z)
− (1− γ)zw′(z)

1 + (1− γ)w(z)

)∣∣∣∣
≤ 1

2

(∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ ∣∣∣∣ (1− γ)zw′(z)
1 + (1− γ)w(z)

∣∣∣∣)
≤ 1

2

(∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ (1− γ) |z| |w′(z)|
1− (1− γ) |w(z)|

)
.
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From (1.3) and (1.5), we have

(2.3)
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ ≤ 1

2

(
(1− γ)(2 + |z|)

1− |z|
+

(1− γ) |z|
1− (1− γ) |w(z)|

1− |w(z)|2

1− |z|2

)
and for 0 ≤ γ < 1, it is easy to show that

(2.4)
1− |w(z)|

1− (1− γ) |w(z)|
≤ 1 (z ∈ U).

From (1.4), (2.3) and (2.4), we obtain that

(2.5)
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ ≤ (1− γ)(1 + |z|)
1− |z|

.

This evidently completes the proof of Theorem 3. �

Next we prove the following main theorem.

Theorem 4. Let fi(z) ∈ B(γ) for i ∈ {1, 2, . . . , n}. Let β be a complex
number with Re(β) > 0. If

(2.6)
n∑
i=1

1

|αi|
≤ min

{
1

2(1− γ)
Reβ;

1

4(1− γ)

}
for all z ∈ U , then the function

Fα1,α2,...,αn,β(z) :=

β z∫
0

tβ−1
n∏
i=1

(
fi(t)

t

) 1
αi

dt

 1
β

belongs to S.

Proof. Define function

h(z) =

z∫
0

n∏
i=1

(
fi(t)

t

) 1
αi

dt.

We have h(0) = h′(0)− 1 = 0. Also, a simple computation yields

(2.7) h′(z) =
n∏
i=1

(
fi(z)

z

) 1
αi

.

Making use of logarithmic differentiation in (2.7), we obtain

(2.8)
zh′′(z)

h′(z)
=

n∑
i=1

1

αi

(
zf ′i(z)

fi(z)
− 1

)
.

We thus have from (2.8) that∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ n∑
i=1

1

|αi|

∣∣∣∣zf ′i(z)fi(z)
− 1

∣∣∣∣.
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By using the Theorem 3, we get the inequality

(2.9)
∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ n∑
i=1

1

|αi|
(1− γ)(1 + |z|)

1− |z|
.

From (2.9), we obtain

(2.10)

1− |z|2Re(β)

Re(β)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1− |z|2Re(β)

Re(β)

(1− γ)(1 + |z|)
1− |z|

n∑
i=1

1

|αi|

≤ 1− |z|2Re(β)

1− |z|
2(1− γ)
Re(β)

n∑
i=1

1

|αi|

for all z ∈ U .
Let us denote |z| = x, x ∈ [0, 1), Re(β) = a > 0 and ψ(x) = 1−x2a

1−x . It is
easy to prove that

(2.11) ψ(x) ≤

{
1, if 0 < a < 1

2

2a, if 1
2 < a <∞.

From (2.6), (2.10) and (2.11), we have

1− |z|2Re(β)

Re(β)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤


2(1−γ)
Re(β)

n∑
i=1

1
|αi| , if 0 < Re(β) < 1

2

4(1− γ)
n∑
i=1

1
|αi| , if 1

2 < Re(β) <∞

≤ 1

for all z ∈ U .
Finally, by applying Theorem 1, we conclude that the function

Fα1,α2,...,αn,β(z) defined by (1.6) is in the function class S. This evidently
completes the proof of Theorem 4. �

3. Some applications of Theorem 4. In this section, we give some re-
sults of Theorem 4.

First of all, upon setting αi = α, for all i ∈ {1, 2, . . . , n} in Theorem 4,
we immediately arrive at the following application of Theorem 4.

Corollary 1. Let fi(z) ∈ B(γ) for i ∈ {1, 2, . . . , n}. Let β be a complex
number with Re(β) > 0. If

(3.1)
1

|α|
≤ min

{
1

2n(1− γ)
Reβ;

1

4n(1− γ)

}
holds for all z ∈ U , then the function

Fα,β(z) :=

β z∫
0

tβ−1
n∏
i=1

(
fi(t)

t

) 1
α

dt

 1
β
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belongs to S.

Next we set n = 1 in Theorem 4, we thus obtain the following interesting
consequence of Theorem 4.

Corollary 2. Let the functions f(z) ∈ B(γ). Let β be a complex number
with Reβ > 0. If

(3.2)
1

|α|
≤ min

{
1

2(1− γ)
Reβ;

1

4(1− γ)

}
holds for all z ∈ U , then the function

Gβ,α(z) :=

β z∫
0

tβ−1
(
f(t)

t

) 1
α

dt

 1
β

belongs to S.

Remark 1.

(i) Corollary 2 provides an extension of Theorem 2 due to Pascu and
Pescar (see [9]).

(ii) If we set γ = 0, n = 1 and 1
α = µ in Theorem 4, we obtain Theorem

2 due to Pascu and Pescar (see [9]).
(iii) If we put γ = 0, β = 1 and α instead of 1

α in Corollary 2, we arrive
at the result by Kim and Merkes (see [5]).

Remark 2. Some authors gave similar univalence conditions by using
bounded functions f(z) ∈ A in their papers, see the works (for example
Breaz et al. (see [2]), Breaz et al. (see [3])). We note that the functions
f ∈ A do not have to be bounded.
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