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On subordination for classes of non-Bazilevi¢ type

ABSTRACT. We give some subordination results for new classes of normalized
analytic functions containing differential operator of non-Bazilevi¢ type in the
open unit disk. By using Jack’s lemma, sufficient conditions for this type of
operator are also discussed.

1. Introduction and preliminaries. Consider the functions F' in the
open disk U = {z € C : |z| < 1}, defined by

«

F(z)= = > (@n o

(1—2z)> n!

n=0

(1.1) :ZO‘_Fi(?;)!”Zn-l—a

n=1

— (o)

_ n—1 nta—1

=z +E (n—l)!z , a>1.
n=2

From (1.1), assuming a to be a parameter with the values a = 2%,

m € N, and having n = 0 in the first term of the series, we can write F' in
the form

(1.2) F(z) = z—i—%mzn-&-a—l.
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By employing (1.2), we define classes of analytic functions of fractional
power.
Let Al be the class of all normalized analytic functions F' in the open

disk U of the form

o0
F(z)=z+ Zanvaz"ﬁkl, a>1,

n=2

satisfying F'(0) = 0 and F’(0) = 1. Moreover, let A7 be the class of all
normalized analytic functions F' in the open disk U of the form

[eS)
F(E) = 2= anad™ 7 aua 20 n=23...,
n=2

satisfying F(0) = 0 and F’(0) = 1.

Definition 1.1 (Subordination Principle). For two functions f and ¢ an-
alytic in U, we say that the function f is subordinate to g in U and write
f(z) < g(2) (z € U), if there exists a Schwarz function w(z) analytic in
U with w(0) = 0, and |w(z)| < 1, such that f(z) = g(w(z)), z € U. In
particular, if the function ¢ is univalent in U, the above subordination is
equivalent to f(0) = ¢g(0) and f(U) C g(U).

Now we define a differential operator as follows:

[e.@]
DYF(2) = F(2) = 2+ Zanvaz"“‘*l, a>1,
n=2

DLF(z) = Fz) + F(z) =z+ i M n+a—1

an,o s
(1.3) 2 2 2

k k-1 [(n+a)]" 1
DEF(z) = D(D*'F(2)) =2+ ) {2} o2t
n=2
Let A be the class of analytic functions of the form f(z) = 2+ a2 +....
Obradovi¢ [8] introduced a class of functions f € A such that for 0 < u < 1,

(1.4) §R{f’(z) (}Cé)y} >0, zel.

He called it the class of function of non-Bazilevi¢ type. There are many
subordination results for this class (see [15]). In fact, this type of functions
has been used to solve various problems (see [14]).
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The main object of the present work is to apply a method based on the
differential subordination in order to derive sufficient conditions for func-
tions F' € AT and F € A to satisfy

(1.5) (DQF(z))/ <Dk;(z)>u ~<q(z), DFF(2)#0, zel,

where ¢ is a given univalent function in U such that ¢(z) # 0, p # 0.
Moreover, we give applications of these results in fractional calculus. We
shall need the following known results:

Lemma 1.1 ([4]). Let q(z) be univalent in the unit disk U and 6 and ¢ be
analytic in a domain D containing q(U) with ¢p(w) # 0 when w € q(U). Set
Q=) = 2 (:)8(a(2)), h(z) = 0(q(2)) + Q(2). Suppose that

1. Q(z) is starlike univalent in U, and

2. %ZS;(ZZ)) >0 forze U.

If 6(p(2)) + 20/ (2)(p(2)) < 0(q(2)) + 2q'(2)p(a(2)), then p(z) < q(z) and
q 1s the best dominant.

Lemma 1.2 ([5]). Let q(z) be convexr univalent in the unit disk U and

Y and v € C with R{1 + Zg,/zg) + %} > 0. If p(z) is analytic in U and
p(z) + vz2p'(2) < ¥q(2) + v2¢'(2), then p(z) < q(z) and q is the best
dominant.

