RABHA W. IBRAHIM, MASLINA DARUS and NIKOLA TUNESKI

On subordination for classes of non-Bazilevič type

Abstract

We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevič type in the open unit disk. By using Jack's lemma, sufficient conditions for this type of operator are also discussed.

1. Introduction and preliminaries. Consider the functions F in the open disk $U:=\{z \in \mathbb{C}:|z|<1\}$, defined by

$$
\begin{align*}
F(z) & =\frac{z^{\alpha}}{(1-z)^{\alpha}}=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{n!} z^{n+\alpha} \\
& =z^{\alpha}+\sum_{n=1}^{\infty} \frac{(\alpha)_{n}}{n!} z^{n+\alpha} \tag{1.1}\\
& =z^{\alpha}+\sum_{n=2}^{\infty} \frac{(\alpha)_{n-1}}{(n-1)!} z^{n+\alpha-1}, \quad \alpha \geq 1 .
\end{align*}
$$

From (1.1), assuming α to be a parameter with the values $\alpha:=\frac{n+m}{m}$, $m \in \mathbb{N}$, and having $n=0$ in the first term of the series, we can write F in the form

$$
\begin{equation*}
F(z)=z+\sum_{n=2}^{\infty} \frac{(\alpha)_{n-1}}{(n-1)!} z^{n+\alpha-1} . \tag{1.2}
\end{equation*}
$$

[^0]By employing (1.2), we define classes of analytic functions of fractional power.

Let \mathcal{A}_{α}^{+}be the class of all normalized analytic functions F in the open disk U of the form

$$
F(z)=z+\sum_{n=2}^{\infty} a_{n, \alpha} z^{n+\alpha-1}, \quad \alpha \geq 1,
$$

satisfying $F(0)=0$ and $F^{\prime}(0)=1$. Moreover, let \mathcal{A}_{α}^{-}be the class of all normalized analytic functions F in the open disk U of the form

$$
F(z)=z-\sum_{n=2}^{\infty} a_{n, \alpha} z^{n+\alpha-1}, \quad a_{n, \alpha} \geq 0 ; \quad n=2,3, \ldots,
$$

satisfying $F(0)=0$ and $F^{\prime}(0)=1$.
Definition 1.1 (Subordination Principle). For two functions f and g analytic in U, we say that the function f is subordinate to g in U and write $f(z) \prec g(z)(z \in U)$, if there exists a Schwarz function $w(z)$ analytic in U with $w(0)=0$, and $|w(z)|<1$, such that $f(z)=g(w(z)), z \in U$. In particular, if the function g is univalent in U, the above subordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$.

Now we define a differential operator as follows:

$$
\begin{align*}
& D_{\alpha}^{0} F(z)=F(z)=z+\sum_{n=2}^{\infty} a_{n, \alpha} z^{n+\alpha-1}, \alpha \geq 1, \\
& D_{\alpha}^{1} F(z)=\frac{F(z)}{2}+\frac{z F^{\prime}(z)}{2}=z+\sum_{n=2}^{\infty} \frac{(n+\alpha)}{2} a_{n, \alpha} z^{n+\alpha-1}, \tag{1.3}\\
& \quad \vdots \\
& D_{\alpha}^{k} F(z)=D\left(D^{k-1} F(z)\right)=z+\sum_{n=2}^{\infty}\left[\frac{(n+\alpha)}{2}\right]^{k} a_{n, \alpha} z^{n+\alpha-1} .
\end{align*}
$$

Let \mathcal{A} be the class of analytic functions of the form $f(z)=z+a_{2} z^{2}+\ldots$. Obradovič [8] introduced a class of functions $f \in \mathcal{A}$ such that for $0<\mu<1$,

$$
\begin{equation*}
\Re\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu}\right\}>0, \quad z \in U . \tag{1.4}
\end{equation*}
$$

He called it the class of function of non-Bazilevič type. There are many subordination results for this class (see [15]). In fact, this type of functions has been used to solve various problems (see [14]).

