doi: 10.2478/v10062-010-0014-x

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXIV, NO. 2, 2010	SECTIO A	49-60

RABHA W. IBRAHIM, MASLINA DARUS and NIKOLA TUNESKI

On subordination for classes of non-Bazilevič type

ABSTRACT. We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevič type in the open unit disk. By using Jack's lemma, sufficient conditions for this type of operator are also discussed.

1. Introduction and preliminaries. Consider the functions F in the open disk $U \coloneqq \{z \in \mathbb{C} : |z| < 1\}$, defined by

(1.1)

$$F(z) = \frac{z^{\alpha}}{(1-z)^{\alpha}} = \sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} z^{n+\alpha}$$

$$= z^{\alpha} + \sum_{n=1}^{\infty} \frac{(\alpha)_n}{n!} z^{n+\alpha}$$

$$= z^{\alpha} + \sum_{n=2}^{\infty} \frac{(\alpha)_{n-1}}{(n-1)!} z^{n+\alpha-1}, \quad \alpha \ge 1.$$

From (1.1), assuming α to be a parameter with the values $\alpha \coloneqq \frac{n+m}{m}$, $m \in \mathbb{N}$, and having n = 0 in the first term of the series, we can write F in the form

(1.2)
$$F(z) = z + \sum_{n=2}^{\infty} \frac{(\alpha)_{n-1}}{(n-1)!} z^{n+\alpha-1}.$$

²⁰⁰⁰ Mathematics Subject Classification. 34G10, 26A33, 30C45.

 $Key\ words\ and\ phrases.$ Fractional calculus, subordination, non-Bazilevič function, Jack's lemma.

By employing (1.2), we define classes of analytic functions of fractional power.

Let \mathcal{A}^+_{α} be the class of all normalized analytic functions F in the open disk U of the form

$$F(z) = z + \sum_{n=2}^{\infty} a_{n,\alpha} z^{n+\alpha-1}, \quad \alpha \ge 1,$$

satisfying F(0) = 0 and F'(0) = 1. Moreover, let \mathcal{A}_{α}^{-} be the class of all normalized analytic functions F in the open disk U of the form

$$F(z) = z - \sum_{n=2}^{\infty} a_{n,\alpha} z^{n+\alpha-1}, \quad a_{n,\alpha} \ge 0; \quad n = 2, 3, \dots,$$

satisfying F(0) = 0 and F'(0) = 1.

Definition 1.1 (Subordination Principle). For two functions f and g analytic in U, we say that the function f is subordinate to g in U and write $f(z) \prec g(z)$ ($z \in U$), if there exists a Schwarz function w(z) analytic in U with w(0) = 0, and |w(z)| < 1, such that $f(z) = g(w(z)), z \in U$. In particular, if the function g is univalent in U, the above subordination is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

Now we define a differential operator as follows:

(1.3)

$$D_{\alpha}^{0}F(z) = F(z) = z + \sum_{n=2}^{\infty} a_{n,\alpha} z^{n+\alpha-1}, \quad \alpha \ge 1,$$

$$D_{\alpha}^{1}F(z) = \frac{F(z)}{2} + \frac{zF'(z)}{2} = z + \sum_{n=2}^{\infty} \frac{(n+\alpha)}{2} a_{n,\alpha} z^{n+\alpha-1},$$

$$\vdots$$

$$D_{\alpha}^{k}F(z) = D(D^{k-1}F(z)) = z + \sum_{n=2}^{\infty} \left[\frac{(n+\alpha)}{2}\right]^{k} a_{n,\alpha} z^{n+\alpha-1}$$

Let \mathcal{A} be the class of analytic functions of the form $f(z) = z + a_2 z^2 + \dots$ Obradovič [8] introduced a class of functions $f \in \mathcal{A}$ such that for $0 < \mu < 1$,

(1.4)
$$\Re\left\{f'(z)\left(\frac{z}{f(z)}\right)^{\mu}\right\} > 0, \quad z \in U.$$

He called it the class of function of non-Bazilevič type. There are many subordination results for this class (see [15]). In fact, this type of functions has been used to solve various problems (see [14]).

