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Asymmetric truncated Toeplitz operators
equal to the zero operator

Abstract. Asymmetric truncated Toeplitz operators are compressions of
multiplication operators acting between two model spaces. These operators
are natural generalizations of truncated Toeplitz operators. In this paper we
describe symbols of asymmetric truncated Toeplitz operators equal to the zero
operator.

1. Introduction. Let H2 denote the Hardy space of the unit disk D =
{z : |z| < 1}, that is, the space of functions analytic in D with square sum-
mable Maclaurin coefficients.

Using the boundary values, one can identify H2 with a closed subspace of
L2(∂D), the subspace of functions whose Fourier coefficients with negative
indices vanish. The orthogonal projection P from L2(∂D) onto H2, called
the Szegö projection, is given by

Pf(z) =
1

2π

∫ 2π

0

f(eit)dt

1− e−itz
, f ∈ L2(∂D).

Note that if f ∈ L1(∂D), then the above integral still defines a function Pf
analytic in D.

The classical Toeplitz operator Tϕ with symbol ϕ ∈ L2(∂D) is defined on
H2 by

Tϕf = P (ϕf).
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It is known that Tϕ is bounded if and only if ϕ ∈ L∞(∂D). The operator
S = Tz is called the unilateral shift and its adjoint S∗ = Tz is called the
backward shift. We have Sf(z) = zf(z) and

S∗f(z) =
f(z)− f(0)

z
.

Let H∞ be the algebra of bounded analytic functions on D and let α ∈
H∞ be an arbitrary inner function, that is, |α| = 1 a.e. on ∂D.

By the theorem of A. Beurling (see, for example, [7, Thm. 8.1.1]), every
nontrivial, closed S-invariant subspace of H2 can be expressed as αH2 for
some inner function α. Consequently, every nontrivial, closed S∗-invariant
subspace of H2 is of the form

Kα = H2 	 αH2

with α inner. The space Kα is called the model space corresponding to α.
The kernel function

(1.1) kαw(z) =
1− α(w)α(z)

1− wz
, w, z ∈ D,

is a reproducing kernel for the model space Kα, i.e., for each f ∈ Kα and
w ∈ D,

f(w) = 〈f, kαw〉
(〈·, ·〉 being the usual integral inner product). Observe that kαw is a bounded
function for every w ∈ D. It follows that the subspace K∞α = Kα ∩H∞ is
dense in Kα. If α(w) = 0, then kαw = kw, where kw is the Szegö kernel given
by kw(z) = (1− wz)−1.

Let Pα denote the orthogonal projection from L2(∂D) onto Kα. Then

Pαf(z) = 〈f, kαz 〉, f ∈ L2(∂D), z ∈ D.
Just like with the Szegö projection, Pαf is a function analytic in D for all
f ∈ L1(∂D).

A truncated Toeplitz operator with a symbol ϕ ∈ L2(∂D) is the operator
Aαϕ defined on the model space Kα by

Aαϕf = Pα(ϕf).

Densely defined on bounded functions, the operator Aαϕ can be seen as a
compression to Kα of the classical Toeplitz operator Tϕ on H2.

The study of truncated Toeplitz operators as a class began in 2007 with
D. Sarason’s paper [13]. In spite of similar definitions, there are many dif-
ferences between truncated Toeplitz operators and the classical ones. One
of the first results from [13] states that, unlike in the classical case, a trun-
cated Toeplitz operator is not uniquely determined by its symbol. More
precisely, Aαϕ = 0 if and only if ϕ ∈ αH2 + αH2 ([13, Thm. 3.1]). As a
consequence, unbounded symbols can produce bounded truncated Toeplitz
operators. Moreover, there exist bounded truncated Toeplitz operators for
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which no bounded symbols exist (see [3]). For more interesting results see
[6, 9, 10, 11, 12].

Recently, the authors in [4] and [5] introduced a generalization of trun-
cated Toeplitz operators, the so-called asymmetric truncated Toeplitz oper-
ators. Let α, β be two inner functions and let ϕ ∈ L2(∂D). An asymmetric
truncated Toeplitz operator Aα,βϕ is the operator from Kα into Kβ given by

Aα,βϕ f = Pβ(ϕf), f ∈ Kα.