The main object of the present work is to apply a method based on the differential subordination in order to derive sufficient conditions for functions $F \in \mathcal{A}_{\alpha}^{+}$and $F \in \mathcal{A}_{\alpha}^{-}$to satisfy

$$
\begin{equation*}
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec q(z), \quad D_{\alpha}^{k} F(z) \neq 0, \quad z \in U \tag{1.5}
\end{equation*}
$$

where q is a given univalent function in U such that $q(z) \neq 0, \mu \neq 0$.
Moreover, we give applications of these results in fractional calculus. We shall need the following known results:

Lemma $1.1([4])$. Let $q(z)$ be univalent in the unit disk U and θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z):=z q^{\prime}(z) \phi(q(z)), h(z):=\theta(q(z))+Q(z)$. Suppose that

1. $Q(z)$ is starlike univalent in U, and
2. $\Re \frac{z h^{\prime}(z)}{Q(z)}>0$ for $z \in U$.

If $\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z))$, then $p(z) \prec q(z)$ and q is the best dominant.
Lemma 1.2 ([5]). Let $q(z)$ be convex univalent in the unit disk U and ψ and $\gamma \in \mathbb{C}$ with $\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{\psi}{\gamma}\right\}>0$. If $p(z)$ is analytic in U and $\psi p(z)+\gamma z p^{\prime}(z) \prec \psi q(z)+\gamma z q^{\prime}(z)$, then $p(z) \prec q(z)$ and q is the best dominant.
2. Subordination results. In this section, we study subordination for normalized analytic functions in the classes \mathcal{A}_{α}^{+}and \mathcal{A}_{α}^{-}.

Theorem 2.1. Let a function q be univalent in the unit disk U such that $q(z) \neq 0, \frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U and

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\frac{a}{b q(z)}\right\}>0, b \neq 0, q^{\prime}(z) \neq 0, \quad z \in U \tag{2.1}
\end{equation*}
$$

If $F \in \mathcal{A}_{\alpha}^{+}$satisfies the subordination

$$
\begin{aligned}
\frac{a}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\left(\frac{D_{\alpha}^{k} F(z)}{z}\right)^{\mu} & +b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec \frac{a}{q(z)}+b \frac{z q^{\prime}(z)}{q(z)},
\end{aligned}
$$

then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant.
Proof. Let the function p be defined by

$$
p(z):=\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}, \quad D_{\alpha}^{k} F(z) \neq 0, \quad z \in U
$$

By setting

$$
\theta(\omega):=\frac{a}{\omega} \text { and } \phi(\omega):=\frac{b}{\omega}, \quad b \neq 0
$$

it can easily be observed that $\theta(\omega)$ is analytic in $\mathbb{C}-\{0\}, \phi(\omega)$ is analytic in $\mathbb{C}-\{0\}$ and that $\phi(\omega) \neq 0, \omega \in \mathbb{C}-\{0\}$. Also we obtain

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{b z q^{\prime}(z)}{q(z)}
$$

and

$$
h(z)=\theta(q(z))+Q(z)=\frac{a}{q(z)}+b \frac{z q^{\prime}(z)}{q(z)}
$$

It is clear that $Q(z)$ is starlike univalent in U,

$$
\Re\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\frac{a}{b q(z)}\right\}>0
$$

By straightforward computation, we have

$$
\begin{aligned}
\frac{a}{p(z)}+b \frac{z p^{\prime}(z)}{p(z)}= & \frac{a}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\left(\frac{D_{\alpha}^{k} F(z)}{z}\right)^{\mu} \\
& +b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec \frac{a}{q(z)}+b \frac{z q^{\prime}(z)}{q(z)}
\end{aligned}
$$

Then by the assumption of the theorem, we see that the assertion of the theorem follows by application of Lemma 1.1.

Corollary 2.1. Assume that (2.1) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{+}$and

$$
\begin{aligned}
\frac{a}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\left(\frac{D_{\alpha}^{k} F(z)}{z}\right)^{\mu} & +b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec a\left(\frac{1+B z}{1+A z}\right)^{\mu}+b \frac{\mu z(A-B)}{(1+A z)(1+B z)},
\end{aligned}
$$

then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec\left(\frac{1+A z}{1+B z}\right)^{\mu}, \quad-1 \leq B<A \leq 1
$$

and $q(z)=\left(\frac{1+A z}{1+B z}\right)^{\mu}$ is the best dominant.

