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On a nonstandard approach
to invariant measures for Markov operators

Abstract. We show the existence of invariant measures for Markov–Feller
operators defined on completely regular topological spaces which satisfy the
classical positivity condition.

1. Introduction. One of the strategies in studying Markov processes is to
consider certain linear operators and to examine their properties. The the-
ory of Markov operators is very rich and its results are very useful in many
branches of pure and applied mathematics including stochastic differential
equations, dynamical systems, mathematical theory of learning, population
dynamics, the theory of fractals and others (see for instance [10, 20] and
the references given there).

In [12], A. Lasota and J. A. Yorke gave a new sufficient condition for
asymptotic stability of Markov operators defined on locally and σ-compact
metric spaces. Their approach was partially based on the lower bound func-
tion technique for Markov operators acting on L1 space, see [10]. T. Szarek
managed in [18] to extend the Lasota–Yorke result to the case of Polish
spaces. One of the difficulties in proving stability is to show the existence
of an invariant measure, see [9, 11, 12, 18, 19].

In this paper we propose a nonstandard approach to the problem of an
invariant measure. We use the so-called Loeb measure construction [13]
to produce an invariant measure in an “ideal” space ∗X and then push it
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down to X by using the properties of the standard part map (see [2, 8]).
This approach is quite general and our main result is valid in the case of
completely regular topological spaces. A related result in normal spaces was
obtained in [7]. However, nonstandard approach seems to be interesting on
its own for the future developments.

In Section 2 we recall definitions concerning Markov operators. Some
methods of nonstandard analysis are presented in Section 3. We use these
methods in Section 4 to prove our main Theorem 4.1.

2. Markov operators on measures. Let (X, T ) be a topological space.
We denote by Mfin and M1 the sets of Borel measures on X such that
µ(X) < ∞ and µ(X) = 1 respectively. The elements of M1 are called
distributions. Let B (X) denote the family of Borel sets, B(X) the space
of all bounded Borel measurable functions f : X → R with the supremum
norm and C(X) its subspace of bounded continuous functions. ByMrad we
denote the set of finite Radon measures, that is,

µ (B) = sup {µ (K) : K ⊂ B, K compact}
for B ∈ B (X) and µ ∈Mrad.

According to [10], an operator P : Mfin → Mfin is called a Markov
operator (on measures) if P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ≥ 0,
µ1, µ2 ∈Mfin and Pµ(X) = µ(X) for µ ∈Mfin.

A Markov operator P is called a Feller operator if there is a linear operator
U : B(X)→ B(X) such that

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈Mfin

and Uf ∈ C(X) for f ∈ C(X). Here 〈f, ν〉 =
∫
X f(x)ν(dx).

It is easy to see that Uf(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X, where δx is
the Dirac measure supported at x.

A measure µ ∈Mfin is called stationary or invariant with respect to P if
Pµ = µ.

3. Nonstandard preliminaries. We present here some ideas which lie
behind techniques we shall use in Section 4.

Let U be a free ultrafilter on N. For given two sequences of reals 〈an〉 , 〈bn〉,
write 〈an〉 ≡ 〈bn〉 ⇔ {i ∈ N : ai = bi} ∈ U . It is easy to see that ≡ is an
equivalence relation in the Cartesian product

∏
n∈NR. The quotient space∏

n∈NR /≡ is called the (set theoretic) ultrapower of R and is denoted by
(R)U . Let ν1, ν2, . . . be a sequence of probability Borel measures on R. It is
not difficult to see that (B (R))U = {(Ai)U : Ai ∈ B (R) , i ∈ N} is an algebra
of subsets of (R)U and

ν0 ((Ai)U ) = lim
U
νi (Ai)

is a well-defined finitely additive measure defined on (B (R))U (here limU de-
notes the limit over U). It can be proved (see for instance [16, Lemma 9.1]
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that ν0 is σ-additive and therefore it may be uniquely extended to the com-
plete σ-algebra generated by (B (R))U . The construction described above
may be regarded as the ultraproduct counterpart of the famous Loeb mea-
sure construction in nonstandard analysis.