The operator Aα,βϕ is densely defined. Clearly, Aα,αϕ = Aαϕ.
We denote

T (α, β) = {Aα,βϕ : ϕ ∈ L2(∂D) and Aα,βϕ is bounded}
and T (α) = T (α, α).

The purpose of this paper is to describe when an operator from T (α, β)
is equal to the zero operator. The description is given in terms of the symbol
of the operator. This was done in [4] and [5] for the case when β divides
α, that is, when α/β is an inner function. It was proved in [4] and [5] that
Aα,βϕ = 0 if and only if ϕ ∈ αH2 + βH2. Here we show that this is true
for all inner functions α and β. We also give some examples of rank-one
asymmetric truncated Toeplitz operators.

2. Main result. In this section we prove the following.

Theorem 2.1. Let α, β be two nonconstant inner functions and let Aα,βϕ :
Kα → Kβ be a bounded asymmetric truncated Toeplitz operator with ϕ ∈
L2(∂D). Then Aα,βϕ = 0 if and only if ϕ ∈ αH2 + βH2.

We start with a simple technical lemma.

Lemma 2.2. Let α, β be two arbitrary inner functions. If

(2.1) Kα ⊂ βH2,

then both α and β have no zeros in D, or at least one of the functions α or
β is a constant function.

Proof. Assume that (2.1) holds. If β(z0) = 0 for some z0 ∈ D, then f(z0) =
0 for every f ∈ Kα. For f = kαz0 we get

kαz0(z0) = ‖k
α
z0‖

2 =
1− |α(z0)|2

1− |z0|2
= 0,

which implies that |α(z0)| = 1. By the maximum modulus principle, α is a
constant function. Hence, the inclusion (2.1) implies that β has no zeros in
D, or α is a constant function. But (2.1) is equivalent to

Kβ ⊂ αH2,

and, by the same reasoning, (2.1) also implies that α has no zeros in D, or
β is a constant function. This completes the proof. �
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Lemma 2.2 can be rephrased as follows. If α, β are two nonconstant
inner functions and at least one of them has a zero in D, then the inclusion
Kα ⊂ βH2 does not hold. This allows us to prove the following version of
Theorem 2.1.

Proposition 2.3. Let α, β be two nonconstant inner functions such that
each of them has a zero in D and let Aα,βϕ : Kα → Kβ be a bounded asym-
metric truncated Toeplitz operator with ϕ ∈ L2(∂D). Then Aα,βϕ = 0 if and
only if ϕ ∈ αH2 + βH2.

Proof. The fact that ϕ ∈ αH2 + βH2 implies Aα,βϕ = 0 was proved in
[4, Thm. 4.3]. For the convenience of the reader we repeat the reasoning
from [4].

Assume that ϕ = αh1 + βh2 with h1, h2 ∈ H2. Then, for every f ∈ K∞α ,

Aα,βϕ f = Pβ(αh1f + βh2f) = Pβ(αh1f).

Since f ⊥ αH2, we see that αh1f ⊥ H2 and Pβ
(
αh1f

)
= 0. The density

of K∞α implies that Aα,βϕ = 0. Note that this part of the proof does not
depend on the existence of zeros of α and β.

Let us now assume that Aα,βϕ = 0. By the first part of the proof, we can
also assume that ϕ = χ+ψ for some χ ∈ Kα, ψ ∈ Kβ. Let z0 ∈ D be a zero
of α. Then kαz0 = kz0 and

Aα,βχ kαz0 = Pβ(χkz0)

= Pβ

(
z
χ(z)− χ(z0)

z − z0
+ χ(z0)kz0

)
= χ(z0)k

β
z0 ,

because the quotient (χ(z) − χ(z0))/(z − z0) belongs to Kα (see [13, Sub-
section 2.6]).