Corollary 2.2. Assume that (2.1) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{+}$and

$$
\begin{aligned}
\frac{a}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\left(\frac{D_{\alpha}^{k} F(z)}{z}\right)^{\mu} & +b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec a\left(\frac{1-z}{1+z}\right)^{\mu}+\frac{2 \mu b z}{1-z^{2}},
\end{aligned}
$$

for $z \in U, \mu \neq 0$, then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec\left(\frac{1+z}{1-z}\right)^{\mu}
$$

and $q(z)=\left(\frac{1+z}{1-z}\right)^{\mu}$ is the best dominant.
Corollary 2.3. Assume that (2.1) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{+}$and

$$
\begin{aligned}
\frac{a}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\left(\frac{D_{\alpha}^{k} F(z)}{z}\right)^{\mu} & +b\left[\mu\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec a e^{-\mu A z}+\mu b A z
\end{aligned}
$$

for $z \in U, \mu \neq 0$, then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec e^{\mu A z}
$$

and $q(z)=e^{\mu A z}$ is the best dominant.
The next result can be found in [3].
Corollary 2.4. Assume that $k=0$ in Theorem 2.1. Then

$$
(F(z))^{\prime}\left(\frac{z}{F(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant.
Theorem 2.2. Let a function $q(z)$ be convex univalent in the unit disk U such that $q^{\prime}(z) \neq 0$ and

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{1}{\gamma}\right\}>0, \quad \gamma \neq 0 . \tag{2.2}
\end{equation*}
$$

Suppose that $\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}$ is analytic in U. If $F \in \mathcal{A}_{\alpha}^{-}$satisfies the subordination

$$
\begin{aligned}
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} & {\left[\mu \gamma\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] } \\
& \prec q(z)+\gamma z q^{\prime}(z),
\end{aligned}
$$

then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec q(z), \quad z \in U, \quad D_{\alpha}^{k} F(z) \neq 0
$$

and q is the best dominant.
Proof. Let the function p be defined by

$$
p(z):=\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}, \quad D_{\alpha}^{k} F(z) \neq 0, \quad z \in U
$$

By setting $\psi=1$, it can easily be observed that

$$
\begin{aligned}
& p(z)+\gamma z p^{\prime}(z) \\
& \quad=\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}\left[\mu \gamma\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}(z)}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \quad \prec q(z)+\gamma z q^{\prime}(z) .
\end{aligned}
$$

Then by the assumption of the theorem we see that the assertion of the theorem follows by application of Lemma 1.2.

Corollary 2.5. Assume that (2.2) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$and

$$
\begin{aligned}
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}[\mu \gamma & \left.\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}(z)}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec\left(\frac{1+A z}{1+B z}\right)^{\mu}+\mu \gamma z(A-B) \frac{(1+A z)^{\mu-1}}{(1+B z)^{\mu+1}}
\end{aligned}
$$

then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec\left(\frac{1+A z}{1+B z}\right)^{\mu}, \quad-1 \leq B<A \leq 1
$$

and $q(z)=\left(\frac{1+A z}{1+B z}\right)^{\mu}$ is the best dominant.
Corollary 2.6. Assume that (2.2) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$and

$$
\begin{aligned}
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}[\mu \gamma & \left.\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}(z)}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec\left[\frac{1+z}{1-z}\right]^{\mu}\left\{1+\frac{2 \gamma \mu z}{1-z^{2}}\right\}
\end{aligned}
$$

for $z \in U, \mu \neq 0$, then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec\left(\frac{1+z}{1-z}\right)^{\mu}
$$

and $q(z)=\left(\frac{1+z}{1-z}\right)^{\mu}$ is the best dominant.