2. Subordination results. In this section, we study subordination for
normalized analytic functions in the classes A} and A7 .

Theorem 2.1. Let a function q be univalent in the unit disk U such that

q(z) # 0, Zgéj) is starlike univalent in U and

2q"(z) 24 () | _a /
(2.1) 3%{1+ 7 ql) +bq(z)}>0’ b#0, ¢'(2) #0, zeU.

If F € AT satisfies the subordination

o« (DEF(:) ADEF(2)) | 2(DAF(2)"
(ng))'( 20) ol TG oy
a o z2q(2)
ERAON

then

P (g ) <49

and q is the best dominant.

Proof. Let the function p be defined by

/ < .
p(z) = (DEF(z)) (W) , DFF(2)#0, zecU.
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By setting
O(w) = — and ¢(w):=—, b#0
* N 9y J

it can easily be observed that f(w) is analytic in C — {0}, ¢(w) is analytic
in C — {0} and that ¢(w) # 0, w € C — {0}. Also we obtain

_ bzd'(2)
q(2)

Q(2) = 2q'(2)6(q(2))

and

() = 0(4(:) + Q(e) = 5+ 04,

It is clear that Q(z) is starlike univalent in U,

R[HO)_gfy, 0 0 e,

Q(2) ¢(z)  a(z)  be(z)
By straightforward computation, we have

W) a  (DEF()\"
PRSI ‘(ng))’( : )

z(D*F(2)) z(DFF(2))"
o[ (i 2DEFEYY | 2(DhFG)
DgF(2) (DEF(2))
/
o, )
a(z)  q(z)
Then by the assumption of the theorem, we see that the assertion of the
theorem follows by application of Lemma 1.1. ]

Corollary 2.1. Assume that (2.1) holds and q is convex univalent in U. If

Fe AL and
a DEF(2)\"  2(DEF(2))" | 2(DEF(2))"
(DEF(2)) < z ) G (1 DEF(z) ) T DEFG)Y
1+ Bz\" uz(A — B)
<“<1+Az> MO a0+ Ba)

then

I p
i / z 1+ Az
(DaF(2)) (mmz)) *<1+B> , 1=B<dA<l

n
and q(z) = (}igi) is the best dominant.
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Corollary 2.2. Assume that (2.1) holds and q is convex univalent in U. If
Fe AY and

(Dg;(z))’ <D§1;(Z)>“ +b

z(DIOiF(z))/ z(DﬁF(z))”
“(1‘ DEF(2) )* (DEF(2))

~ 1—2 ”+ 2ubz
a

1+z2 1—22’
for ze U, pu#0, then

i) (i) < (i52)

and q(z) = (%)H is the best dominant.

Corollary 2.3. Assume that (2.1) holds and q is convex univalent in U. If
Fe AT and

(Dg;(z))’ <D§§(2)>u +b

. <1 B z(DﬁF(z))/> N z(DﬁF(z))"

< ae "% 4 bAz
for ze U, u+#0, then

(DEF(2)) (%)N < Az

and q(z) = e*4* is the best dominant.
The next result can be found in [3].

Corollary 2.4. Assume that k =0 in Theorem 2.1. Then

@) (i) <4

and q is the best dominant.

Theorem 2.2. Let a function q(z) be convex univalent in the unit disk U
such that ¢'(z) # 0 and

/" 1
(2.2) 3%{1+Zq, (2>+}>0, S
7(z) v
Suppose that (DQF(z))/ (W)u is analytic in U. If F € A, satisfies the

subordination

ir o) (e )

B z(DiF(z))/ z(DgF(z))”
& (1 D F () >+ (DEF(z))

< q(z) + 724 (2),
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then

“w
DEF(2) (=2 DEF
(P (preg) <ie) et DEF()#0
and q is the best dominant.
Proof. Let the function p be defined by
o
— < k
p(z) = (W) , DJF(z)#0, zeU.
By setting ) = 1, it can easily be observed that

p(2) + vzp'(z)

ik / z “ B z(DIOiF(z))/ z(DQF(z))"(z)
= (PaF(2) <D§F(2)> [” ! <1 DEF(2) )+ (DEF(2)) ]

