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Existence and uniqueness of solutions for a class
of degenerate nonlinear elliptic equations

ABSTRACT. In this work we are interested in the existence and uniqueness
of solutions for the Navier problem associated to the degenerate nonlinear
elliptic equations

Av(z) |AulP? Au) — Z Dj [wi(z)A; (2, u, Vu)]| + b(z, u, Vu) wa(z)

= fo(z) = > _ D;fi(z), in Q
j=1

in the setting of the weighted Sobolev spaces.

1. Introduction. In this work we prove the existence and uniqueness of
(weak) solutions in the weighted Sobolev space

X = W2P(Q,0) N Wy (9, wi,ws)
(see Definition 2.4 and Definition 2.5) for the Navier problem

Lu(z) = fo(z) — Y _D;f;(x), in Q
j=1

(P) —
u(z) = Au(x) =0, on 09
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where L is the partial differential operator
Lu(z) = A(v(z) |AulP 2 Au) — ZD w1 (2)Aj(z, u(z), Vu(z))]

+ b(z, u, Vu) wa(x)

where D; = 0/0x;, Q is a bounded open set in R", wq, wy and v are three
weight functions, A is the Laplacian operator, 1 < p < oo and the functions
A i QxR xR >R (j=1,...,n) and b : @ x R x R® — R satisfy the
following assumptions:

(H1) The function  — A;(x,n,§) is measurable on 2 for all (n, &) € RxR"™.
The function (n,£) — Aj(x,n,&) is continuous on R x R™ for almost all
x €.

(H2) There exists a constant #; > 0 such that

M(%"?af) - A(:L‘,f],é)] ’ (5 - é) > 01 ’5 - §~|p7
whenever {,§ € R", ¢ # &, where A(z,n,€) = (Ai(z,7,8), ..., An(2,7,£))

(where a dot denotes here the Euclidean scalar product in R”)

(H3) A(x,n,8).€£ > M|&P + Ai|n|P, where \; and Ay are nonnegative con-
stants.

(H4) |A(z,n,€)| < Ki(2)+hi(2)[n]P/P" + ho(z)|€|P/P’, where Ky, by and hy
are nonnegative functions, with hy and hy € L(2), and K| € LP' (Q,w;)
(with 1/p+1/p’ =1).

(H5) The function z — b(x,n, &) is measurable on 2 for all (n,&) € RxR™.
The function (n, &) — b(z,n, &) is continuous on R x R™ for almost all = € €.
(H6) There exists a constant 2 > 0 such that

[b(l’ﬂ?aﬁ) - b(maﬁag)](n - ﬁ) > 0o ‘77 - T~]|p’

whenever 1,7 € R, n # 1.

(HT) b(x,n,&)n > X2|&|P + Az|n|P, where Ao > 0 and Ag > 0 are constants.
(H8) [b(x,n,&)| < Ka(x) + ha(a)n|”’"’ + ha(2)[€]%, where K3, hg and hy
are nonnegative functions, with Ko € LP'(Q,ws), hs and hy € L=(RQ), and
a=(p—1)/¢, where 1 <g< oo (1/g+1/q" =1).

(H9) A1 + X2 > 0.

By a weight, we shall mean a locally integrable function w on R" such
that w(z) > 0 for a.e. z € R". Every weight w gives rise to a measure on
the measurable subsets on R” through integration. This measure will be
denoted by p. Thus, pu(E) = [Lw g w(x) dr for measurable sets £ C R™.

In general, the Sobolev spaces Wk’p (Q) without weights occur as spaces
of solutions for elliptic and parabolic partial differential equations. For
degenerate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces (see [1], [2], [4], [8] and [13]).



Existence and uniqueness of solutions... 11

A class of weights, which is particularly well understood, is the class of
Ap-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt
(see [10]). These classes have found many useful applications in harmonic
analysis (see [12]). Another reason for studying A,-weights is the fact that
powers of the distance to submanifolds of R" often belong to A, (see [9]).
There are, in fact, many interesting examples of weights (see [8] for p-
admissible weights).