Corollary 2.7. Assume that (2.2) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$and

$$
\begin{aligned}
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}[\mu \gamma & \left.\left(1-\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}\right)+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}(z)}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \\
& \prec e^{\mu A z}(1+\mu \gamma A z)
\end{aligned}
$$

for $z \in U, \mu \neq 0$, then

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec e^{\mu A z}
$$

and $q(z)=e^{\mu A z}$ is the best dominant.
The next result can be found in [3].
Corollary 2.8. Assume that $k=0$ in Theorem 2.2. Then

$$
(F(z))^{\prime}\left(\frac{z}{F(z)}\right)^{\mu} \prec q(z)
$$

and q is the best dominant.
3. Applications. In this section, we present some applications of Section 2 to fractional integral operators. Assume that $f(z)=\sum_{n=2}^{\infty} \varphi_{n} z^{n-1}$ and let us begin with the following definitions:
Definition 3.1 ([12]). The fractional integral of order α is defined, for a function f, by

$$
I_{z}^{\alpha} f(z):=\frac{1}{\Gamma(\alpha)} \int_{0}^{z} f(\zeta)(z-\zeta)^{\alpha-1} d \zeta, \quad \alpha \geq 1
$$

where the function f is analytic in a simply-connected region of the complex z-plane $\left(\mathbb{C}\right.$) containing the origin and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $(z-\zeta)>0$.

Note that (see [12], [7])

$$
I_{z}^{\alpha} z^{\mu}=\frac{\Gamma(\mu+1)}{\Gamma(\mu+\alpha+1)} z^{\mu+\alpha}, \quad(\mu>-1) .
$$

Thus we have

$$
I_{z}^{\alpha} f(z)=\sum_{n=2}^{\infty} a_{n} z^{n+\alpha-1}
$$

where $a_{n}:=\frac{\varphi_{n} \Gamma(n)}{\Gamma(n+\alpha)}$, for all $n=2,3, \ldots$. This implies that $z+I_{z}^{\alpha} f(z) \in \mathcal{A}_{\alpha}^{+}$ and $z-I_{z}^{\alpha} f(z) \in \mathcal{A}_{\alpha}^{-}\left(\varphi_{n} \geq 0\right)$, so we get the following results:

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then

$$
D_{\alpha}^{k}\left(z+I_{z}^{\alpha} f(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k}\left(z+I_{z}^{\alpha} f(z)\right)}\right)^{\mu} \prec q(z), \quad z \neq 0, \quad z \in U
$$

and q is the best dominant.
Proof. Consider the function F be defined by

$$
F(z):=z+I_{z}^{\alpha} f(z), \quad z \in U, z \neq 0
$$

Theorem 3.2. Let $k=0$ in Theorem 2.2. Then

$$
D_{\alpha}^{k}\left(z-I_{z}^{\alpha} f(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k}\left(z-I_{z}^{\alpha} f(z)\right)}\right)^{\mu} \prec q(z), \quad z \neq 0, \quad z \in U
$$

and q is the best dominant.
Proof. Consider the function F be defined by

$$
F(z):=z-I_{z}^{\alpha} f(z), \quad z \in U, z \neq 0
$$

Let $F(a, b ; c ; z)$ be the Gauss hypergeometric function (see [13]) defined, for $z \in U$, by

$$
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n}
$$

where is the Pochhammer symbol defined by

$$
(a)_{n}:=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}1, & (n=0) \\ a(a+1)(a+2) \ldots(a+n-1), & (n \in \mathbb{N})\end{cases}
$$

We need the following definition of fractional operators of the Saigo type fractional calculus (see [10], [9]).

Definition 3.2. For $\alpha>0$ and $\beta, \eta \in \mathbb{R}$, the fractional integral operator $I_{0, z}^{\alpha, \beta, \eta}$ is defined by

$$
I_{0, z}^{\alpha, \beta, \eta} f(z)=\frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1} F\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\zeta}{z}\right) f(\zeta) d \zeta
$$

where the function $f(z)$ is analytic in a simply-connected region of the z plane containing the origin, with the order

$$
f(z)=O\left(|z|^{\epsilon}\right)(z \rightarrow 0), \quad \epsilon>\max \{0, \beta-\eta\}-1
$$