< q(2) +7zq ().
Then by the assumption of the theorem we see that the assertion of the
theorem follows by application of Lemma 1.2. O

Corollary 2.5. Assume that (2.2) holds and q is convex univalent in U. If
Fe A, and

2\ 2(DAF(2))") | 2(DEF(2)"(2)
(DhF(2)) (W> [‘” <1 T T DEF(2) ) " (DEF(2)) ]
1+ Az (1+ Az~
<1 + Bz (1+ Baystt?

)u + pyz(A — B)

then
z 1+ Az

(DEF(2)) (Wy =< <HBZ>M, ~1<B<A<1

n
and q(z) = (}ig‘z) is the best dominant.

Corollary 2.6. Assume that (2.2) holds and q is convex univalent in U. If
Fe A, and

/ z " z(DﬁF(z)), z(DﬁF(z))”(z)
(PP () <D§F(Z)> [m (1_ DEF(z) >+ (DEF(z))

07

142" 2ypz
1
= [1—2} { g
for ze U, u#0, then

i) (i) ()

I
and q(z) = (%fj) 18 the best dominant.
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Corollary 2.7. Assume that (2.2) holds and q is convex univalent in U. If
Fe A, and

O (g

DEF(2) (DEF(2))

>“ [NW (1 B z(D’éF(z))l> N z(DgF(z))”(z)

< A1 4 pyAz)
for ze U, u+#0, then

(DEF(2)) (Dgé(z)y < kA

and q(z) = e** is the best dominant.

The next result can be found in [3].

Corollary 2.8. Assume that k =0 in Theorem 2.2. Then

@) (i) <4

and q is the best dominant.

3. Applications. In this section, we present some applications of Section
2 to fractional integral operators. Assume that f(z) = >.°°, 2" and
let us begin with the following definitions:

Definition 3.1 ([12]). The fractional integral of order « is defined, for
a function f, by

19f(z) = F(la) /0 OG-0, ax,

where the function f is analytic in a simply-connected region of the com-
plex z-plane (C) containing the origin and the multiplicity of (z — ()~ ! is
removed by requiring log(z — {) to be real when (z — () > 0.

Note that (see [12], [7])

P(p+1)
JoHh = T~ 1 _pta > —1).
2 T(i+a+1) (n>-1)
Thus we have

[e%9)
19f(2) = 3 apate!
n=2

where a,, == &’;LIIZ)), for all n = 2,3,.... This implies that z + I*f(z) € AL

and z — I f(2) € A; (¢n > 0), so we get the following results:
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Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then

z
2+ 1of

K o f(z)) ' z z z
Dh+ 1206 (e sgageyy ) <A 70 2eU

and q is the best dominant.
Proof. Consider the function F' be defined by
F(z)=z+1f(2), zeU z#0. O

Theorem 3.2. Let k =0 in Theorem 2.2. Then

z

Df“(z_lgf(z»/(Dg(z—lgf(z))> <q(z), z#0, z€U

and q is the best dominant.
Proof. Consider the function F' be defined by
F(z)=2-I7f(2), z€eU, z#0. O

Let F(a,b;c; z) be the Gauss hypergeometric function (see [13]) defined,
for z € U, by

R a)n(b)n n
F(ajb;c;z)zzgc))n((lgnz ,

n=0
where is the Pochhammer symbol defined by
(@) Ila+n) )1, (n=0);
)y = ————t =
I'(a) ala+1)(a+2)...(a+n—-1), (neN).

We need the following definition of fractional operators of the Saigo type
fractional calculus (see [10], [9]).