Let 〈xn〉 be a bounded sequence in R. Then there exists a unique x ∈ R
such that limU xn = x. Moreover, if 〈yn〉 ≡ 〈xn〉, then limU yn = x, too. A
mapping [〈xn〉]U → x may be regarded as the counterpart of the standard
part map in nonstandard analysis which allows to relate some (especially
measure-theoretic) properties of R and (R)U .

Clearly, we can consider richer structures than R in a similar fashion.
However, the above notions are rather difficult to handle. Nonstandard
analysis offers a specific language which supports our intuition and provides
us with new techniques which are not very easy to express in the ultraprod-
uct setting.

There are several frameworks for nonstandard analysis, see [3, 5] for the
surveys. In our paper we shall use the most classical superstructure ap-
proach. For a detailed account of this approach the reader is referred to
[1, 4, 14].

Let (X, T ) be a topological Hausdorff space. We fix a κ-saturated non-
standard universe (V (Ξ) , V (∗Ξ) , ∗), where κ is an (uncountable) cardinal
number greater than card(T ). As usual, we assume that Ξ is some large set
including X and R. For any x ∈ X, m (x) =

⋂
{∗T : x ∈ T, T ∈ T } is the

monad of x. If y ∈ ∗X and y ∈ m (x) for some x ∈ X, we write st y = x
and say that x is the standard part of y. The set of near-standard points of
∗X is given by ns(∗X) = {y ∈ ∗X : st y ∈ X}. Thus we obtain the so-called
standard part map st : ns (∗X) → X. We shall use the same symbol st for
a mapping ns (∗R) 3 y → x ∈ R.

If ν : ∗B (X) → ∗[0,∞) is a finite internal finitely additive function,
then, by Loeb’s theorem [13], νL (A) = st (ν (A)) defines a finite σ-additive
measure on ∗B (X) and therefore it may be extended to the unique complete
σ-algebra L (ν, ∗B (X)) ⊃ ∗B (X). This extension is also denoted by νL and
called the Loeb measure corresponding to ν. Moreover,

ν̄ (A) = inf {νL (B) : A ⊂ B ∈ ∗B (X)} ,

ν (A) = sup {νL (B) : A ⊃ B ∈ ∗B (X)} , A ⊂ ∗X,
are, respectively, the outer and inner measures induced by νL.

The following theorem will be used in the next section. Write

ν ◦ st−1 (B) = ν
(
st−1 (B)

)
, B ∈ B (X) .

Theorem 3.1 (see [8, Theorem 4]). Let (X, T ) be a regular topological space
and let ν : ∗B(X) → ∗[0,∞) be a finite internal finitely additive function.
Then

st−1(B) ∈ {C ∩ ns (∗X) : C ∈ L (ν, ∗B (X))}
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for B ∈ B(X) and
ν ◦ st−1 : B (X)→ [0,∞)

is a Radon measure.

Let
T 0 =

{
f−1 (O) : O ⊂ R open, f continuous

}
denote the family of exact open sets. Note that in the case of completely
regular topological spaces T 0 is a base for the topology T . The following
theorem follows easily from [1, Proposition 3.4.5], (see also [8, Theorem 1]).

Theorem 3.2. Let (X, T ) be a completely regular topological space and let
ν : ∗B(X)→ ∗[0,∞) be a finite internal finitely additive function. Then

st−1 (K) ∈ L (ν, ∗B (X))

for all compact sets K and

νL
(
st−1 (K)

)
= inf {νL (∗U) : K ⊂ U, U ∈ T 0} .

4. Invariant measures. In this section we prove a general theorem about
the existence of an invariant distribution for Markov operators satisfying
a classical positivity condition. A related result in normal spaces was ob-
tained by Foguel in [7].

Theorem 4.1. Let X be a completely regular topological space and let P :
Mfin → Mfin be a Feller operator with P (Mrad) ⊂ Mrad. Assume that
there is a compact set Y0 ⊂ X such that

(4.1) lim sup
n→∞

sup
µ∈M1

(
1

n

n∑
k=1

P kµ (Y0)

)
> 0.

Then P has an invariant Radon distribution.