and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

From Definition 3.2, with $\beta<0$, we have

$$
\begin{aligned}
I_{0, z}^{\alpha, \beta, \eta} f(z) & =\frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1} F\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\zeta}{z}\right) f(\zeta) d \zeta \\
& =\sum_{n=0}^{\infty} \frac{(\alpha+\beta)_{n}(-\eta)_{n}}{(\alpha)_{n}(1)_{n}} \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1}\left(1-\frac{\zeta}{z}\right)^{n} f(\zeta) d \zeta \\
& :=\sum_{n=0}^{\infty} B_{n} \frac{z^{-\alpha-\beta-n}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{n+\alpha-1} f(\zeta) d \zeta \\
& =\sum_{n=0}^{\infty} B_{n} \frac{z^{-\beta-1}}{\Gamma(\alpha)} f(\zeta) \\
& :=\frac{\bar{B}}{\Gamma(\alpha)} \sum_{n=2}^{\infty} \varphi_{n} z^{n-\beta-1}
\end{aligned}
$$

where $\bar{B}:=\sum_{n=0}^{\infty} B_{n}$. Denote $a_{n}:=\frac{\bar{B} \varphi_{n}}{\Gamma(\alpha)}, \forall n=2,3, \ldots$, and let $\alpha=-\beta$. Thus $z+I_{0, z}^{\alpha, \beta, \eta} f(z) \in \mathcal{A}_{\alpha}^{+}$and $z-I_{0, z}^{\alpha, \beta, \eta} f(z) \in \mathcal{A}_{\alpha}^{-}\left(\varphi_{n} \geq 0\right)$, so we have the following results:

Theorem 3.3. Assume that the hypotheses of Theorem 2.1 are satisfied. Then

$$
D_{\alpha}^{k}\left(z+I_{0, z}^{\alpha, \beta, \eta} f(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k}\left(z+I_{0, z}^{\alpha, \beta, \eta} f(z)\right)}\right)^{\mu} \prec q(z), \quad z \neq 0, \quad z \in U
$$

and q is the best dominant.
Proof. Consider the function F defined by

$$
F(z):=z+I_{0, z}^{\alpha, \beta, \eta} f(z), \quad z \in U, z \neq 0 .
$$

Theorem 3.4. Assume that the hypotheses of Theorem 2.2 are satisfied. Then

$$
D_{\alpha}^{k}\left(z-I_{0, z}^{\alpha, \beta, \eta} f(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k}\left(z-I_{0, z}^{\alpha, \beta, \eta} f(z)\right)}\right)^{\mu} \prec q(z), \quad z \neq 0, z \in U
$$

and q is the best dominant.
Proof. Consider the function F defined by

$$
F(z):=z-I_{0, z}^{\alpha, \beta, \eta} f(z), \quad z \in U, z \neq 0 .
$$

Remark 3.1. Note that the authors have recently studied and defined several other classes of analytic functions related to fractional power (see [2], [1], [4]).
4. The class $\mathcal{S}_{\mu}(\gamma)$. A function $F(z) \in \mathcal{A}_{\alpha}^{+}$is said to be in the class $\mathcal{S}_{\mu}(\gamma)$ if it satisfies

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec \frac{1+z}{1-\gamma z}, \quad(z \in U, \gamma \neq 1)
$$

To discuss our problem, we have to recall here the following lemma due to Jack [15].

Lemma 4.1. Let w be analytic in U with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point z_{0}, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where k is a real number and $k \geq 1$.
We get the following result:
Theorem 4.1. If $F \in \mathcal{A}_{\alpha}^{+}$satisfies

$$
\begin{equation*}
\Re\left[\mu-\mu \frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left(D_{\alpha}^{k} F(z)\right)^{\prime}}\right]<\frac{1+\gamma}{2(1-\gamma)}, \quad(z \in U) \tag{4.1}
\end{equation*}
$$

for some $0<\gamma<1,0<\mu<1$, then $F(z) \in \mathcal{S}_{\mu}(\gamma)$.
Proof. Let w be defined by

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu}=\frac{1+w(z)}{1-\gamma w(z)}, \quad(1 \neq \gamma w(z))
$$