Hence,

0 = Aα,βϕ kαz0 = Aα,βχ+ψk
α
z0

= χ(z0)k
β
z0 +Aα,βψ kαz0 = Pβ

[
(χ(z0) + ψ)kz0

]
,

which means that
(χ(z0) + ψ)kz0 ∈ βH2

and, consequently,

(2.2) χ(z0) + ψ ∈ βH2.

On the other hand ([4, Lem. 3.2]),

Aβ,α
ψ+χ

=
(
Aα,βχ+ψ

)∗
= 0,
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and a similar reasoning can be used to show that if β(w0) = 0, w0 ∈ D, then

(2.3) χ+ ψ(w0) ∈ αH2.

By (2.2), (2.3) and the first part of the proof we get

Aα,β
χ+ψ(w0)+χ(z0)+ψ

= 0,

and

Aα,β
ψ(w0)+χ(z0)

= −Aα,βχ+ψ = 0.

From this,

Pβ

[
(ψ(w0) + χ(z0))f

]
= 0

for all f ∈ Kα.
If ψ(w0) + χ(z0) 6= 0, then the above equality means that Pβ(f) = 0 for

all f ∈ Kα, that is, Kα ⊂ βH2. However, by Lemma 2.2, this cannot be
the case here. So

ψ(w0) + χ(z0) = 0

and

ϕ = χ+ ψ = χ+ ψ(w0) + χ(z0) + ψ ∈ αH2 + βH2. �

To give a proof of Theorem 2.1 we use the so-called Crofoot transform.
For any inner function α and w ∈ D, the Crofoot transform Jαw is the
multiplication operator defined by

(2.4) Jαwf(z) =

√
1− |w|2

1− wα(z)
f(z).

The Crofoot transform Jαw is a unitary operator from Kα onto Kαw , where

(2.5) αw(z) =
w − α(z)
1− wα(z)

.

(see, for example, [8, Thm. 10] and [13, pp. 521–523]). Moreover,

(Jαw)
∗ f = (Jαw)

−1 f = Jαww f

=

√
1− |w|2

1− wαw
f =

1− wα√
1− |w|2

f.

Lemma 2.4. Let α be an inner function and w ∈ D. For every z ∈ D we
have

(2.6) kαwz =
1− |w|2

(1− wα(z))(1− wα)
kαz .
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Proof. Fix w, z ∈ D. The reproducing kernel kαwz is given by

kαwz (λ) =
1− αw(z)αw(λ)

1− zλ
, λ ∈ D.

Since

1− αw(z)αw(λ) = 1− w − α(z)
1− wα(z)

w − α(λ)
1− wα(λ)

=
(1− |w|2)(1− α(z)α(λ))
(1− wα(z))(1− wα(λ))

,

we have

kαwz (λ) =
1− |w|2

(1− wα(z))(1− wα(λ))
1− α(z)α(λ)

1− zλ

=
(1− |w|2)

(1− wα(z))(1− wα(λ))
kαz (λ). �

It is known that the map

A 7→ JαwA (Jαw)
−1 , A ∈ T (α),

carries T (α) onto T (αw) (see [6]). An analogous result can be proved for
the asymmetric truncated Toeplitz operators.

Proposition 2.5. Let α, β be two inner functions. Let a, b ∈ D and let the
functions αa, βb and the operators Jαa : Kα → Kαa, Jβb : Kβ → Kβb be
defined as in (2.5) and (2.4), respectively. If A is a bounded linear operator
from Kα into Kβ, then A belongs to T (α, β) if and only if Jβb A (Jαa )

−1

belongs to T (αa, βb). Moreover, if A = Aα,βϕ , then Jβb A (Jαa )
−1 = Aαa,βbφ

with

(2.7) φ =
(1− aα)(1− bβ)√
1− |a|2

√
1− |b|2

ϕ.

