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Fixed points of periodic mappings
in Hilbert spaces

ABSTRACT. In this paper we give new estimates for the Lipschitz constants
of n-periodic mappings in Hilbert spaces, in order to assure the existence of
fixed points and retractions on the fixed point set.

1. Introduction. In order to assure the existence of fixed points for a con-
tinuous mapping on Banach spaces, we need to impose some conditions on
the mapping or on the Banach space. We will deal with k-Lipschitzian
mappings:

Definition 1.1. Let T': C — C be a mapping with C' a nonempty, closed
and convex subset of a Banach space X. T is called a Lipschitzian mapping
if there is £ > 0 such that

[Tz — Tyl < kljz -yl
holds for any z,y € C and we will write 7" € Z(k). If ko is the smallest
number such that T' € Z(k), we will write T' € £ (ko).

Definition 1.2. Let T : C — C where C is a nonempty, closed and convex
subset of a Banach space X. If T™ = I, T is called an n-periodic mapping.

In 1981 K. Goebel and M. Koter, see [1, pp. 179-180], proved the following
theorem which shows that the condition of periodicity for nonexpansive
mappings is very strong:
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Theorem 1.3. If C is a nonempty, closed and convex subset of a Banach
space, then any nonexpansive n-periodic mapping T : C — C has a fized
point.

This covers the case k£ < 1, and thus we will study n-periodic and k-
Lipschitzian mappings with k£ > 1.

Remark 1.4. If T is n-periodic, then Fix(T) = Fix(T"1). In fact, if
x € Fix(T), then it is clear that z € Fix(T" 1) and if x € Fix(T™ 1), then
T(T" 'z) = Tw, that is, x = Tx.

Therefore, we will only consider n-periodic mappings T € % (k) such
that 77! € Z(p) with p > k because if p < k, we will work with 77!
instead of T

Let us define the following number:
X =inf{k:3(CC X, T:C—C), T" =1, T € %(k), Fix(T) = 0},

where C is a nonempty, closed and convex subset of a Banach space X.
In 1981 K. Goebel and M. Koter [1, pp. 179-180] showed that for any n,
> 1.

In 1971 K. Goebel and E. Zlotkiewicz [2] proved that if k& < 2, then
Fix(T) # 0 for 2-periodic and k-Lipschitzian mappings in general Banach
spaces X, that is, 75( > 2.

Furthermore, in 1986 M. Koter (see also [4]) proved that 741 > /72 —3
~ 2.6209 for Hilbert spaces H.

In 2005 J. Gérnicki and K. Pupka [3] gave estimations of ;X for n > 3
for any Banach space X, in particular ’y?)f > 1.3821, ’yf > 1.2524 and
75X > 1.1777. These are the best estimations known nowadays for general
Banach spaces; we will improve these estimations for Hilbert spaces.

2. Estimations of fyf in Hilbert spaces. The following lemma gives
conditions for the existence of fixed points and retractions on the fixed
point set:

Lemma 2.1. Let X be a complete metric space and T : X — X a contin-
wous mapping. Suppose there are u : X - X, 0< A <1 and B > 0, such
that for every r € X:
(i) d(Tu(x), u(2)) < Ad(Tz,2),
(ii) d(u(z),z) < Bd(Tz,x).
Then Fix(T) # 0.
If we define R(x) = lim,, o0 u"(x) and u is a continuous mapping, then
R is a retraction from X to Fix(T).
If additionally uw € £ (p):
(a) If p < 1, then T has a unique fixed point.
(b) If p=1, then R is a nonexpansive mapping.
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(c) If p > 1 and D = diam(X) < oo, then R is a Hélder continuous
retraction from X to Fix(T).

Proof. Gérnicki in [3] proved that if (i) and (ii) hold and = € X, the
sequence {u"(x)} 2, converges to a fixed point of 7. Furthermore, for
every m,n € N|

(2.1) A (2), u™(z)) < BANﬁ d(Tz, 7).

If x € Fix(T), Rx = x, since clearly Fix(u) = Fix(T"). Thus, in order to
prove that R is a retraction, we only need to show that R is a continuous
mapping.

Let Ef, = {z € X : d(z,Tx) < L}. Then X =J, Er. For z € Er, by
(2.1) we have

BA™ LBA"
n < .
d(R(x),u"(z)) < T A d(Tz,x) < T

Since the last inequality does not depend on x, and since A < 1, u™ converges
uniformly to R on Ep, and hence R is continuous in X.
(a) If p < 1, then wu is a contraction and has a unique fixed point, hence

T has a unique fixed point.
(b) It p= 1, (R, Ry) = lim d(u"(z),u"(y)) < d(z,).