In the non-degenerate case (i.e. with w(z) = 1), for all f € LP(2) the
Poisson equation associated with the Dirichlet problem

—Au = f(z), in Q
{ u(z) =0, on 9

is uniquely solvable in W?2P(Q) ﬂWol P(Q) (see [7]), and the nonlinear Dirich-
let problem

u(z) =0, on 0N

is uniquely solvable in Wol’p(Q) (see [3]), where Ayu = div(|Vul’"*Vu) is the
p-Laplacian operator. In the degenerate case, the weighted p-Biharmonic
operator has been studied by many authors (see [11] and the references
therein), and the degenerated p-Laplacian has been studied in [4]. The
problem with degenerated p-Laplacian and p-Biharmonic operators

{ A(w(z)|AuP2 Au) — div|w(z)|VulP2Vu] = f(z) — div(G(z)), in Q

{ —Apu = f(z), in Q

u(z) = Au(z) =0, in 90
has been studied by the author in [2].

The following theorem will be proved in Section 3.

Theorem 1.1. Assume (H1)-(H8). If wi,wz,v € A, (with 1 < p < 00),
w1 < wa ace., wa/wy € LY Quwr) (1 < ¢ < o0) fo/wa € LPI(Q,wQ) and
fijwr € LP (1) (5 =1,...,n), then the problem (P) has a unique solu-
tion u € X = W2P(Q,v) N Wol’p(Q,wl,u)g). Moreover, we have

A p'/p
fullx < s (|| 2 5 )
e Lr' (1)

w2 w1
where v = min{\; + A\, Ao, 1}.
Corollary 1.2. Let the assumptions of Theorem 1.1 be fulfilled. If uy,us €
X =W?2P(Q,v)N Wol’p(ﬂ,wl,wg) are solutions of

n

+
Lp/(Q’WZ)

J=1

) Luy(z) = fo(z) — ;Djfj(l‘), in Q

ui(z) = Aur(z) =0, on 0
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Lua(z) = fo(x) =Y _D;fi(x), inQ
j=1

(P2) —
ug(x) = Aug(z) =0, on 99

then

fo— fo -

w2

fi— 1

w1

+
L' (Q ;
7w2) ]:1

)pl
)
LPI(Q7WI)

2. Definitions and basic results. Let w be a locally integrable nonneg-
ative function in R™ and assume that 0 < w(x) < oo almost everywhere.
We say that w belongs to the Muckenhoupt class A4,, 1 < p < oo, or that w
is an Ap,-weight, if there is a constant C' = Cp, such that

(o ) G o<

for all balls B C R", where |- | denotes the n-dimensional Lebesgue measure
in R". If 1 < ¢ < p, then A; C A, (see [6], [8] or [12] for more information
about A,-weights). The weight w satisfies the doubling condition if there
exists a positive constant C' such that u(B(x;27)) < Cu(B(x;7r)) for every
ball B = B(z;r) C R”, where u(B) = [gw(z)dr. If w € Ay, then p is
doubling (see Corollary 15.7 in [8]).

As an example of A,-weight, the function w(z) = |z|%, € R”, is in A4,
if and only if —n < a < n(p — 1) (see Corollary 4.4, Chapter IX in [12]).

If w e Ap, then
P
(2) < ouo
| Bl 1(B)

whenever B is a ball in R” and F is a measurable subset of B (see 15.5
strong doubling property in [8]). Therefore, if u(FE) = 0, then |E| = 0.

1
fur = wall < o

where € = min{f,, 01,62} (with By as in Lemma 2.2 (b)).

Definition 2.1. Let w be a weight, and let 2 C R™ be open. For 0 < p < oo
we define LP(Q),w) as the set of measurable functions f on 2 such that

1/p
e = ( [ 17@Putaldn) <.

Ifwe Ay, 1 <p< oo, then w1 g locally integrable and we have
LP(Q,w) C L (Q) for every open set Q (see Remark 1.2.4 in [13]). It thus
makes sense to talk about weak derivatives of functions in LP(2,w).

