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Subclasses of typically real functions
determined by some modular inequalities

Abstract. Let T be the family of all typically real functions, i.e. functions
that are analytic in the unit disk ∆ := {z ∈ C : |z| < 1}, normalized by
f(0) = f ′(0) − 1 = 0 and such that Im z Im f(z) ≥ 0 for z ∈ ∆. Moreover,
let us denote: T(2) := {f ∈ T : f(z) = −f(−z) for z ∈ ∆} and TM,g := {f ∈
T : f ≺ Mg in ∆}, where M > 1, g ∈ T ∩ S and S consists of all analytic
functions, normalized and univalent in ∆.
We investigate classes in which the subordination is replaced with the

majorization and the function g is typically real but does not necessarily
univalent, i.e. classes {f ∈ T : f � Mg in ∆}, where M > 1, g ∈ T, which
we denote by TM,g. Furthermore, we broaden the class TM,g for the case
M ∈ (0, 1) in the following way: TM,g = {f ∈ T : |f(z)| ≥M |g(z)| for z ∈ ∆},
g ∈ T.

1. Introduction. Let T be the family of all typically real functions, i.e.
functions that are analytic in the unit disk ∆ := {z ∈ C : |z| < 1}, normal-
ized by f(0) = f ′(0)−1 = 0 and such that Im z Im f(z) ≥ 0 for z ∈ ∆. Let S
denote the class of all analytic functions, normalized as above and univalent
in ∆, and SR – the subclass of S consisting of functions with real coefficients.
Moreover, let us denote: T(2) := {f ∈ T : f(z) = −f(−z) for z ∈ ∆}
and TM,g := {f ∈ T : f ≺ Mg in ∆}, where M > 1, g ∈ T ∩ S. The
symbol h ≺ H denotes the subordination in ∆, i.e. h(0) = H(0) and
h(∆) ⊂ H(∆), where H is univalent. Let us notice that for g1(z) = z
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and g2(z) = 1
2 log 1+z

1−z we have TM,g1 = {f ∈ T : |f | < M in ∆} and
TM,g2 = {f ∈ T : | Im f | < Mπ/4 in ∆}, M > 1. These classes are briefly
denoted by TM and T(M), respectively.

The subordination in the classes T, S and SR has been investigated by
several authors (for example [2], [3], [4]). The relation TM,g = {Mg (h/M) :
h ∈ TM} for g ∈ T ∩ S (see [3]) provides the following formula connect-
ing different classes of type TM,g: TM,f =

{
Mf

(
g−1 (h/M)

)
: h ∈ TM,g

}
,

f, g ∈ T ∩ S. For this reason, instead of researching a class TM,f one can
consider a class TM,g, for instance TM or T(M). We apply this idea to ob-
tain results in various classes TM,g from corresponding results in the class
T(M). Investigating T(M) is possible because the integral formula for this
class, the set of extremal points and the set of supporting points are known
(see [4]).

Moreover, it is easy to prove that the class TM,g ∩ T(2) = {Mg (h/M) :

h ∈ TM} for g ∈ T(2) ∩ S.
In the paper we investigate classes similar to TM,g, in which the sub-

ordination is replaced with the majorization (the modular subordination)
and the function g is typically real but does not necessarily univalent, i.e.
classes TM,g := {f ∈ T : f � Mg in ∆}, where M > 1, g ∈ T. The
symbol h � H denotes the majorization in ∆, i.e. |h(z)| ≤ |H(z)| for all
z ∈ ∆.

Furthermore, we broaden the class TM,g for the case when M ∈ (0, 1) in
the following way: TM,g = {f ∈ T : |f(z)| ≥M |g(z)| for z ∈ ∆}, g ∈ T.

Moreover, we study the subclass of the class TM,g, consisting of all odd

functions, which we denote by T
(2)
M,g.

The class TM,g is not empty, because for example the function g belongs

to this class. Analogously, the class T
(2)
M,g for g ∈ T(2) is not empty. If

M = 1, then the class consists of only one function g. So we investigate
the class TM,g for M ∈ (0, 1) ∪ (1,∞). For g = id and M ≥ 1, we have
TM,id = TM,id.