Proof. It follows from (4.1) that there exist ε > 0, a sequence of distribu-
tions 〈µn〉 and an increasing sequence of integers 〈qn〉 such that

(4.2)
1

qn

qn∑
k=1

P kµn (Y0) ≥ ε, for n = 1, 2, . . .

Put

mn =
1

qn

qn∑
k=1

P kµn

and notice that

|Pmn (A)−mn (A)| ≤ 2

qn
for every A ∈ B (X) and n ∈ N. By transfer,

|∗PMN (B)−MN (B)| ≤ 2

qN
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for every B ∈ ∗B (X), N ∈ ∗N (note that, since 〈mn〉 ∈ (M1)
N, ∗〈mn〉 =

〈MN 〉 ∈ ∗
(
(M1)

N) ⊂ (∗M1)
∗N). Fix a hyperinteger ω ∈ ∗N \ N. Since

limn→∞qn = ∞, we have 2
qω
≈ 0 and hence ∗PMω (B) ≈ Mω (B) for every

B ∈ ∗B (X). Put ν = Mω and denote by

(∗Pν)L , νL : L (ν,∗ B (X))→ [0, 1]

the Loeb measures associated with ∗Pν and ν, respectively. Clearly, (∗Pν)L
= νL. Let ν be the inner measure induced by νL, that is,

ν (B) = sup {νL (A) : B ⊃ A ∈ ∗B (X)} .

We show that ν ◦ st−1 is an invariant, nontrivial measure for P . The proof
will be given in four steps.

Step I. Let f ∈ C (X). Then∫
X
f (x)P

(
ν ◦ st−1

)
(dx) =

∫
X

(Uf) (x)
(
ν ◦ st−1

)
(dx)

=

∫
st−1(X)

(Uf) (st y) ν (dy) =

∫
st−1(X)

st (∗ (Uf) (y)) ν (dy)

≤
∫

∗X
st ((∗U∗f) (y)) νL (dy) = st

∫
∗X

(∗U∗f) (y) ν (dy)

= st

∫
∗X

∗f (y) (∗Pν) (dy) =

∫
∗X

st (∗f (y)) (∗Pν)L (dy)

=

∫
∗X

st (∗f (y)) νL (dy) .

Step II. We show that P
(
ν ◦ st−1

)
(U) ≤ νL (∗U) for every U ∈ T 0, where

T 0 =
{
f−1 (O) : O ⊂ R open, f continuous

}
is the family of exact open sets. If U ∈ T 0, then there exists an open O ⊂ R
and a continuous function f : X → R such that U = f−1 (O). Put F = R\O
and let gn (x) = min {1, ndist (f (x) , F )}. It is easy to see that gn ↑ IU .
Therefore

P
(
ν ◦ st−1

)
(U) =

∫
X
IU (x) P

(
ν ◦ st−1

)
(dx)

=

∫
X

lim
n→∞

gn (x) P
(
ν ◦ st−1

)
(dx) = lim

n→∞

∫
X
gn (x) P

(
ν ◦ st−1

)
(dx)

≤ lim
n→∞

∫
∗X

st (∗gn (y)) νL (dy)

by Step I. But ∗gn (y) ≤ ∗IU (y) by transfer and hence st (∗gn (y)) ≤
st (∗IU (y)) = I∗U (y). Consequently

lim
n→∞

∫
∗X

st (∗gn (y)) νL (dy) ≤
∫

∗X
I∗U (y) νL (dy) = νL (∗U) .
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Step III. Let K be a compact subset of X. Then, by Theorem 3.2,
st−1 (K) ∈ L (ν,∗ B (X)) and

νL
(
st−1 (K)

)
= inf {νL (∗U) : K ⊂ U,U ∈ T 0} .

Hence

ν ◦ st−1 (K) = νL
(
st−1 (K)

)
= inf {νL (∗U) : K ⊂ U,U ∈ T 0}

≥ inf
{
P
(
ν ◦ st−1

)
(U) : K ⊂ U,U ∈ T 0

}
≥ P

(
ν ◦ st−1

)
(K) .