Definition 2.2. Let 2 C R” be open, k£ be a nonnegative integer and
we€ A, (1 <p< oo). We define the weighted Sobolev space W*? (€, w) as
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the set of functions u € LP(Q, w) with weak derivatives D% € LP(Q,w) for
1 <|a| < k. The norm of u in W*P(Q,w) is defined by

@Uwamm@=<AW@Ww@M%+§:UQD%@WW@MQUé

1<|a|<k

We also define W(f P(Q,w) as the closure of C§°(Q) with respect to the
norm || - [lyyep(q0):

If w € Ay, then WFP(Qw) is the closure of C°°(Q) with respect to
the norm (2.1) (see Theorem 2.1.4 in [13]). The spaces W*P(Q,w) and
Wg’p(Q,w) are Banach spaces.

It is evident that the weight function w which satisfies 0 < ¢; < w(z) < ¢
for x € Q (c1 and ¢ positive constants), gives nothing new (the space
ng’p (Q,w) is then identical with the classical Sobolev space ng ?(Q))). Con-
sequently, we shall be interested above all in such weight functions w which
either vanish somewhere in 2 U 02 or increase to infinity (or both).

Definition 2.3. Let 2 C R" be open, 1 < p < oo, and let w; and wy be
Ap-weights. We define the weighted Sobolev space WP(£2, w1y, ws) as the
set of functions v € LP(§,wy) with weak derivatives Dju € LP(Q,w,), for
j=1,...,n. The norm of u in WHP(Q, wy,ws) is given by

n 1/p
@ﬂWWmM:%WWWWQ%@WWM@~
j=1

The space Wol’p(Q,wl,wg) is the closure of C§°(§2) with respect to the
norm (2.2). The dual space of Wol’p(Q,wl, wa) is the space

Wy P (Q, w1, w2)]* = W' (Q, w1, ws)

= {T: fo—divF :F=(f1,....f») Jo o LY (Q,ws), 2L € Lp’(Q,wl)}.

" wy w1
In this article we use the following results.

Theorem 2.1. Letw € A,, 1 < p < oo, and let 2 be a bounded open set
in R™. If upy, — w in LP(Q,w), then there exist a subsequence {uy,, } and a
function ® € LP(Q,w) such that

(1) wm, () = u(z), mp — oo, p-a.e. on Q;

(1) |tum, ()] < ®(z), p-a.e. on §;

(where p(E) = [pw(z)dzx).

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [5].
O
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Lemma 2.2. Let 1 < p < o0.
(a) There ezists a constant oy, such that

P2 — ylP Py | <oy |z — (2] + y])P 2, Vo, y € R

(b) There exist two positive constants B,, v, such that for every x,y € R"
By (2] + [y 2|z — y* < (|22 = [y "*y) (@ — )
< (2] + [yl ~? |z -y
Proof. See [3], Proposition 17.2 and Proposition 17.3. O
Definition 2.4. We denote X = W2P(Q,v) N Wy (Q,w1,wp) with the

norm
1/p
lully = </ \u]prdx—i—/ VP dm—i—/ ]Au\pvd:r) .
Q Q Q

Definition 2.5. We say that an element
uwe X =W?P(Q,v)N Wol’p(Q,wl,wg)
is a (weak) solution of problem (P) if, for all ¢ € X,

/Q]Au\p_Q AuApvdr + Z/le Aj(z,u(z), Vu(z))Djp(x)dx
j=1

—1—/Qb(ac,u,Vu)gpw2da::/Qfo(:c)w(a:)da:—i—;/gfj(x)Djap(x)d:c.

3. Proof of Theorem 1.1. The basic idea is to reduce the problem (P)
to an operator equation Au = T and apply the theorem below.

Theorem 3.1. Let A: X — X™* be a monotone, coercive and hemicontin-
uous operator on the real, separable, reflexive Banach space X. Then the
following assertions hold:

(a) For each T € X* the equation Au =T has a solution u € X;

(b) If the operator A is strictly monotone, then equation Au =T is uniquely
solvable in X.