The main object of the present work is to apply a method based on the differential subordination in order to derive sufficient conditions for functions $F \in \mathcal{A}^+_{\alpha}$ and $F \in \mathcal{A}^-_{\alpha}$ to satisfy

(1.5)
$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec q(z), \quad D^k_{\alpha}F(z) \neq 0, \quad z \in U,$$

where q is a given univalent function in U such that $q(z) \neq 0, \mu \neq 0$.

Moreover, we give applications of these results in fractional calculus. We shall need the following known results:

Lemma 1.1 ([4]). Let q(z) be univalent in the unit disk U and θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) \coloneqq zq'(z)\phi(q(z)), h(z) \coloneqq \theta(q(z)) + Q(z).$ Suppose that

- 1. Q(z) is starlike univalent in U, and

2. $\Re \frac{zh'(z)}{Q(z)} > 0$ for $z \in U$. If $\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z))$, then $p(z) \prec q(z)$ and q is the best dominant.

Lemma 1.2 ([5]). Let q(z) be convex univalent in the unit disk U and ψ and $\gamma \in \mathbb{C}$ with $\Re\{1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}\} > 0$. If p(z) is analytic in U and $\psi p(z) + \gamma z p'(z) \prec \psi q(z) + \gamma z q'(z)$, then $p(z) \prec q(z)$ and q is the best dominant.

2. Subordination results. In this section, we study subordination for normalized analytic functions in the classes \mathcal{A}^+_{α} and \mathcal{A}^-_{α} .

Theorem 2.1. Let a function q be univalent in the unit disk U such that $q(z) \neq 0, \frac{zq'(z)}{q(z)}$ is starlike univalent in U and

(2.1)
$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{bq(z)}\right\} > 0, \ b \neq 0, \ q'(z) \neq 0, \quad z \in U.$$

If $F \in \mathcal{A}^+_{\alpha}$ satisfies the subordination

$$\frac{a}{\left(D^k_{\alpha}F(z)\right)'}\left(\frac{D^k_{\alpha}F(z)}{z}\right)^{\mu} + b\left[\mu\left(1 - \frac{z(D^k_{\alpha}F(z))'}{D^k_{\alpha}F(z)}\right) + \frac{z(D^k_{\alpha}F(z))''}{\left(D^k_{\alpha}F(z)\right)'}\right] \\ \prec \frac{a}{q(z)} + b\frac{zq'(z)}{q(z)},$$

then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu}\prec q(z)$$

and q is the best dominant.

Proof. Let the function p be defined by

$$p(z) \coloneqq \left(D_{\alpha}^{k}F(z)\right)' \left(\frac{z}{D_{\alpha}^{k}F(z)}\right)^{\mu}, \quad D_{\alpha}^{k}F(z) \neq 0, \quad z \in U.$$

By setting

$$\theta(\omega) \coloneqq \frac{a}{\omega} \text{ and } \phi(\omega) \coloneqq \frac{b}{\omega}, \ b \neq 0,$$

it can easily be observed that $\theta(\omega)$ is analytic in $\mathbb{C} - \{0\}$, $\phi(\omega)$ is analytic in $\mathbb{C} - \{0\}$ and that $\phi(\omega) \neq 0$, $\omega \in \mathbb{C} - \{0\}$. Also we obtain

$$Q(z) = zq'(z)\phi(q(z)) = \frac{bzq'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + Q(z) = \frac{a}{q(z)} + b\frac{zq'(z)}{q(z)}$$

It is clear that Q(z) is starlike univalent in U,

$$\Re\left\{\frac{zh'(z)}{Q(z)}\right\} = \Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{a}{bq(z)}\right\} > 0.$$