But ν ◦ st−1 is a Radon measure by Theorem 3.1, so P
(
ν ◦ st−1

)
is Radon,

too, by assumption. This gives P
(
ν ◦ st−1

)
(A) ≤ ν ◦ st−1 (A) for every

A ∈ B (X) and consequently P
(
ν ◦ st−1

)
(A) = ν ◦ st−1 (A).

Step IV. It remains to prove nontriviality. To this aim, note that, by
(4.2), mn (Y0) ≥ ε for every n ∈ N. By transfer, we have ν (∗Y0) ≥ ε and
thus ν ◦ st−1 (Y0) ≥ ν (∗Y0) = νL (∗Y0) ≥ ε.

Now, the invariant Radon distribution is given by ν◦st−1

ν◦st−1(X)
. �

Remark. In the case of complete metric spaces, locally compact spaces
or regular σ-compact spaces we could simplify the proof by considering
a measure νL ◦ st−1 instead of ν ◦ st−1 (see [8, Corollary 3]).

The following example shows that some assumptions of the kind P (Mrad)
⊂Mrad are needed to obtain an invariant Radon measure.

Example 4.2. Let X be a nonmeasurable set for Lebesgue measure λ on
[0, 1] with outer measure λ (X) = 1 and inner measure λ (X) = 0. Then
µ (B) = λ (B) is a probability measure on Borel subsets of X which is not
Radon (see [6, Problem 7.1.9, p. 177]). Fix x ∈ X and put µ0 = 1

2µ+ 1
2δx.

Let Pν = ν (X)µ0 for every finite Borel measure on X. Then P is a Feller
operator which satisfies (4.1) but the only invariant distribution is µ0 which
is not Radon.

Corollary 4.3 (see [9, Theorem 6.1]). Let X be a complete and separable
metric space (Polish space). Assume that P is a Feller operator and that
there is a compact set Y ⊂ X and a measure µ0 ∈M1 such that

lim sup
n→∞

1

n

n∑
k=1

P kµ0 (Y ) > 0.

Then P has an invariant distribution.

Proof. It is well known that in Polish spaces every finite Borel measure is
Radon (the Ulam theorem [15]). �
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Corollary 4.4 (see [17, Corollary 2]). Assume A is a compact subset of
a Polish space X. Then either

sup
x∈X

∣∣∣∣∣ 1n
n∑
k=1

UkIA (x)

∣∣∣∣∣→ 0

or there exists an invariant distribution for a Feller operator P .

Proof. It is enough to notice that UkIA (x) = P kδx (A) for each k ∈ N. �

There are many natural examples of Markov operators which satisfy the
condition P (Mrad) ⊂Mrad.

Example 4.5. Let X be a Hausdorff topological space and put

Pµ (A) =
n∑
i=1

∫
S−1
i (A)

pi (x)µ (dx) , A ∈ B (X) ,

where
Si : X → X, pi : X → [0, 1], i = 1, . . . , n

are continuous functions with
∑n

i=1 pi (x) = 1 for x ∈ X. The pair of se-
quences (S1, . . . , Sn; p1, . . . , pn) is called an iterated function system. Notice
that

Pµ

(
n⋃
i=1

Si (A)

)
≥ µ (A)

for every A ∈ B (X) and hence P transforms tight measures into tight
measures. In perfectly normal spaces (metric spaces, in particular) Borel
sets = Baire sets and hence all tight measures are Radon (see [6, Theorem
7.1.3]). In a general case, a similar conclusion holds if we restrict measures
to Baire sets.

Example 4.6. Let X be a Hausdorff topological space and put

Pµ (A) =

∫
X

(∫ T

0
IA (S (x, t)) p (x, t) dt

)
µ (dx) , A ∈ B (X) ,

where S : X × [0, T ] → X is a continuous function and p : X × [0, T ] →
R+ is Borel measurable and normalized. Operators of this kind appear in
studying stochastically perturbed dynamical systems (see [10, 20]). Notice
that Pµ (S (A× [0, T ])) ≥ µ (A) for every A ∈ B (X) and, as in the previous
example, P transforms tight measures into tight measures.
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