Proof. See Theorem 26.A in [15]. O

To prove the existence of solutions, we define B, B1,B2,Bs : X x X — R
and T : X — R by

B(u, p) = Bi(u, p) + Ba(u, p) + Bs(u, »),

Bi(u,¢) = Z/le Aj(z,u, Vu)Djpdr = /le A(z,u, Vu).Vydr,
j=1
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By (u,p) = / b(x,u, Vu) pwsy dz,
Q
Bs(u,p) = / |AulP?AuAp v de,
Q
7(0) = [ hi@)e@ e+ [ @) Dyple) de
j=1
Then u € X is a (weak) solution to problem (P) if for all p € X
Step 1. For j =1,...,n we define the operator Fj : X — LP'(Q,w1) by
(Fyu)(z) = Ay, u(e), Vu()).
We now show that operator F} is bounded and continuous.
(i) Using (H4) and w; < wg, we obtain
1Ful2) gy = [ el o do
:/ |Aj(z,u, V)P w dx
Q
A / p/
< / (Kl + By |ulP’P" + ho|VulP/P ) wy dx
Q
< Cp/ [(Kf, + hzfl\u|p + h§,|Vu]p)w1] dx
Q
(3.1) <Gy [/ Kf/ wy dx + / h’l’/|u\p wy dx + / h§/|Vu‘Pwl d:v} ;
Q Q Q

where the constant C),, depends only on p. We have,

/ hzf,‘u|pw2 dx < Hh1||p;o(ﬂ)/ |ul? wy dx
Q Q
< 1l el
and
/hé’l|Vu|pw1 dx < |h2||p;o(9)/ |VulP wy dx
Q Q
< HhQHPoo(Q)Hqu('

Therefore, by (3.1) we obtain

1Fjull 1o ) < Co (Hmummw (1l ey + M2l ooy lll3? )

and hence the boundedness.
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(ii) Let up — u in X as m — oco. We need to show that Fju, — Fju in
LP /(Q,wl). We will apply the Lebesgue Dominated Theorem. If u,, — u
in X, then u, — v in LP(Q,ws) and |Vu,,| — |Vu| in LP(Q,w;). Using
Theorem 2.1, there exist a subsequence {u,,, } and two functions ®; €
LP(Q,w) and P9 € LP(§2, ws) such that

U, () = u(x), po-a.e. in Q,

|tum, (z)| < ®o(z), po-a.e. in Q,
|V, ()] = |Vu(x)|, pi-a.e. in Q,
|V, ()] < ®1(x), pi-a.e. in .

where p; = [pwi(z)dr (i = 1,2). Hence, using (H4) and w; < wp, we
obtain

Pyt = Byl = [ 1Pyt (@) = Fru(@) 1 da
= / A (2, iy s Vit ) — Aj(z,u, Vu) P wy da
Q

<Gy [ (MGt TP 4 4y o Tl Yo d

’ , p’
<Gy [/ <K1 +h1]umk’p/p +h2|Vumk]p/p ) wy dz
Q

/ / p
+/ <K1+h1u|p/p +h2]Vu|p/p> wlda:}
Q
/v’ )
§20p/§2<K1+h1q>§p +h2<1>§’p> wy dzx
<20, [/Kf'wldm+/h§"¢§wldm+/hg'cbffwldm]
Q Q Q
< 2GR g+ Il [ i2do
Q
<26, {HKlHip/ ,+ 121112 0y 19202 1)

Wl 1

By condition (H1), we have
Fitpm, () = Aj(2, um,, (x), Vi, (2)) = Aj(z,u(z), Vu(r)) = Fju(x),
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as myp — +oo. Therefore, by the Lebesgue Dominated Convergence Theo-
rem, we obtain

(| Ftim,, — Fju”L?’(Q,wl) =0,
that is,
Fjty,, — Fju in LP(Q,wy).