By straightforward computation, we have

$$\begin{aligned} \frac{a}{p(z)} + b \frac{zp'(z)}{p(z)} &= \frac{a}{\left(D_{\alpha}^{k}F(z)\right)'} \left(\frac{D_{\alpha}^{k}F(z)}{z}\right)^{\mu} \\ &+ b \left[\mu \left(1 - \frac{z\left(D_{\alpha}^{k}F(z)\right)'}{D_{\alpha}^{k}F(z)}\right) + \frac{z\left(D_{\alpha}^{k}F(z)\right)''}{\left(D_{\alpha}^{k}F(z)\right)'}\right] \\ &\prec \frac{a}{q(z)} + b \frac{zq'(z)}{q(z)}.\end{aligned}$$

Then by the assumption of the theorem, we see that the assertion of the theorem follows by application of Lemma 1.1. $\hfill \Box$

Corollary 2.1. Assume that (2.1) holds and q is convex univalent in U. If $F \in \mathcal{A}^+_{\alpha}$ and

$$\frac{a}{\left(D_{\alpha}^{k}F(z)\right)'}\left(\frac{D_{\alpha}^{k}F(z)}{z}\right)^{\mu} + b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k}F(z)\right)'}{D_{\alpha}^{k}F(z)}\right) + \frac{z\left(D_{\alpha}^{k}F(z)\right)''}{\left(D_{\alpha}^{k}F(z)\right)'}\right] \\ \prec a\left(\frac{1+Bz}{1+Az}\right)^{\mu} + b\frac{\mu z(A-B)}{(1+Az)(1+Bz)},$$

then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec \left(\frac{1+Az}{1+Bz}\right)^{\mu}, \quad -1 \le B < A \le 1$$

and $q(z) = \left(\frac{1+Az}{1+Bz}\right)^{\mu}$ is the best dominant.

Corollary 2.2. Assume that (2.1) holds and q is convex univalent in U. If $F \in \mathcal{A}^+_{\alpha}$ and

$$\frac{a}{\left(D_{\alpha}^{k}F(z)\right)'}\left(\frac{D_{\alpha}^{k}F(z)}{z}\right)^{\mu} + b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k}F(z)\right)'}{D_{\alpha}^{k}F(z)}\right) + \frac{z\left(D_{\alpha}^{k}F(z)\right)''}{\left(D_{\alpha}^{k}F(z)\right)'}\right] \\ \prec a\left(\frac{1-z}{1+z}\right)^{\mu} + \frac{2\mu bz}{1-z^{2}},$$

for $z \in U$, $\mu \neq 0$, then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec \left(\frac{1+z}{1-z}\right)^{\mu}$$

and $q(z) = \left(\frac{1+z}{1-z}\right)^{\mu}$ is the best dominant.

Corollary 2.3. Assume that (2.1) holds and q is convex univalent in U. If $F \in \mathcal{A}^+_{\alpha}$ and

$$\frac{a}{\left(D^k_{\alpha}F(z)\right)'}\left(\frac{D^k_{\alpha}F(z)}{z}\right)^{\mu} + b\left[\mu\left(1 - \frac{z\left(D^k_{\alpha}F(z)\right)'}{D^k_{\alpha}F(z)}\right) + \frac{z\left(D^k_{\alpha}F(z)\right)''}{\left(D^k_{\alpha}F(z)\right)'}\right] \\ \prec ae^{-\mu Az} + \mu bAz$$

for $z \in U$, $\mu \neq 0$, then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec e^{\mu A z}$$

and $q(z) = e^{\mu A z}$ is the best dominant.

The next result can be found in [3].

Corollary 2.4. Assume that k = 0 in Theorem 2.1. Then

$$(F(z))'\left(\frac{z}{F(z)}\right)^{\mu} \prec q(z)$$

and q is the best dominant.