Then $w(z)$ is analytic in U with $w(0)=0$. It follows that

$$
\begin{aligned}
\Re\left[\mu-\mu \frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left.D_{\alpha}^{k} F(z)\right)^{\prime}}\right] & =\Re\left[\frac{z\left(\gamma w^{\prime}(z)+1\right)}{(1-\gamma w(z))(1+w(z))}\right] \\
& <\frac{1+\gamma}{2(1-\gamma)}, \quad \gamma \neq 1
\end{aligned}
$$

Now we proceed to prove that $|w(z)|<1$. Suppose that there exists a point $z_{0} \in U$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then, using Lemma 4.1 and letting $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k e^{i \theta}, k \geq 1$, we obtain

$$
\begin{aligned}
\Re\left[\mu-\mu \frac{z\left(D_{\alpha}^{k} F\left(z_{0}\right)\right)^{\prime}}{D_{\alpha}^{k} F\left(z_{0}\right)}+\frac{z_{0}\left(D_{\alpha}^{k} F\left(z_{0}\right)\right)^{\prime \prime}}{\left.D_{\alpha}^{k} F\left(z_{0}\right)\right)^{\prime}}\right] & =\Re\left[\frac{z_{0}\left(w^{\prime}\left(z_{0}\right) \gamma+1\right)}{\left(1-\gamma w\left(z_{0}\right)\right)\left(1+w\left(z_{0}\right)\right)}\right] \\
& =\Re\left[\frac{k e^{i \theta} \gamma+1}{\left(1-\gamma e^{i \theta}\right)\left(1+e^{i \theta}\right)}\right] \\
& =\frac{k(\gamma+1)}{2(1-\gamma)} \geq \frac{1+\gamma}{2(1-\gamma)}
\end{aligned}
$$

$0<\gamma<1$. Thus we have

$$
\Re\left[\mu-\mu \frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime}}{D_{\alpha}^{k} F(z)}+\frac{z\left(D_{\alpha}^{k} F(z)\right)^{\prime \prime}}{\left.D_{\alpha}^{k} F(z)\right)^{\prime}}\right] \geq \frac{1+\gamma}{2(1-\gamma)}, \quad(z \in U)
$$

which contradicts the hypothesis (4.1). Therefore, we conclude that $|w(z)|<$ 1 for all $z \in U$ that is

$$
\left(D_{\alpha}^{k} F(z)\right)^{\prime}\left(\frac{z}{D_{\alpha}^{k} F(z)}\right)^{\mu} \prec \frac{1+z}{1-\gamma z}, \quad(z \in U, \gamma \neq 1) .
$$

This completes the proof of the theorem.
Acknowledgement. This work is supported by UKM-ST-06-FRGS01072009 and the authors would like to thank the referee for informative remarks given to improve the content of the paper.

References

[1] Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008), 221-229.
[2] Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse) 2(56) (2008), 2785-2794.
[3] Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazilevič type, UNRI-UKM Symposium, KE-4 (2008).
[4] Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the family $\mathcal{E}(\Phi, \Psi)$, JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.
[5] Jack, I. S., Functions starlike and convex of order k, J. London Math. Soc. 3 (1971), 469-474.
[6] Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
[7] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993.
[8] Obradovič, M., A class of univalent functions, Hokkaido Math. J. 27(2) (1998), 329335.
[9] Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct. 5 (1997), 247-260.
[10] Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl. 32 (1996), 13-19.
[11] Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11.
[12] Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989.
[13] Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
[14] Tuneski, N., Darus, M., Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18(2) (2002), 63-65.
[15] Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21(2) (2005), 147-154.
Rabha W. Ibrahim
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan
Malaysia
e-mail: rabhaibrahim@yahoo.com

Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan
Malaysia
e-mail: maslina@ukm.my (corresponding author)

Nikola Tuneski

Faculty of Mechanical Engineering
Karpoš II b.b., 1000 Skopje
Republic of Macedonia
e-mail: nikolat@mf.edu.mk

Received February 8, 2010

[^0]: 2000 Mathematics Subject Classification. 34G10, 26A33, 30C45.
 Key words and phrases. Fractional calculus, subordination, non-Bazilevič function, Jack's lemma.