By the Convergence Principle in Banach spaces (see Proposition 10.13 in
[14]), we have

(3.2) Fjuy, — Fju in LP (9, wy).
Step 2. We define the operator

G:X — LP'(Q,v)

(Gu)(z) = |Au(z)P~? Au().

The operator G is continuous and bounded. In fact:
(i) We have

! -2 p’
HGuHip,(Qm:/ﬂHAu\p Aul’ vdx

:/ |Au|(p_2)p/|Au]plvdx
Q

:/ |Aul? v dz
Q

< [lull-
Hence, [|Gull ) < lull3”".
(ii) If wp, — w in X, then Au,, — Awu in LP(Q,v). By Theorem 2.1, there
exist a subsequence {uy,, } and a function ®3 € LP(€2, v) such that
Aty (x) = Au(z), ps-ae. in Q

| Ay, ()] < @3(z), ps-ae. in Q,

where p3(E) = [ v(z) dz. Hence, using Lemma 2.2 (a), we obtain, if p # 2

_ p’ — _ p’
|G, GuHLP,(Qﬂ)) —/Q]Gumk Gul? vdx
p/

= / ‘|Aum,€|p2 At — |AufP™? Au| vda
Q

/

p
g/ [ap|Aumk—Au|(Aumk\—f-]AuD(p2)] vdx
Q

< agl/ | Ay, — AulP’ (203) P27 4 dy
Q
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’
p—p

<ab 2(P=2)p </ | A, — Au|pvdm) (/ P,y PP vdm)
Q Q

/ _ ! ! -p’
< al 207 DP |y, — ulfy 121175 (0,0)

since (p —2)pp’/(p—p')=pif p# 2. If p =2, we have
|G, — Gu||%2(9’v) = /Q | Ay, — Aul? v dz

Therefore (for 1 < p < 00), by the Lebesgue Dominated Convergence The-
orem, we obtain

|Gy, — Gul|x — 0,

that is, Gy, — Gu in LP'(Q,v). By the Convergence Principle in Banach
spaces (see Proposition 10.13 in [14]), we have

(3.3) Gy — Gu in LP' (Q, ).
Step 3. We define the operator H : X — LP'(Q,wy) by
(Hu)(z) = b(z, u(z), Vu()).

The operator H is continuous and bounded. In fact:
(i) Using (H8) and a = (p — 1)/q’, we obtain

p’ _ p’
|HuHLp,(Q’w2)—/Q\Hu] wo dx
2/ \b(m,u,Vu)|p/w2dx
Q
/ pl
S/ <K2+h3|u|p/p +h4|Vu|“> wo dx
Q
< Cp [ |65+ 1 9 Y]
Q
:Cp[/K§IW2daz+/h§/|u]pcmdx+/hZ/]Vu\ap,wgdx.
Q Q Q
We have

/th ’u‘pWQ S Hh?)HI[)/oo(Q)/Q‘u’pCL)Q dx

!
< [1hal e oy lully.

and

/th'\vuwp’mdxg \|h4H’2;o(m/Q\vuyp/‘Y’w2dx
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_ p’ p/a’ W2
[l w(m/ﬂyvu\ 2oy do

1/q’ 1/q
< P’ P Wi\?
< ||hal] oo(Q)(/QWu] w1 da:) (/Q(wg) wy dz

! I
< (1l Nl e oy

Hence,

|Hull ., < Co [erume) gl ey L7

1/p’

—1 /
1l o ey 2 1 1 o Ml 227

(ii) By the same argument used in Step 1(ii) (and condition (H5)), we obtain
analogously, if u,, — u in X, then

(3.4) Huy, — Hu, in LP'(Q,ws).