(c) Let p > 1 and D = diam(X). For any n € N and any z,y € X we
have

d(Rz, Ry) < d(Rz,T"z) + d(T"x, T"y) + d(T"y, Ry)
1
< BA"——(d(T'z,2) + d(Ty, y)) +p" d(z,y)

2DB
<
T1-A

Let us define ng € N as follows:

A" +p"d(z,y) = E(n).

1-A4A

If d(z,y) > 228 then we have ng = 0, and d(Rz, Ry) < 2d(z,y).

1-A>
Suppose that we have d(z,y) < %, then ng > 0. With

2DB
In ((1—A)d<mfy>)
In(p) + In(1/A)’

2DBA™
nozmin{neN:d(x,y)p”Z }

S0 —
we have the equality

2DB
d 50 = — — A%
(, y)p™ = =7 A%,
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hence ng — 1 < sg < ng and there is 0 < rg < 1 such that ng = sg + rp. In
consequence we have

In ((ljgﬁgﬁ’y)eﬂn(p)“n(l/f‘))ro)

In(p) + In(1/A)

ng =

and
2DB
E(ng) = d(z,y)p™ + Anoﬂ
< 2d(w,y)p"
9D B \ R AT gy
<2 ﬁ pd(gj, y) In(p)+In(1/A) O

The following lemma is a generalization of the parallelogram law for
Hilbert spaces, and we will use it throughout this paper:

Lemma 2.2. Let H be a Hilbert space and let n € N and a; € [0,1] for
i=1,...,n, such that Y ;" ja; =1. Ifx; € H fori=1,...,n, then

2 n
= aillzl? = Y aaglla — ).
=1

1<i<j<n

n
E Qi T
=1

Proposition 2.3. Letn € N and T : C — C be n-periodic and k-Lipschitz-
ian mapping, where C' is a nonempty, closed and convexr subset of a Hilbert
space. Let a; > 0 fori = 1,...,n, such that > ;" ja; = 1. Let us define
ap = an. If for x € C we define

n
z = E a; Tz,
i=1

then we have ||z — z| < Y17 || Tz — z|| and

||Z - TZ||2 < Z F(kaaj’aj+1aai7ai+1)||Tj‘r - TiCL‘”2,
0<j<i<n—1

where F(k,z,y,u,w) = k*(yu + zw — zu) — 2u.
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Proof. With a;,z and z as above, the first inequality is trivial. Now let

L= > aja;]|T'z — T7z|]%. By the previous lemma we have
0<j<i<n—1

2

Iz = T2|* =

n .
Z a;(T'x — Tz)
i=1

n
=> aillT'z =Tz = > aa||T'x — TVx|?
=1

0<j<i<n—1

n
< k2 Z as|lz — T x| = L

s=1
n . 2
= k2 Z as Z a;(T"x Ts_la:)H — L
s=1 i=1
n n )
=k a, (Z a|| Tz — Tsla:u2> — (K +1)L.
s=1 i=1

The first term of the last expression is equal to

n n n—1 n
k2 Z g (Z a,;||Ti:U — TS_1$]2> = k2 Z (g1 (Z aiHTix — TS;U||2>
s=1 i=1 s=0 i=1
n—1 n n
=k Z Ast1 (Z ai|| Tz — TS:U||2> + k%ay Z ai|| Tz — z||?
s=1 i=1 i=1
n—1 n—1 n
=k Z As41 (Z ai|| Tz — TSJ:||2> + k%a; Z ai|| Tz — z||?
s=1 i=1

=1

n—1
+ B agpian)z — T

s=1

n
1Y (ten1ai+ a0 [Tz = T2 + Ky Y ai| T — 2
1<s<i<n—1 i—1

n—1
+ k2 Z asy1an ||z — Tz

s=1

=k’ Z (ast1a; + asaipr) || T e — Tz
0<s<i<n—1
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Hence

lz=TzP < > K (ajr1ai + ajain — aja;) — ajai]| Tz — T'x|)?
0<j<i<n—1
= Z F(k,aj,aj+1,ai,ai+1)\|zjfTi:L“H2. \:‘

0<j<i<n—1

Applying the last result we have the following:

Proposition 2.4. Let C' be a nonempty, closed and convexr subset of a Hil-
bert space H and T : C — C, T € ZL(k) be an n-periodic mapping, with
n > 3. Forx € C let us define

u:%(x—i—Tm—i—...—i—T"_lx),

then u € & (M> and

n

n—1 ; 2
1 e . ki 1
lu — Tu? < = (> — DED £y (k% - 1) (H) |z — Tx|]?
j=2

— A(K)la — Ta]”.