In the class TM,g one can formulate theorems which are true for each
function g ∈ T ∩ S. However, in the class TM,g it is impossible. Indeed,
theorems in the class TM,g in a fundamental way depends on the choice of
the function g. It means that a theorem which is true in the class TM,g1

generally is not true in the class TM,g2 , for g1 6= g2. In each case, we connect

the researching class with the class TM or T
(2)
M .

2. Some properties of the classes T and T(2). During our investiga-
tion of the class TM,g, we use the following relations of classes T and T(2),
which we give as lemmas. In each lemma we shall prove only one implica-
tion. The other can be proved analogously. For simplicity, instead of h or
z 7→ h(z) we will use h(z).



Subclasses of typically real functions... 77

Lemma 1. f ∈ T⇐⇒ 1+z2

z f(z2) ∈ T(2).

Proof. Let f ∈ T. For f ∈ T we have the Robertson formula f(z) =∫ 1
−1

z
1−2zt+z2dµ(t), where µ is a probability measure on [−1, 1] (see [1], [2]).

Then

(1 + z2)f(z2)

z
=

∫ 1

−1

z(1 + z2)

1− 2z2t+ z4
dµ(t) =

∫ 1

−1

z(1 + z2)

(1 + z2)2 − 2(1 + t)z2
dµ(t)

=

∫ 1

0

z(1 + z2)

(1 + z2)2 − 4τz2
dν(τ)

with ν(A) ≡ µ(2A− 1) (where A is a Borel set contained in [0, 1]). Clearly,∫ 1
0

z(1+z2)
(1+z2)2−4τz2dν(τ) ∈ T(2) (the representation formula for functions from

the class T(2), see [5]). Therefore, (1+z2)f(z2)
z ∈ T(2). �

Lemma 2. f ∈ T(2) ⇐⇒ 1+z2

1−z2
f(iz)
i ∈ T(2).

Proof. Suppose that f ∈ T(2). From Lemma 1, the function h given
by h(z2) = z

1+z2
f(z) is in T. The definition of h is correct since

h
(

(−z)2
)

= −z
1+(−z)2 f(−z) = zf(z)

1+z2
= h(z2). Then f(iz) = 1−z2

iz h(−z2).

Hence, 1+z2

1−z2
f(iz)
i = −1+z2

z h(−z2). Because of Lemma 1 and the fact that

h ∈ T ⇔ −h(−z) ∈ T, we receive −1+z2

z h(−z2) ∈ T(2). This means that
1+z2

1−z2
f(iz)
i ∈ T(2), so we have the desired result. �

Lemma 3. f ∈ T⇐⇒ z2

(1−z2)2
1

f(z) ∈ T.

Proof. Let f ∈ T. Then f(z) = z
1−z2 p(z) for p ∈ PR (the Rogosinski

representation, [2], [6]), where PR consists of all analytic functions p such
that p(0) = 1, Re p(z) > 0 for z ∈ ∆ and having real coefficients. Clearly,
1
p ∈ PR, so z

1−z2
1
p(z) ∈ T, i.e. z2

(1−z2)2
1

f(z) ∈ T. From this and the equality{
1
p : p ∈ PR

}
= PR, we get f ∈ T⇔ z2

(1−z2)2
1

f(z) ∈ T. �

Taking f ∈ T(2) in Lemma 3, we obtain the following relation:

Lemma 4. f ∈ T(2) ⇐⇒ z2

(1−z2)2
1

f(z) ∈ T(2).

Lemma 5. f ∈ T⇐⇒ z3

(1−z4)(1−z2)
1

f(z2)
∈ T(2).

Proof. Let f ∈ T. On the basis of Lemma 1, the function g given by g(z) =
1+z2

z f(z2) belongs to T(2). Hence, we have z2

(1−z2)2
1
g(z) = z3

(1−z4)(1−z2)
1

f(z2)
.

From Lemma 4, we know that z2

(1−z2)2
1
g(z) ∈ T(2) which is equivalent to

z3

(1−z4)(1−z2)
1

f(z2)
∈ T(2). �
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Lemma 6. f ∈ T(2) ⇐⇒ z2

1−z4
i

f(iz) ∈ T(2).