Step 4. We also have

T(¢)] < /Q follolde+3 /Q 111Dy da
j=1

n
= [P+ [ LDyl
Q w2 =/ vl

< ||f0/w2HLP/(Q7wZ) ”SOHLP(Q,wQ)

+ Z Hfj/wlHLp’(Q,wl)||Dj80HLp(Q,w1)
j=1

< (ofeallar gy + L1651y el

j=1
Moreover, using (H4), (H8) and the Holder inequality, we also have

|B(u, 9)| < [Bi(u, )| + [Ba(u, ¢)| + [Bs(u, )|
< Z/ |Aj(x,u, Vu)||Djp| w dz
j=179
+/ | AulP~2 | Aul | Ap| v dz
Q

+/ |b(x, u, Vu)| |p|ws de.
Q
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In (3.5) we have
/|.A(ZL‘,U, Vu)| |[Vo|w dx
Q
< / <K1 + h1|u|p/p’ + h2|Vu]p/p/> |V<p‘ w1 dx
Q

<K 1 00 VPN 2o @00r) + 1oy 1l IV

+ {12l ooy V00 oy [P 200
< (Hmmm,wl) (1l oo 2y + Ill oo o)) 1l )kux,

and

/|Au|p2|Au||Agp]vdmz/|Au|p1|A<p|vdx
Q Q

1/p’ 1/p
< (/ |Au|pvdaz> </ |Agp|pvd:13>
Q Q

/
< [lul% Nollx

and

/Q]b(x,u, V)| |o|we dxg/g <K2 —l—hg\u\p/p/ +h4Vu|a)]<p\w2 dx
< [ Kalolwrda + hall oy [ 1ol ol unda
sl | Vel lplin do
< (12l @y + Vsl el

, 1/p’ 1/p
+||h4|rLoo<m( [ w2d$> ( / |so|pw2dx>

(HKQHLP oy + sl o 1127 )H@Hx
y 1/p’
+||h4|rLoo<m( /IW\” wlda:) lollx
< (\\K2\\Lpf<g,w2) 1 ey 2 )Hwa

1/(p"qa") p!
+ Hh4HL°°(Q)</Q [Vul” wy dm) Hw2/w1HLq(Q,wl)H<P||X
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< (Hmumm) Vgl oo e L7

+ all gy ol L™ Yl

Therefore, in (3.5) we obtain, for all u,p € X,

B0 < |1y + Wl
+ (el ooy + h2ll ooy + B3]l oo ey + Dl 37
1 ! !
- 1Pall oo oy oz /01 [ gy oy Il B2 7 ol -

Since B(u,-) is linear, for each u € X, there exists a linear and continuous
operator A : X — X* such that (Au, p) = B(u, ¢), for all u, ¢ € X (where
(f,x) denotes the value of the linear functional f at the point x) and

lAull, < 1Kl o gy + K2l 1o (01
(17l oo gy + 12l ey + sl ooy + Dl B
o ooy ooz e g g Tl 7.
Consequently, problem (P) is equivalent to the operator equation
Au=T, ue X.
Step 5. Using condition (H2), (H6) and Lemma 2.2 (b), we have

(Auy — Aug,u1 — u2) = B(u1,u; — u2) — B(ug, u; — ug)

- /le A(x,uy, Vuy).V(ug — ug)dx + /Q | Au1|‘7’_2 Auy A(uy —ug)vdx
+/Qb(:z,u1,Vu1)(u1 — ug) wy dxr — /le A(z,ug, Vug).V(u; — ug) dz
— /Q \ AU2\p_2 Aug A(up —ug)vdr — /Qb(sc,ug, Vug)(up — ug) we dx

= /le (A(m,ul,Vul) — A(x,ug,Vu2)> NV(up — ug) dx
+ /Q(| AurP72 Auy — | Aug P72 Aug) Auy — ug) vda

+ / (b(z,u1, Vur) — b(z, u2, Vug))(ug — uz) we dz
Q

Zel/wl\V(ul —uQ)\pda?—i—ﬂp/ﬂAul]+|Au2])p2]Au1 ~ AwsPvds
Q Q
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+92/ ‘ul—UQ’pCUde
Q
> 91/w1 A —uQ)|pd1:+Bp/(|Au1 — Aug|)P72 |Auy — Augl? v dx
Q Q
+92/]u1—u2|pw2daz
Q

= 91/W1’V(U1 —ug)pdx+,3p/ ]Aul — AuQ|pvdaZ+92/\u1 —uQ|pw2 dx
Q Q Q
> 0 flur — ually

where § = min {61, 02, 5p}.