Theorem 2.2. Let a function q(z) be convex univalent in the unit disk U such that $q'(z) \neq 0$ and

(2.2)
$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\gamma}\right\} > 0, \quad \gamma \neq 0.$$

Suppose that $(D^k_{\alpha}F(z))'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu}$ is analytic in U. If $F \in \mathcal{A}^-_{\alpha}$ satisfies the subordination

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \left[\mu\gamma\left(1-\frac{z\left(D^k_{\alpha}F(z)\right)'}{D^k_{\alpha}F(z)}\right)+\frac{z\left(D^k_{\alpha}F(z)\right)''}{\left(D^k_{\alpha}F(z)\right)'}\right] \\ \prec q(z)+\gamma zq'(z),$$

then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec q(z), \quad z \in U, \quad D^k_{\alpha}F(z) \neq 0$$

and q is the best dominant.

Proof. Let the function p be defined by

$$p(z) \coloneqq \left(\frac{z}{D_{\alpha}^k F(z)}\right)^{\mu}, \quad D_{\alpha}^k F(z) \neq 0, \quad z \in U.$$

By setting $\psi = 1$, it can easily be observed that

$$p(z) + \gamma z p'(z)$$

$$= \left(D_{\alpha}^{k} F(z)\right)' \left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \left[\mu \gamma \left(1 - \frac{z \left(D_{\alpha}^{k} F(z)\right)'}{D_{\alpha}^{k} F(z)}\right) + \frac{z \left(D_{\alpha}^{k} F(z)\right)''(z)}{\left(D_{\alpha}^{k} F(z)\right)'}\right]$$

$$\prec q(z) + \gamma z q'(z).$$

Then by the assumption of the theorem we see that the assertion of the theorem follows by application of Lemma 1.2. $\hfill \Box$

Corollary 2.5. Assume that (2.2) holds and q is convex univalent in U. If $F \in \mathcal{A}^-_{\alpha}$ and

$$(D^k_{\alpha}F(z))'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \left[\mu\gamma\left(1-\frac{z(D^k_{\alpha}F(z))'}{D^k_{\alpha}F(z)}\right) + \frac{z(D^k_{\alpha}F(z))''(z)}{(D^k_{\alpha}F(z))'}\right] \\ \prec \left(\frac{1+Az}{1+Bz}\right)^{\mu} + \mu\gamma z(A-B)\frac{(1+Az)^{\mu-1}}{(1+Bz)^{\mu+1}},$$

then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec \left(\frac{1+Az}{1+Bz}\right)^{\mu}, \quad -1 \le B < A \le 1$$

and $q(z) = \left(\frac{1+Az}{1+Bz}\right)^{\mu}$ is the best dominant.

Corollary 2.6. Assume that (2.2) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$ and

$$\left(D^k_{\alpha}F(z)\right)' \left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \left[\mu\gamma \left(1 - \frac{z\left(D^k_{\alpha}F(z)\right)'}{D^k_{\alpha}F(z)}\right) + \frac{z\left(D^k_{\alpha}F(z)\right)''(z)}{\left(D^k_{\alpha}F(z)\right)'}\right] \\ \prec \left[\frac{1+z}{1-z}\right]^{\mu} \left\{1 + \frac{2\gamma\mu z}{1-z^2}\right\}$$

for $z \in U$, $\mu \neq 0$, then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec \left(\frac{1+z}{1-z}\right)^{\mu}$$

and $q(z) = \left(\frac{1+z}{1-z}\right)^{\mu}$ is the best dominant.

Corollary 2.7. Assume that (2.2) holds and q is convex univalent in U. If $F \in \mathcal{A}^-_{\alpha}$ and

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \left[\mu\gamma\left(1-\frac{z\left(D^k_{\alpha}F(z)\right)'}{D^k_{\alpha}F(z)}\right) + \frac{z\left(D^k_{\alpha}F(z)\right)''(z)}{(D^k_{\alpha}F(z))'}\right] \\ \prec e^{\mu A z}(1+\mu\gamma A z)$$

for $z \in U$, $\mu \neq 0$, then

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec e^{\mu A z}$$

and $q(z) = e^{\mu A z}$ is the best dominant.

The next result can be found in [3].

Corollary 2.8. Assume that k = 0 in Theorem 2.2. Then

$$(F(z))'\left(\frac{z}{F(z)}\right)^{\mu} \prec q(z)$$

and q is the best dominant.