Proof. Let A be a bounded linear operator from Kα into Kβ. Assume
first that A belongs to T (α, β), A = Aα,βϕ for ϕ ∈ L2(∂D). We show that
Jβb A (Jαa )

−1 = Aαa,βbφ with φ as in (2.7).
For every f ∈ K∞αa and z ∈ D we have

Jβb A
α,β
ϕ (Jαa )

−1 f(z) =

√
1− |b|2

1− bβ(z)
Pβ

(
1− aα√
1− |a|2

ϕf

)
(z)

=

√
1− |b|2

1− bβ(z)

〈
1− aα√
1− |a|2

ϕf, kβz

〉
.
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By (2.6),

Jβb A
α,β
ϕ (Jαa )

−1 f(z) =

√
1− |b|2

1− bβ(z)

〈
1− aα√
1− |a|2

ϕf,

(
1− bβ(z)

)
(1− bβ)

1− |b|2
kβbz

〉

=

〈
1− bβ√
1− |b|2

1− aα√
1− |a|2

ϕf, kβbz

〉

= Pβb

(
(1− bβ)(1− aα)√
1− |b|2

√
1− |a|2

ϕf

)
(z)

= Aαa,βbφ f(z).

Thus A ∈ T (α, β) implies that Jβb A (Jαa )
−1 ∈ T (αa, βb).

To prove the other implication assume that Jβb A (Jαa )
−1 = Aαa,βbφ ∈

T (αa, βb) for some φ ∈ L2(∂D). Then

A = (Jβb )
−1Aαa,βbφ Jαa = Jβbb A

αa,βb
φ (Jαaa )−1 .

But (αa)a = α and (βb)b = β, and, by the first part of the proof,

A = Jβbb A
αa,βb
φ (Jαaa )−1 = Aα,βϕ

with

ϕ =
(1− aαa)(1− bβb)√
1− |a|2

√
1− |b|2

φ.

Hence, A ∈ T (α, β). An easy computation shows that φ satisfies (2.7). �

Proof of Theorem 2.1. The fact that ϕ ∈ αH2 + βH2 implies Aα,βϕ = 0
was established in the proof of Proposition 2.3. Assume now that ϕ ∈
L2(∂D) and Aα,βϕ = 0 .

If α(0) = β(0) = 0, then ϕ ∈ αH2 + βH2 by Proposition 2.3. If α(0) 6= 0
or β(0) 6= 0, put a = α(0), b = β(0). By Proposition 2.5,

0 = Jβb A
α,β
ϕ (Jαa )

−1 = Aαa,βbφ ,

where

φ =
(1− aα)(1− bβ)√
1− |a|2

√
1− |b|2

ϕ.

Since αa(0) = βb(0) = 0, by Proposition 2.3,

φ ∈ αaH2 + βbH
2.

Therefore, there exist h1, h2 ∈ H2 such that

(1− aα)(1− bβ)√
1− |a|2

√
1− |b|2

ϕ =
a− α
1− aα

h1 +
b− β
1− bβ

h2,
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and

ϕ =
a− α
1− aα

√
1− |a|2

√
1− |b|2

(1− aα)(1− bβ)
h1 +

b− β
1− bβ

√
1− |a|2

√
1− |b|2

(1− aα)(1− bβ)
h2.

Since |α| = 1 and |β| = 1 on the unit circle ∂D, we have

a− α
1− aα

= −α and
b− β
1− bβ

= −β.

Consequently,
ϕ = αg1 + βg2

with

g1 = −
√
1− |a|2

√
1− |b|2

(1− aα)(1− bβ)
h1, g2 =

√
1− |a|2

√
1− |b|2

(1− aα)(1− bβ)
h2.

Since g1, g2 ∈ H2, the proof is complete. �

Corollary 2.6. If ϕ is in L2(∂D), then there is a pair of functions χ ∈ Kα,
ψ ∈ Kβ, such that Aα,βϕ = Aα,βχ+ψ. If χ, ψ is one such pair, then the most

general such pair is of the form χ− ckα0 , ψ + ckβ0 , with c a scalar.

Proof. The proof is analogous to the proofs given in [13] and [4].
The function ϕ ∈ L2(∂D) can be written as ϕ = ϕ+ + ϕ− with ϕ+, ϕ− ∈

H2. If χ = Pα(ϕ−) and ψ = Pβ(ϕ+), then ϕ − χ − ψ ∈ αH2 + βH2. By
Theorem 2.1, Aα,βϕ = Aα,βχ+ψ.