Proof. Suppose that f ∈ T(2). Let g(z) = 1+z2

1−z2
f(iz)
i . By Lemma 2, g ∈

T(2). Since z2

(1−z2)2
1
g(z) = z2

1−z4
i

f(iz) , from Lemma 4 we get z2

(1−z2)2
1
g(z) ∈ T(2)

i.e. z2

1−z4
i

f(iz) ∈ T(2). �

3. The majorization in the class of typically real functions T. At
the beginning we study the case when M > 1, i.e. the class

TM,g = {f ∈ T : |f(z)| ≤M |g(z)| for z ∈ ∆} , g ∈ T.

At first, let g(z) = z
1+z . Clearly, g ∈ T ∩ S.

Theorem 1. If f ∈ T and |f(z)| ≤ M
∣∣∣ z
1+z

∣∣∣ for all z ∈ ∆, M > 1 (i.e.

f ∈ TM,g where g(z) = z
1+z ), then f(z2) ≡ z

1+z2
h(z) for some h ∈ T

(2)
M .

Proof. Let f ∈ T and |f(z)| ≤ M
∣∣∣ z
1+z

∣∣∣. Hence, |f(z2)| ≤ M
∣∣∣ z2

1+z2

∣∣∣. Let

h(z) ≡ 1+z2

z f(z2). By Lemma 1, h ∈ T(2). Therefore, f(z2) ≡ z
1+z2

h(z).

From the above equality, we get
∣∣∣ z
1+z2

∣∣∣ |h(z)| ≤M
∣∣∣ z2

1+z2

∣∣∣. This implies that

|h(z)| ≤M |z| < M , that is h ∈ T
(2)
M . �

Now, let us consider the function g(z) = z+z3. We have g(z) = z
1−z2 (1−

z4). Since Re(1 − z4) > 0 for z ∈ ∆, from the Rogosinski formula (see [2],
[6]), we get g ∈ T. Moreover, g ∈ T(2) and g /∈ S, because g′

(
i/
√

3
)

= 0.

Theorem 2. If f ∈ T(2) and |f(z)| ≤M |z + z3| for all z ∈ ∆, M > 1 (i.e.
f ∈ T

(2)
M,g, where g(z) = z + z3), then f(z) ≡ 1+z2

z h(z2) for some h ∈ TM .

Proof. Suppose that f ∈ T(2) and |f(z)| ≤ M |z + z3|. By Lemma 1, the
function h given by h(z2) ≡ z

1+z2
f(z) is in T. Therefore, f(z) ≡ 1+z2

z h(z2).

From the second assumption, we have
∣∣∣1+z2z ∣∣∣ |h(z2)| ≤ M |z + z3|. Then

|h(z2)| ≤M |z2| < M , i.e. h ∈ TM . �

Let us study the next function g(z) = z+z3

1−z2 . We have g(z) = z
1−z2 (1+z2).

Since Re(1 + z2) > 0 for z ∈ ∆, from the Rogosinski formula, g ∈ T.

Furthermore, g ∈ T(2) and g /∈ S, because g′
(√√

5− 2 i
)

= 0.

Theorem 3. If f ∈ T(2) and |f(z)| ≤ M
∣∣∣ z+z31−z2

∣∣∣ for all z ∈ ∆, M > 1 (i.e.

f ∈ T
(2)
M,g where g(z) = z+z3

1−z2 ), then f(z) ≡ 1+z2

1−z2
h(iz)
i for some h ∈ T

(2)
M .

Proof. Assume that f ∈ T(2) and |f(z)| ≤M
∣∣∣ z+z31−z2

∣∣∣. Let h(iz) ≡ 1−z2
1+z2

if(z).

By Lemma 2, h ∈ T(2). Hence, f(z) ≡ 1+z2

1−z2
h(iz)
i . From the above equality,
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we get
∣∣∣1+z21−z2

∣∣∣ |h(iz)| ≤ M
∣∣∣ z+z31−z2

∣∣∣. Therefore, |h(iz)| ≤ M |z| < M , that is

h ∈ T
(2)
M . �

In the further investigation we consider the case when M ∈ (0, 1), i.e. the
class

TM,g = {f ∈ T : |f(z)| ≥M |g(z)| for z ∈ ∆} , g ∈ T.

Suppose that g(z) = z
(1−z2)2 . Since g(z) = z

1−z2
1

1−z2 and Re
(

1
1−z2

)
> 0

for z ∈ ∆, hence g ∈ T. We have also g′(i/
√

3) = 0, and it follows that
g /∈ S.