3. Applications. In this section, we present some applications of Section 2 to fractional integral operators. Assume that $f(z) = \sum_{n=2}^{\infty} \varphi_n z^{n-1}$ and let us begin with the following definitions:

Definition 3.1 ([12]). The fractional integral of order α is defined, for a function f, by

$$I_z^{\alpha} f(z) \coloneqq \frac{1}{\Gamma(\alpha)} \int_0^z f(\zeta) (z-\zeta)^{\alpha-1} d\zeta, \quad \alpha \ge 1,$$

where the function f is analytic in a simply-connected region of the complex z-plane (\mathbb{C}) containing the origin and the multiplicity of $(z - \zeta)^{\alpha-1}$ is removed by requiring $\log(z - \zeta)$ to be real when $(z - \zeta) > 0$.

Note that (see [12], [7])

$$I_z^{\alpha} z^{\mu} = \frac{\Gamma(\mu+1)}{\Gamma(\mu+\alpha+1)} z^{\mu+\alpha}, \quad (\mu > -1).$$

Thus we have

$$I_z^{\alpha}f(z) = \sum_{n=2}^{\infty} a_n z^{n+\alpha-1}$$

where $a_n \coloneqq \frac{\varphi_n \Gamma(n)}{\Gamma(n+\alpha)}$, for all $n = 2, 3, \ldots$ This implies that $z + I_z^{\alpha} f(z) \in \mathcal{A}_{\alpha}^+$ and $z - I_z^{\alpha} f(z) \in \mathcal{A}_{\alpha}^-$ ($\varphi_n \ge 0$), so we get the following results: Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then

$$D^k_{\alpha} \left(z + I^{\alpha}_z f(z) \right)' \left(\frac{z}{D^k_{\alpha} (z + I^{\alpha}_z f(z))} \right)^{\mu} \prec q(z), \quad z \neq 0, \quad z \in U$$

and q is the best dominant.

Proof. Consider the function F be defined by

$$F(z) \coloneqq z + I_z^{\alpha} f(z), \quad z \in U, \ z \neq 0.$$

Theorem 3.2. Let k = 0 in Theorem 2.2. Then

$$D^k_{\alpha} \left(z - I^{\alpha}_z f(z) \right)' \left(\frac{z}{D^k_{\alpha} (z - I^{\alpha}_z f(z))} \right)^{\mu} \prec q(z), \quad z \neq 0, \ z \in U$$

and q is the best dominant.

Proof. Consider the function *F* be defined by

$$F(z) \coloneqq z - I_z^{\alpha} f(z), \quad z \in U, \ z \neq 0.$$

Let F(a, b; c; z) be the Gauss hypergeometric function (see [13]) defined, for $z \in U$, by

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} z^n,$$

where is the Pochhammer symbol defined by

$$(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & (n=0); \\ a(a+1)(a+2)\dots(a+n-1), & (n\in\mathbb{N}). \end{cases}$$

We need the following definition of fractional operators of the Saigo type fractional calculus (see [10], [9]).

Definition 3.2. For $\alpha > 0$ and $\beta, \eta \in \mathbb{R}$, the fractional integral operator $I_{0,z}^{\alpha,\beta,\eta}$ is defined by

$$I_{0,z}^{\alpha,\beta,\eta}f(z) = \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} F\left(\alpha+\beta,-\eta;\alpha;1-\frac{\zeta}{z}\right) f(\zeta)d\zeta$$

where the function f(z) is analytic in a simply-connected region of the zplane containing the origin, with the order

$$f(z) = O(|z|^{\epsilon})(z \to 0), \quad \epsilon > \max\{0, \beta - \eta\} - 1$$

and the multiplicity of $(z - \zeta)^{\alpha - 1}$ is removed by requiring $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