Note that for f ∈ Kα,

Aα,β
kβ0
f = Pβ

(
f − β(0)βf

)
= Pβf = Aα,β1 f.

Since αf ⊥ H2 for f ∈ Kα, we get

Aα,β
k
α
0
f = Pβ (f − α(0)αf) = Pβf = Aα,β1 f.

Therefore, if Aα,βϕ = Aα,βχ+ψ with χ ∈ Kα, ψ ∈ Kβ as above and χ1 = χ−ckα0 ,

ψ1 = ψ + ckβ0 for some constant c ∈ C, then

Aα,βχ1+ψ1
= Aα,βχ − cAα,β1 +Aα,βψ + cAα,β1 = Aα,βϕ .

Moreover, if Aα,βϕ = Aα,βχ+ψ = Aα,βχ1+ψ1
for any other χ1 ∈ Kα, ψ1 ∈ Kβ, then,

by Theorem 2.1, there exist h1, h2 ∈ H2 such that

χ+ ψ − χ1 − ψ1 = αh1 + βh2.

Hence
ψ − ψ1 = βh2 + αh1 + χ1 − χ

and
ψ − ψ1 = Pβ(ψ − ψ1) = Pβ(αh1 + χ1 − χ) = c1Pβ1 = c1k

β
0
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for some constant c1. Similarly,

χ− χ1 = αh1 + βh2 + ψ1 − ψ
and

χ− χ1 = Pα(χ− χ1) = Pα(βh2 + ψ1 − ψ) = c2k
α
0

for some constant c2.
From this,

0 = Aα,βχ−χ1+ψ−ψ1
= c2A

α,β

k
α
0

+ c1A
α,β

kβ0

= (c2 + c1)A
α,β
1 = (c2 + c1)Pβ|Kα .

By Lemma 2.2, c2 + c1 = 0. Putting c = −c1 = c2 we have ψ1 = ψ + ckβ0
and χ1 = χ− ckα0 . �

3. Rank-one operators in T (α, β). Recall that the model space Kα

is equipped with a natural conjugation (antilinear, isometric involution)
Cα : Kα → Kα, defined in terms of the boundary values by

Cαf(z) = α(z)zf(z), |z| = 1

(see [13, Subsection 2.3], for more details). A short calculation shows that
the conjugate kernel k̃αw = Cαk

α
w is given by

k̃αw(z) =
α(z)− α(w)

z − w
.

The function α is said to have a nontangential limit at η ∈ ∂D if there
exists α(η) such that α(z) tends to α(η) as z ∈ D tends to η nontangentially
(with |z − η| ≤ C(1 − |z|) for some fixed C > 0). We say that α has an
angular derivative in the sense of Carathéodory (an ADC) at η ∈ ∂D if both
α and α′ have nontangential limits at η and |α(η)| = 1 (for more details see
[9, pp. 33–37]). P. R. Ahern and D. N. Clark proved in [1, 2], that α has
an ADC at η ∈ ∂D if and only if every f ∈ Kα has a nontangential limit
f(η) at η. If α has an ADC at η and w tends to η nontangentially, then
the reproducing kernels kαw tend in norm to the function kαη ∈ Kα given by
(1.1) with η in place of w. Moreover, f(η) = 〈f, kαη 〉 for all f ∈ Kα and

k̃αη (z) =
α(z)− α(η)

z − η
= α(η)ηkαη (z).

We can now give some examples of rank-one asymmetric truncated Toep-
litz operators (compare with [13, Thm. 5.1]).

Proposition 3.1. Let α, β be two nonconstant inner functions.

(a) For w ∈ D, the operators k̃βw ⊗ kαw and kβw ⊗ k̃αw belong to T (α, β),

k̃βw ⊗ kαw = Aα,ββ(z)
z−w

and kβw ⊗ k̃αw = Aα,β
α(z)
z−w

.
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(b) If both α and β have an ADC at the point η of ∂D, then the operator
kβη ⊗ kαη belongs to T (α, β),

kβη ⊗ kαη = Aα,β
kβη+k

α
η−1

.