Thus, if A(k) < 1, then Fix(T) # 0 and Fix(T) is a retract of C. If k =1,
Fix(T') is a nonexpansive retract of C and if k > 1 with C' bounded, Fix(T)
is a Hélder continuous retract of C.

Proof. From Proposition 2.3, taking a; = % we get
(2.2) lu—=Tul?< kQ_lIIijU—TixIIQ
' - & n? '
0<5<i<n—1

Since for j < i, || T2 — T'z|| < k' ||z — T ||, for j <n — 1,

Jj—1 j—1 i
) ) ) ) kK —1
2' - 7 < v - 1/+1 < ? — — J—
(2.3) lz =Tz < ZHT r—T"z| < Zk lz =Tzl = 75— llz = Tx|
=0 1=0
and
(2.4) |z — T”_le = ||T"x — T”_le < k"‘lﬂTac -z,

we get
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n—2 n—1
lu = Tul|* < > 172 — 1|
7=01i=75+1
k2 n—2 n—j—1
<EASRY feTp?
7=0 i=1
k‘2 _1 n—1 [n—i—1 ‘ ‘
SES T R e
[ i N
n—1 i
E2(n—i) _ 1 )
= THCU—TZ‘THQ'
=1
Thus
1 n—1 A A
lu = Tull* < — Y WD — 1) — TIx|?
j=1
1 « , 1
(25) = 772 (0D =Dl = Tl |* + =5 (b = 1|z = T" o
=1
1 “ ki — 1\
< (k? — 1)k*m=Y) +Z (k% — (k:—l) |z — Tx||.

By Lemma 2.1, if A(k) < 1, Fix(T) # 0 and is a retract of C. Also if
k =1, Fix(T') is a nonexpansive retract of C' and if £ > 1 and C' is bounded,
Fix(T) is a Holder continuous retract of C'. O

Since for fixed n, limg_,; A(k) = 0, there is £ > 1 such that A(k) < 1,
and this is another proof that for Hilbert spaces H, v > 1.

In 2000, M. Koter [5] gave the following estimations: vi > 1.3666, ! >
1.1962 and V5H > 1.0849. But her procedure cannot be applied in order
to estimate v if n > 6. In 2005 J. Goérnicki and K. Pupka [3] gave the
following estimations in general Banach spaces: ’y?f( > 1.3821, v > 1.2524,
& > 1.1777 and v > 1.1329.

Applying (2.5) for n = 3, if k satisfies the inequality

1

5 (B = DE* + (k* - 1)) < 1,

then we have a fixed point. Thus fyf > 1.4678; similarly we get 7};{ > 1.2905.
Forn > 5, j=1and i =n — 1, the estimate in (2.2) improves if we take

(2.6) [Tz =T 'a|l < o = Ta| + [l = T" a| < 1+ ")z — Tal],
from this v > 1.1986.
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For n > 6 we shall also take the following estimations: if j = 0,7 =n—2,

=T 20| < flo = T L 4+ 72— T |

2.7
27 < (K"K |2 - Ta,

andif j =2, i=n—-1,
(2.8) HTQac—T”_le < Hx—T2xH+||:r—T"_1H < (1+E+E" Y|z —T2].

With this we get v¢ > 1.15.

In the case above we considered a; = 1/n because the calculations are
straightforward, but we can choose other convex combinations in order to
get better estimations of 2.

Proposition 2.5. Let H be a Hilbert space. Then 7?{{ > 1.5549, v >
1.3267, v4 > 1.2152, and ~& > 1.1562.

Proof. Let F be as in Proposition 2.3. We will only take the case in which
F(k,aj,ajﬂ,ai,aiH) >0for1 <j<i<n—1
If n = 3, we checked by numerical computation that this case gives us the
solution with the greatest possible value of k. For n larger than 3, we do
not know if this case gives us the best estimate, but it is easier to compute.
For n = 3, let z = a;Tx + axT?x + azx, where a; + ag + a3 = 1, with
a; > 0. By Proposition 2.3 we have

|z — Tz||* < F(k,a3,a1,a1,a2)||x — Tx|?

+ F(k,a3,a1,az,a3)|lx — T?z||? + F(k, a1, az, az, a3)|| Tz — T?z|?
< F(k,a3,a1,a1,a)||z — Tz||* + k*F(k, a3, a1, ag, a3)||z — Tz|?