Definition 3.2. For o > 0 and 8,17 € R, the fractional integral operator

Iy f " is defined by
2B

- (o)

where the function f(z) is analytic in a simply-connected region of the z-
plane containing the origin, with the order

f(z)=0(]z[)(z = 0), €>max{0,8—n}—1

/OZ(Z - C)“‘_lF<a + B, —n; 051 — i)f(C)dC

I3 (2)

and the multiplicity of (z — ¢)*~! is removed by requiring log(z — ¢) to be
real when z — ( > 0.
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From Definition 3.2, with 8 < 0, we have

—a—p z
B2 =y [ 0m (o pmmast =€) s@ac

_ e Ol 2 T e (76
“ L@, @ /0< 2 (1 ) (O

n=0
=3 B [e= oo
n=0
00 ,—B—1
B & _
— F(a)ngzson n—pB—1

where B := > °° | B,,. Denote a,, = f(‘p’s Vn=2,3,...,and let « = —f.

Thus z+Igf’f’nf( )€ Al and 2 — I, ’ﬁ Pf(z) € (<pn > 0), so we have the
following results:

Theorem 3.3. Assume that the hypotheses of Theorem 2.1 are satisfied.
Then

I
DE(z+ I3 £(2)) (Dg(z n I}’ﬁ’”f(z))> <q(z), 2#0,z€U

and q is the best dominant.
Proof. Consider the function F' defined by
F()—z—I—IO’B"f(z), zeU, z#0. O

Theorem 3.4. Assume that the hypotheses of Theorem 2.2 are satisfied.
Then

I
D’;(z _ I&f’”f(z))/ (Dk( [ivﬁv"f( ))) <q(z), z#0, zeU
a\Z — g, z

and q is the best dominant.
Proof. Consider the function F' defined by
F(2)=2z-1 ’an() zeU, z#0. O

Remark 3.1. Note that the authors have recently studied and defined
several other classes of analytic functions related to fractional power (see

(21, [1], [4))-
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4. The class 8, (7). A function F(z) € AJ is said to be in the class S, (7)
if it satisfies

(DEF(2)) <D§;(Z)> < f_*; (zeU, 7 #1).

To discuss our problem, we have to recall here the following lemma due
to Jack [15].

Lemma 4.1. Let w be analytic in U with w(0) = 0. If |w(z)| attains its
mazimum value on the circle |z| =r < 1 at a point zy, then

20w’ (20) = kw(20),
where k is a real number and k > 1.
We get the following result:
Theorem 4.1. If F € A} satisfies
k ! k "
(41) R [u - Mz(ggg((;) ) ((5; ZZ )),
for some 0 <y <1,0<p<1, then F(z) € Su(v).
Proof. Let w be defined by
m
(DQF@»/<Dk;(X>==fj;$?Y (1 # yw(z)).
Then w(z) is analytic in U with w(0) = 0. It follows that

etV A I EECOTCER)
DEF(2) DkF( ) (1 =yw(2))(1 + w(2))

14+~
- 7Y #L
2(1—7)

Now we proceed to prove that |w(z)| < 1. Suppose that there exists a point
zp € U such that

<

R|u

max |w(z)| = |w(z)| = 1.
ENED

Then, using Lemma 4.1 and letting w(zo) = €% and zow'(z) = ke'?, k > 1,
we obtain

R

Z(DZ;’;F(Z()))/ 20 (D’;F(Zo))”]

20(w'(20)y + 1)
WETDEF() T DEFGo)Y | [( }

1 —~yw(z0))(1 + w(20))

B kei07+1

= [(1 B TIN ei%]
_k(y+1) - 14+~
C2(1—y) T 20 —7)
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0 <~ < 1. Thus we have

z(DﬁF(Z))/ z(nyF(z))” - 147~

R\ rhiEG) Y DERR)Y | T 20— )

(z€U)

which contradicts the hypothesis (4.1). Therefore, we conclude that |w(z)| <
1 for all z € U that is

z :U' z
OEFO) (prr) <ioae (2D

This completes the proof of the theorem. O
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