From Definition 3.2, with $\beta < 0$, we have

$$\begin{split} I_{0,z}^{\alpha,\beta,\eta}f(z) &= \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} F\left(\alpha+\beta,-\eta;\alpha;1-\frac{\zeta}{z}\right) f(\zeta)d\zeta \\ &= \sum_{n=0}^\infty \frac{(\alpha+\beta)_n(-\eta)_n}{(\alpha)_n(1)_n} \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} \left(1-\frac{\zeta}{z}\right)^n f(\zeta)d\zeta \\ &\coloneqq \sum_{n=0}^\infty B_n \frac{z^{-\alpha-\beta-n}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{n+\alpha-1} f(\zeta)d\zeta \\ &= \sum_{n=0}^\infty B_n \frac{z^{-\beta-1}}{\Gamma(\alpha)} f(\zeta) \\ &\coloneqq \frac{\overline{B}}{\Gamma(\alpha)} \sum_{n=2}^\infty \varphi_n z^{n-\beta-1} \end{split}$$

where $\overline{B} \coloneqq \sum_{n=0}^{\infty} B_n$. Denote $a_n \coloneqq \overline{\frac{B}{\Gamma(\alpha)}}$, $\forall n = 2, 3, ...,$ and let $\alpha = -\beta$. Thus $z + I_{0,z}^{\alpha,\beta,\eta} f(z) \in \mathcal{A}^+_{\alpha}$ and $z - I_{0,z}^{\alpha,\beta,\eta} f(z) \in \mathcal{A}^-_{\alpha}$ ($\varphi_n \ge 0$), so we have the following results:

Theorem 3.3. Assume that the hypotheses of Theorem 2.1 are satisfied. Then

$$D^k_{\alpha} \left(z + I^{\alpha,\beta,\eta}_{0,z} f(z) \right)' \left(\frac{z}{D^k_{\alpha} (z + I^{\alpha,\beta,\eta}_{0,z} f(z))} \right)^{\mu} \prec q(z), \quad z \neq 0, \ z \in U$$

and q is the best dominant.

Proof. Consider the function F defined by

$$F(z) \coloneqq z + I_{0,z}^{\alpha,\beta,\eta} f(z), \quad z \in U, \ z \neq 0.$$

Theorem 3.4. Assume that the hypotheses of Theorem 2.2 are satisfied. Then

$$D^k_{\alpha} \left(z - I^{\alpha,\beta,\eta}_{0,z} f(z) \right)' \left(\frac{z}{D^k_{\alpha} (z - I^{\alpha,\beta,\eta}_{0,z} f(z))} \right)^{\mu} \prec q(z), \quad z \neq 0, \ z \in U$$

and q is the best dominant.

Proof. Consider the function F defined by

$$F(z) \coloneqq z - I_{0,z}^{\alpha,\beta,\eta} f(z), \quad z \in U, \ z \neq 0.$$

Remark 3.1. Note that the authors have recently studied and defined several other classes of analytic functions related to fractional power (see [2], [1], [4]).

4. The class $S_{\mu}(\gamma)$. A function $F(z) \in \mathcal{A}_{\alpha}^+$ is said to be in the class $S_{\mu}(\gamma)$ if it satisfies

$$(D^k_{\alpha}F(z))'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec \frac{1+z}{1-\gamma z}, \quad (z \in U, \ \gamma \neq 1).$$

To discuss our problem, we have to recall here the following lemma due to Jack [15].

Lemma 4.1. Let w be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z_0 , then

$$z_0w'(z_0) = kw(z_0),$$

where k is a real number and $k \geq 1$.

We get the following result:

Theorem 4.1. If $F \in \mathcal{A}^+_{\alpha}$ satisfies

(4.1)
$$\Re \left[\mu - \mu \frac{z (D_{\alpha}^{k} F(z))'}{D_{\alpha}^{k} F(z)} + \frac{z (D_{\alpha}^{k} F(z))''}{(D_{\alpha}^{k} F(z))'} \right] < \frac{1 + \gamma}{2(1 - \gamma)}, \quad (z \in U)$$

for some $0 < \gamma < 1$, $0 < \mu < 1$, then $F(z) \in S_{\mu}(\gamma)$.