Proof. (a) Let w ∈ D and f ∈ Kα. Since f(z)−f(w)
z−w ∈ Kα ([13, Subsec-

tion 2.6]), we have (for |z| = 1)

Aα,ββ(z)
z−w

f = Pβ

(
β(z)

z − w
f(z)

)
= Pβ

(
β(z)

f(z)− f(w)
z − w

+ f(w)
β(z)− β(w)

z − w
+ f(w)

β(w)

z − w

)
= f(w)Pβ

(
β(z)− β(w)

z − w

)
+ f(w)β(w)Pβ

(
z

1− wz

)
= f(w)k̃βw = 〈f, kαw〉k̃βw = k̃βw ⊗ kαw(f).

Similarly,

Aα,β
α(z)
z−w

f = Pβ

(
α(z)

z − w
f(z)

)
= Pβ

(
z
α(z)zf(z)

z − w

)
= Pβ

(
z
Cαf(z)

z − w

)

= Pβ

(
z
Cαf(z)− Cαf(w)

z − w
+ z

Cαf(w)

z − w

)
= Cαf(w)Pβ(kw)

= Cαf(w)k
β
w = 〈Cαf, kαw〉kβw = 〈f, k̃αw〉kβw = kβw ⊗ k̃αw(f).

(b) Let w ∈ D. Then

(3.1) Aα,βkw = Aα,β
kβw

and Aα,β
kw

= Aα,β
k
α
w
.

Indeed,

Aα,β
kβw
f = Pβ

(
(1− β(w)β)kwf

)
= Pβ (kwf) = Aα,βkw f,

for every f ∈ Kα. From this, by Lemma 3.2 in [4],

Aα,β
k
α
w

=
(
Aβ,αkαw

)∗
=
(
Aβ,αkw

)∗
= Aα,β

kw
.

Since for w 6= 0 and |z| = 1,

β(z)

z − w
=
β(z)− β(w)

z − w
+
β(w)

z − w

= k̃βw(z) +
β(w)

w
· wz

1− wz
= k̃βw(z) +

β(w)

w

(
kw(z)− 1

)
,

we have, by part (a) and (3.1),

k̃βw ⊗ kαw = Aα,ββ(z)
z−w

= Aα,β
k̃βw+

β(w)
w (kw−1)

= Aα,β
k̃βw+

β(w)
w

(
k
α
w−k

β
0

).
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If α and β have an ADC at η ∈ ∂D, then kαw and kβw converge in norm to kαη
and kβη , respectively, as w tends to η nontangentially. Hence k̃βw ⊗ kαw tends
to k̃βη ⊗ kαη in the operator norm. On the other hand,

k̃βw +
β(w)

w

(
k
α
w − k

β
0

)
−→ k̃βη +

β(η)

η

(
k
α
η − k

β
0

)
in L2(∂D),

which implies that

Aα,β
k̃βw+

β(w)
w

(
k
α
w−k

β
0

)f −→ Aα,β
k̃βη+

β(η)
η

(
k
α
η−k

β
0

)f in H2,

for every f ∈ K∞α . Therefore,

k̃βη ⊗ kαη = Aα,β
k̃βη+

β(η)
η

(
k
α
η−k

β
0

).
Since

k̃βη (z) =
β(z)− β(η)

z − η
=
β(η)

η
kβη (z),

we get

kβη ⊗ kαη =
η

β(η)
k̃βη ⊗ kαη =

η

β(η)
Aα,β
β(η)
η

(
kβη+k

α
η−k

β
0

)
= Aα,β

kβη+k
α
η−k

β
0

= Aα,β
kβη+k

α
η−1

.

�

It was proved in [13, Thm. 5.1] that the only rank-one operators in T (α)

are the nonzero scalar multiples of the operators k̃αw ⊗ kαw, kαw ⊗ k̃αw and
kαη ⊗ kαη . It is still an open question whether the scalar multiples of the
operators from Proposition 3.1 are the only rank-one operators in T (α, β)
for arbitrary inner functions α and β.
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