+ k*F(k,a1, a2, az,a3)||x — Tz||? = B(k, a1, az, a3) ||z — Tz||>.

(2.9)

Using differential calculus techniques, we conclude that the solution of the
equation B(k,ai,a2,a3) = 1 with the optimal value of k is the following:
k = 1.5549978175686, a; = 0.22027175125, as = 0.44334559817 and az =
0.33638265058.

Let n = 4, by Proposition 2.3 and using the estimations of the terms
|T72 — T'z|| as in the proof of Proposition 2.4, we have to solve

G(k,z,y, z,w) = F(k,a4,a1,a1,a) + (1 + k)2F(k, a4, a1, az, a3)
+ E°F(k, a4, a1, a3, a4) + K*F(k, a1, a2, az, az)
+ KA1+ k)?F(k, a1, a2, a3, as)
+ K F(k, a3, a3,a3,a4) — 1 = 0.
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The following optimal solution was found numerically:

k =1.326774364525014,
a1 = 0.242229079187726,
az = 0.239942791859123,
a3 = 0.328255853776722,
aqg = 0.189572275176429.

Similarly for n = 5 and using the estimate (2.6), we need to solve
F(k,as,a1,a1,a) + (1 + k)*F(k, a5, a1, az, as)
+ k(1 4+ k)2F (K, a5, a1, a3, a4) + K8 F (k, a5, a1, as, as)
+ k*F(k, a1, a2, a2, a3) + k*(1 + k)*F(k, a1, a2, a3, as)
+ (1 4+ EY2F(k, a1, ag, a4, a5) + k*F(k, a3, as, az, as)
+ k(1 + k)2 F(k, ag, a3, as, as) + kS F(k, a3, a4, ag, a5) — 1 = 0.

We found the optimal solution: & = 1.215236, a; = 0.14448498, ay =
0.23632485, a3 = 0.24363867, a4 = 0.20374357 and a5 = 0.17180793.
For n = 6 using (2.6), (2.7) and (2.8), we obtain the equation to solve

F(k,ag,a1,a1,a9) + (1 + k)2F(k, ag, ay, a2, as)

+ (14 k + k*?F(k, ag, a1, a3, ag) + (K> + kY2 F(k, a6, a1, a4, as)
+ kY F(k, ag, a1, a5, a6) + E*F(k, a1, az, as, a3)

+ E*(1 + k)?F(k,ay, a9, a3, a4) + E*(1 + k + k*)?F(k, a1, a, a4, as)
+ (14 k52 F(k, a1, a2, a5, ag) + k*F(k, ag, a3, as, as)

+ kY1 + k)2 F(k, ag, a3, a4, a5) + (1 + k + k°)2F(k, as, a3, as, ag)
+ kSF(k, a3, a4, a4, as) + kS(1 + k)2F (k, a3, a4, as, ag)

+ k8 F (k, a4, a5, as,a6) — 1 = 0.

We get the following optimal solution: k& = 1.1562, a; = 0.15958598,
as = 0.15893532, as = 0.17823298, a4 = 0.19267723, a5 = 0.15822986 and
as = 0.15233863. O

3. T € £(k)N%(p) with p < k™. In Proposition 2.4 we used 77 €
Z (k) in order to calculate the best estimation of 4. In fact, there are
n-periodic functions such that for each j = 1,...,n — 1, TV € £(k’) that
is T9 ¢ Z(p) for p < k7,

Example 3.1. Let X = ¢{(R), C = {(z1,...,2,) € X : 2; > 0, i =
1,...,n} and k > 1. We define T': C' — C as follows:

x
T(x1,...,xn) = (karg,kaf3, oo kg, kn—il> :
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We have T" = I and, in fact, for each j = 1,...,n — 1, T € Z(k7) but
T7 ¢ £ (p) for p < k7.

In this case we have T € % (k" 1) according to the following definition:

Definition 3.2. Let T': C — C be a mapping, where C' is a nonempty,
closed and convex subset of a Banach space. We will say that T is uniformly
Lipschitzian if there is & > 0 such that for every j and z,y € C,
|Tie - Tiy| < Kllz — y]|.
We will write T' € % (k). If
k=min{l: |79 — Ty|| <z —vy|, j €N, v,y € C},
we will write T € 2 (k).

However, there are also cases such that T is n-periodic, T' € %(k) and
T € %(p) with p < k"', For these functions we could improve the esti-
mations considered in Proposition 2.4.