Therefore, the operator A is strongly monotone, and this implies that
the operator A is strictly monotone. Moreover, using (H3), (H7), (H9) and
w1 < wg, we obtain

(Au,u) = B(u,u) = By(u,u) + Ba(u,u) + Bs(u,u)
:/wl A(a:,u,Vu).Vudm—i—/ | AulP™? AuAu v dz
Q Q

+/Qb(:c,u, Vu) uws dz
> [ ulVal? + Maful)rdo+ [ | Aupoda
—f—/Q()\2|Vu|p—i—A2|u|p)w2d:E
z/ﬂ()\lwu\p—i—Al]u\p)wl dx+/Q\Au\pvdx
+/\2/Q]Vu\pw1 dx—i—Ag/Q\u|pw2d:r

:()\1+)\2)/ \Vu|pw1dx+A2/ \u|pw2daj+/ |AulPv dx
Q Q Q

> [lull
where v = min {A\; + A2, A9, 1}. Hence, since p > 1, we have
(Au,u)

[l x

— 400, as ||ul|y — 400,
that is, A is coercive.

Step 6. We need to show that the operator A is continuous. Let u,, — u
in X as m — oco. We have,

Bt 0) ~ Bi(u,0)| <3 /Q A (2t Vi) — Ay, 0, V)| | Dyp| wrdx
j=1
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n
= Z/ |Fjum — Fju||Djo|w dx
j=1"%
n
< Z | Ejttm, — FjuHLP'(Q’wl)||Dj(10||LP(Q7wl)
j=1

n
<3 It — Fyull o gy el
j=1

and
| B3 (um, ) — Bs(u, ¢)|
/ | At P2 Ay, Ap v da: —/ | AulP2AuAp v de
Q
< / | Aty P72 Aty — | AulP 2 Au | | Al v da
Q
= / |Gy, — Gu| |Ap|vde
)
< |Gt — Gull o 1) Il
and

’BQ(uma ()0) - BQ(U, 90)| < / ’b(xaumavum) - b(x,u,Vu)] |()0‘ w2 dx
Q

:/ | Hup, — Hul|p| wa dz
Q
< N Hum — Hull o1 () 1€l x s
for all ¢ € X. Hence,
[Bum, 0) ~ Blu,)
< |Bi(um, ¢) — Bi(u, @)| + | B2(um, ¢) — Ba(u, ¢)|
+ 1By (um, ) — Byl 0)
n
: [Z 1Ejtm — Fjull o g0,y + [|Gim = Gl 17 g,
j=1
+ | Hum — Hull pr (g ) [ 121 x -

Then we obtain

n
[ Atm — Aul], < Z ([ Ejtim — FjUHLP’(Q,wl) + [|Gum — GUHLp’(Q,U)
j=1
+ HHUm - HUHLP’(Q,MQ)-
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Therefore, using (3.2), (3.3) and (3.4) we have ||Auy, — Aul|, — 0 as m —

+o0, that is, A is continuous (and this implies that A is hemicontinuous).
Therefore, by Theorem 3.1, the operator equation Au = T has a unique

solution v € X and it is the unique solution for problem (P).

Step 7. In particular, by setting ¢ = u in Definition 2.5, we have

(3.6) B(u,u) = By(u,u) + Ba(u,u) + Bs(u,u) = T'(u).