Theorem 4. If f ∈ T and |f(z)| ≥ M
∣∣∣ z
(1−z2)2

∣∣∣ for all z ∈ ∆, M ∈ (0, 1)

(i.e. f ∈ TM,g where g(z) = z
(1−z2)2 ), then f(z) ≡ z2

(1−z2)2
1

h(z) for some
h ∈ T1/M .

Proof. Let f ∈ T and |f(z)| ≥ M
∣∣∣ z
(1−z2)2

∣∣∣. By Lemma 3, the function

h given by h(z) ≡ z2

(1−z2)2
1

f(z) belongs to T. So f(z) ≡ z2

(1−z2)2
1

h(z) . From

the second assumption, we have
∣∣∣ z2

(1−z2)2

∣∣∣ 1
|h(z)| ≥ M

∣∣∣ z
(1−z2)2

∣∣∣ i.e. |h(z)| ≤
|z|/M < 1/M . Hence, h ∈ T1/M and the proof is complete. �

Analogously, using Lemma 4, we prove the following theorem:

Theorem 5. If f ∈ T(2) and |f(z)| ≥M
∣∣∣ z
(1−z2)2

∣∣∣ for all z ∈ ∆, M ∈ (0, 1)

(i.e. f ∈ T
(2)
M,g where g(z) = z

(1−z2)2 ), then f(z) ≡ z2

(1−z2)2
1

h(z) for some

h ∈ T
(2)
1/M .

Now, let us consider the function g(z) = z
(1−z2)(1−z) . Clearly, g(z) =

z
1−z2

1
1−z and Re

(
1

1−z

)
> 0 for z ∈ ∆, so g ∈ T. We have also

g′
(

(i
√

7− 1)/4
)

= 0,

which means that g /∈ S.

Theorem 6. If f ∈ T and |f(z)| ≥M
∣∣∣ z
(1−z2)(1−z)

∣∣∣ for all z ∈ ∆,M ∈ (0, 1)

(i.e. f ∈ TM,g where g(z) = z
(1−z2)(1−z)), then f(z2) ≡ z3

(1−z4)(1−z2)
1

h(z) for

some h ∈ T
(2)
1/M .

Proof. Suppose that f ∈ T and |f(z)| ≥M
∣∣∣ z
(1−z2)(1−z)

∣∣∣. By Lemma 5, the

function h(z) ≡ z3

(1−z4)(1−z2)
1

f(z2)
is in T(2). Hence, f(z2) ≡ z3

(1−z4)(1−z2)
1

h(z) .

From the second assumption, we get
∣∣∣ z3

(1−z4)(1−z2)

∣∣∣ 1
|h(z)| ≥ M

∣∣∣ z2

(1−z4)(1−z2)

∣∣∣,
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so |h(z)| ≤ |z|/M < 1/M . This means that h ∈ T
(2)
1/M , so we have the

desired result. �

Now let us study the function g(z) = z
1−z4 . Because g(z) = z

1−z2
1

1+z2
and

Re
(

1
1+z2

)
> 0 for z ∈ ∆, so g ∈ T. Moreover, g ∈ T(2) and g /∈ S, because

g′
(
(i+ 1)/ 4

√
12
)

= 0.

Theorem 7. If f ∈ T(2) and |f(z)| ≥ M
∣∣∣ z
1−z4

∣∣∣ for all z ∈ ∆, M ∈ (0, 1)

(i.e. f ∈ T
(2)
M,g where g(z) = z

1−z4 ), then f(iz) ≡ z2

1−z4
i

h(z) for some h ∈
T
(2)
1/M .

Proof. Let f ∈ T(2) and |f(z)| ≥ M
∣∣∣ z
1−z4

∣∣∣. By Lemma 6, the function

h(z) ≡ z2

1−z4
i

f(iz) belongs to T(2). So f(iz) ≡ z2

1−z4
i

h(z) . From the second

assumption, we have
∣∣∣ z2

1−z4

∣∣∣ 1
|h(z)| ≥ M

∣∣∣ iz
1−z4

∣∣∣ i.e. |h(z)| ≤ |z|/M < 1/M .

Therefore, h ∈ T
(2)
1/M and the proof is complete. �

The converses to Theorems 1–7 are also true.
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