The extreme case is when 77 € (k) for 1 < j < n —1, that is, T €
(k). The next example shows that such functions exist.

Example 3.3. Let X = ¢{(R), C = {(z1,...,2,) € X 1 2; >0, i =
1,...,n} and k > 1. We define T': C' — C as follows:
x
T(xl’ s 7xn) = (-T2a <oy Tp—1, kl‘rm ?1) :

We have T" = I and for each j =1,...,n —1, TV € Z(k).

For this reason, we will introduce the following definition: let X be a Ba-
nach space, we define

X =inf{p:3(CC X, T:C = C), T" =1, T € %(p), Fix(T) = 0},
where C' is a nonempty, closed and convex subset of the Banach space X.

It is clear that ;X > ~.X, since T' € Z(k) implies T € %(p) with p > k.
As before we want to estimate ..

Proposition 3.4. Let H be a Hilbert space. Then ’3/3{{ > 1.6047, 7yf >
1.3867, :ygfl > 1.2958 and ’yéq > 1.2181.

Proof. Let T' € % (p) and T" = I. By Proposition 2.3, if we take z =
o, aiT"x, then we have

lz=Tz*< > [p2(aj+lai + ajaiy1 — aja;) — ajaz} 1T — T |?.
0<j<i<n—1
Let n > 3 and d = ||z — T'z||. We will use the estimates:
(1) & — Tiz| < min {(( ~ Up + 1)d. (n — J)pd},
(2) [Tz —Tz| < min{(j — 1)pd, ((n — j)p + 1)d},
(3) ifi>1landi+j<mn, |[T'z—T"Vz| <min{((n—j—1)p+1)d, pjd}.
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As in Proposition 2.5 we only take F(p,aj, aji1,a4,ai41) > 0for 0 < j <
1 < n—1. For n = 3 we know that this is the best possibility but for n > 3
we do not know if this is the case.

Thus, for n = 3 we have to solve the equation

F(p7 a3)a17a/17a/2) +p2F(pa a3aa17a27a‘3) +p2F(p7 a17a27a2aa3) =L

The solution with the optimal value of p is: p = 1.6047, a1 = 0.4278208,
as = 0.34664038 and as = 0.22553882.
For n = 4 we have to solve

F(p) as,ai, ay, CLQ) + (1 +p)2F(p7 aq4,ay, az, a3)
+p2F(p) CL4,(I]_,CL3,CL4) +p2F(pa alaa2aa2aa3)
+ (1 +p)2F(pa CLl,CLQ,CLg,CL4) +p2F(p7 a27a37a37a4) —1=0.

The optimal solution is: p = 1.3867, a; = 0.30095499, as = 0.23635124,
asz = 0.2667267 and a4 = 0.19596707.
For n = 5 we have to solve the equation

F(p,as,a1,a1,a) + (14 p)*F(p, as, a1, a2, a3)
+4p*F(p, a5, a1, as, as) + p*F(p, as, ay, as, as)

+ p*F(p, a1, a2, az, a3) + 4p°F(p, a1, as, a3, as)

+ (14 p)*F(p, a1, a2, a4,a5) + p°F(p, az, as, a3, as)

+ 4p*F(p, az, a3, as, a5) + p*F(p, a3, a4, ag, a5) — 1 = 0.

The optimal solution is: p = 1.2958, a; = 0.20310133, as = 0.19687386,
az = 0.24013125, a4 = 0.15037377 and a5 = 0.20951979.
Finally, for n = 6 we have the equation

F(p, a6, a1,a1,a2) + (14 p)*F(p, as, a1, az, az)

+ (14 2p)%F (p, as, a1, as, as) + 4p* F(p, ag, a1, aq, as)
+p*F(p, as, a1, a5, ag) + p* F(p, ax, ag, a, az)

+ 4p*F(p, a1, as, a3, a4) + (1 + 2p)2F(p, a1, as, as, as)
+ (1+p)°F(p,a1,az,a5,a6) + p° F(p, az, as, as, as)
+ 4p*F(p, az, a3, as, as) + (1 + 2p)2F(p, az, a3, as, ag)
+ p?F(p, a3, a4, ag, as) + 4p° F(p, a3, a4, as, ag)
+p*F(p, a4, a5,a5,a6) —1 =0

and the optimal solution is: p = 1.2181, a; = 0.1682856, as = 0.14103694,
az = 0.19292656, a4 = 0.16166393, as = 0.13527042 and ag = 0.20081655.
O
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