Hence, using (H3), (H7), (H9), w1 < wy and v = min{\; + A9, A9, 1}, we
obtain

Bi(u,u) + Ba(u,u) + Bs(u,u) :/Qw1 A(z,u, Vu)Vudx
—i—/Q]Au]p_QAuAuvdac—i—/Qb(x,u,Vu)uwgd:c
> [ u1val + Aiful?)rdo+ [ | Ao da
—l—/Q(A2|u]p+A1|Vu\p)w2d:c
2/Q()\l|Vu]p+A1|up)w1d:1:+/Q\Aupvda:

—|—A2/ \u|pw2dx+)\1/ |Vul? wy dz
Q Q

> ylull%

and

T(u):/ﬂfoudaz—i—;/ﬂfjl?judx

< 1o/l o cram Nl oy + 3 15/l o I Dl oy
j=1

< (Mofeallor iy + 2 Uferllorny ) Bl
j=1
Therefore, in (3.6), we have
ol < (o2l gy + D Uil ) Bl
j=1

and we obtain

1 " P
ol < 75 (o2l + 2 165/01 1

j=1

"Ip
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Proof of Corollary 1.2. If u;,us € X are solutions of (P;) and (P) re-
spectively, then for all ¢ € X we have

/Q |Auy P72 Auy Ap v da + Z /Q wi Aj(z,ui(x), Vui(x))Djo(x)dz
j=1

—&—/Qb(a: ul,Vul)prgda:—/fo da:—i—Z/fJ dzx.

and

/Q |Aug|P™2 Aug Ap v da + Z /Q wi Aj(z, ua(x), Vua(x))Djp(z)dx
j=1

/bmug,Vuz cpwgd:n—/fo d:E—{—Z/fJ dx.

In particular, for ¢ = u; — ug we obtain

/ <|Au1|p1Au1 - |Au2|p1Au2> (Auy; — Aug) v dx
Q

+ / (A(az, uy, Vul) - A(a:, usg, V’UQ)) (Vu1 — VUQ) w1 dx
Q

o (W,m,w_bmm,w)w—wm -

/(fO_fO)Ul_u2 d$+Z/ Ul—UQ)d
(i) Using Lemma 2.2 (b), we obtain
/ <|Au1]p1Au1 — |Augy ]plAu2> (Auyp — Aug) v dx
Q
p—2
> Bp/ <\Au1| + |Au2|> |Auy — Auy|* v da
Q
> ﬁp/ |Auy — AugP~? |Auy — Aug|? vdx
Q

= Bp/ |A(ug — u2)|P vda.
Q
(ii) By (H2), we have

/ <A(az, uy, Vuy) — A(z, ug, Vu2)> (Vuy — Vug) wy dz
Q

Z 91/ |V’LL1 - VUQ‘pW]_ dx.
Q
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(iii) By (H6) we have

/ <b(l’, uy, Vuy) — b(x, ug, Vu2)> (ug — ug) wo dz > 92/ luy — ua|? wo dx.
Q Q

Hence, if ¢ = min{f,, 01,02}, in (3.7) we obtain

&l — usll?, < Bp/ A — )P v da + 91/ IV (41 — )P wr dar
Q 0

+92/ |U1*’U,2|pLL)2dCC

(\I(fo—fo)/W2HLp _ +ZH — el )Hul—mx.

Therefore,

HU1—U2HX
p—1
= p— 1 <”(f0_f0)/w2HLP (Qw1) +ZH f] /leLP Qw1)> 0

Example 1. Let Q = {(z,y) € R? : 22 + 32 < 1}. Consider the weight
functions w1 (z,y) = (2 4+ y2) V4, wo(z,y) = (22 + y?) Y2 and v(z,y) =
(2% + y?)~1/3(we have wi,ws, v € Ay, p =2 and ¢ = 2), and the functions
A: QxRxR*-R*and b: O x RxR2= R

A((@,y),n,€) = ha(z,y) &,
b((x,y), 1, &) = n (cos(xy) + 1),
where h(z,y) = 2e@+¥”) Let us consider the partial differential operator
Lu(e,y) = Al(a? + 52) V3 Au] Au) — div (@ + 42) 4 A((2, ), u, Tu))
+ (22 4+ v2) V2 b(x, u, V).
Therefore, by Theorem 1.1, the problem

Lu(x)z;%—(%(%) _£J<\;1;12(96Ty3/2>’ n O

u(z) = Au(z) =0, on 0N

(P)

has a unique solution u € X = W?22(Q,v) N W01’2(Q,w1, wa).
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