Proof. Let w be defined by

$$\left(D^k_{\alpha}F(z)\right)'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} = \frac{1+w(z)}{1-\gamma w(z)}, \quad (1 \neq \gamma w(z)).$$

Then w(z) is analytic in U with w(0) = 0. It follows that

$$\Re\left[\mu - \mu \frac{z(D_{\alpha}^{k}F(z))'}{D_{\alpha}^{k}F(z)} + \frac{z(D_{\alpha}^{k}F(z))''}{D_{\alpha}^{k}F(z))'}\right] = \Re\left[\frac{z(\gamma w'(z)+1)}{(1-\gamma w(z))(1+w(z))}\right]$$
$$< \frac{1+\gamma}{2(1-\gamma)}, \quad \gamma \neq 1.$$

Now we proceed to prove that |w(z)| < 1. Suppose that there exists a point $z_0 \in U$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Then, using Lemma 4.1 and letting $w(z_0) = e^{i\theta}$ and $z_0w'(z_0) = ke^{i\theta}$, $k \ge 1$, we obtain

$$\Re \left[\mu - \mu \frac{z \left(D_{\alpha}^{k} F(z_{0}) \right)'}{D_{\alpha}^{k} F(z_{0})} + \frac{z_{0} \left(D_{\alpha}^{k} F(z_{0}) \right)''}{D_{\alpha}^{k} F(z_{0}))'} \right] = \Re \left[\frac{z_{0} (w'(z_{0})\gamma + 1)}{(1 - \gamma w(z_{0}))(1 + w(z_{0}))} \right]$$
$$= \Re \left[\frac{k e^{i\theta} \gamma + 1}{(1 - \gamma e^{i\theta})(1 + e^{i\theta})} \right]$$
$$= \frac{k(\gamma + 1)}{2(1 - \gamma)} \ge \frac{1 + \gamma}{2(1 - \gamma)},$$

 $0 < \gamma < 1$. Thus we have

$$\Re\left[\mu - \mu \frac{z(D_{\alpha}^{k}F(z))'}{D_{\alpha}^{k}F(z)} + \frac{z(D_{\alpha}^{k}F(z))''}{D_{\alpha}^{k}F(z))'}\right] \ge \frac{1+\gamma}{2(1-\gamma)}, \quad (z \in U)$$

which contradicts the hypothesis (4.1). Therefore, we conclude that |w(z)| < 1 for all $z \in U$ that is

$$(D^k_{\alpha}F(z))'\left(\frac{z}{D^k_{\alpha}F(z)}\right)^{\mu} \prec \frac{1+z}{1-\gamma z}, \quad (z \in U, \ \gamma \neq 1).$$

This completes the proof of the theorem.

Acknowledgement. This work is supported by UKM-ST-06-FRGS0107-2009 and the authors would like to thank the referee for informative remarks given to improve the content of the paper.

References

- Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221–229.
- [2] Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785–2794.
- [3] Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevič type, UNRI-UKM Symposium, KE-4 (2008).
- [4] Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family ε(Φ, Ψ), JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.
- [5] Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469–474.
- [6] Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
- [7] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993.
- [8] Obradovič, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329– 335.
- [9] Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247–260.
- [10] Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13–19.
- [11] Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1–11.
- [12] Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989.
- [13] Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
- [14] Tuneski, N., Darus, M., Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18(2) (2002), 63–65.

[15] Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21(2) (2005), 147–154.

Rabha W. Ibrahim	Maslina Darus
School of Mathematical Sciences	School of Mathematical Sciences
Faculty of Science and Technology	Faculty of Science and Technology
Universiti Kebangsaan Malaysia	Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan	Bangi 43600, Selangor Darul Ehsan
Malaysia	Malaysia
$\operatorname{e-mail:}$ rabhaibrahim@yahoo.com	e-mail: maslina@ukm.my (corresponding author)

Nikola Tuneski Faculty of Mechanical Engineering Karpoš II b.b., 1000 Skopje Republic of Macedonia e-mail: nikolat@mf.edu.mk

Received February 8, 2010