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Abstract. Let P be a principal fiber bundle with the basis M and with the
structural group G. A trivialization of P is a section of P . It is proved that
there exists only one gauge natural operator transforming trivializations of
P into principal connections in P . All gauge natural operators transforming
trivializations of P and torsion free classical linear connections on M into
classical linear connections on P are completely described.

Introduction. All manifolds considered in the paper are assumed to be fi-
nite dimensional, Hausdorff, second countable, without boundary and
smooth (of class C∞). Maps between manifolds are assumed to be smooth
(of class C∞).

Let M be a manifold and let p : P →M (or shortly P ) be a principal fibre
bundle with the basis M and with the structure group G. Let R : P×G→ P
be the right action.

A trivialization of P is a section σ : M → P of P .
A principal connection in P is a right invariant sub-bundle Γ of the tan-

gent bundle TP of P such that TP = V P ⊕P Γ, where V P =
⋃
x∈M TPx ⊂

TP is the vertical bundle (over P ) of P →M , see [4]. The right invariance
of Γ means that TRξ(Γ) = Γ for any ξ ∈ G.
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Equivalently, a principal connection in P is a right invariant section Γ :
P → J1P of the first jet prolongation π1

0 : J1P → P of P → M . Then the
equivalence is given by the equality Γp = imTxσ, where Γ(p) = j1

xσ, p ∈ Px,
x ∈M .

The right action of G on P induces a right action of G on the first jet
prolongation J1P of P by v · g = j1

x(σ · g), v = j1
xσ ∈ J1P , g ∈ G. The

orbit of j1
xσ with respect to the action will be denoted by [j1

xσ]G. The fiber
bundle QP := J1P/G = {[j1

xσ]G | j1
xσ ∈ J1P} over M of orbits of the right

action of G on J1P is called the principal connection bundle of P . Principal
connections Γ : P → J1P in P are in bijection with sections Γ : M → QP
of QP → M . The bijection is given by Γ(x) := [j1

xσ]G, where Γ(p) = j1
xσ,

p ∈ Px, x ∈M .
If P = LM is the principal bundle (with the structure group G = GL(m))

of linear frames of a manifold M , a principal connection Λ in LM is called
a classical linear connection on M .

Equivalently, a classical linear connection on M is a bilinear map ∇ =
∇Λ : X (M) × X (M) → X (M) such that ∇fXY = f∇XY and ∇XfY =
f∇XY + X(f)Y for any vector fields X,Y ∈ X (M) on M and any map
f : M → R, see [4].

A classical linear connection Λ on M is torsion-free if its torsion tensor
TΛ vanishes. (The torsion tensor TΛ is a tensor field of type (1, 2) on M
given by TΛ(X,Y ) = ∇Λ

XY −∇Λ
YX − [X,Y ].)

Equivalently, a classical linear connection on M is a linear section Λ :
TM → J1TM of the first jet prolongation J1TM → TM of the tangent
bundle TM of M , see [6].

In Section 1 of the present paper, we study the problem how a trivial-
ization σ of P can induce a principal connection A(σ) in P . This problem
is reflected in the concept of gauge natural operators A in the sense of [6]
producing principal connections A(σ) : M → QP in P → M from trivial-
izations σ of P . We prove that any gauge natural operator A in question is
given by A(σ)(x) := [j1

xσ]G.
In Section 2 of the present paper, we study the problem how a pair (σ,Λ)

of a trivialization σ of P and a torsion free classical linear connection Λ
on M can induce a classical linear connection A(σ,Λ) on P . This problem
is reflected in the concept of gauge natural operators A in the sense of [6]
producing classical linear connections A(σ,Λ) on P from trivializations σ of
P by means of classical linear connections Λ on M . We describe completely
all gauge natural operators A in question.

Natural operators producing connections have been studied in many pa-
pers, e.g. [1], [2], [3], [5], [6], etc.

1. Principal connections in P from trivializations of P . Let G be a
Lie group and m a positive integer. Let PBm(G) be the category of principal
bundles with m-dimensional bases and with the structure group G and all
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(local) principal bundle isomorphisms with idG as the group isomorphism.
Let FM be the category of fibred manifolds and their fibred maps.

Any PBm(G) object P over M induces the principal connection bundle
QP = J1P/G over M (see Introduction) and any PBm(G)-morphism f :
P → P 1 with the base map f : M → M1 induces fibred map Qf : QP →
QP 1 covering f defined by Qf([j1

xσ]G) := [j1
f(x)(f ◦σ◦f

−1)]G, [j1
xσ]G ∈ QP .

The correspondence Q : PBm(G) → FM is a gauge bundle functor in the
sense of [6].

The general concept of gauge natural operators can be found in [6]. In
particular, a gauge natural operator A : idPBm(G)  Q transforming trivial-
izations of P into principal connections in P is a PBm(G)-invariant system
of operators

A : C∞M (P )→ C∞M (QP )

for all PBm(G)-objects P →M , where C∞M (P ) is the set of all trivializations
of P (possible C∞M (P ) = ∅ for some P ) and C∞M (QP ) is the set of all principal
connections in P . The invariance of A means that if σ ∈ C∞M (P ) and
σ1 ∈ C∞M1(P 1) are f -related by an PBm(G)-map f : P → P 1 with the base
map f : M →M1 (i.e. f ◦σ = σ1 ◦ f), then A(σ) and A(σ1) are Qf -related
(i.e. Qf ◦A(σ) = A(σ1)◦f). By [6], any (gauge) natural operator A is local
and it can be extended uniquely on locally defined trivializations.

Example 1. For any PBm(G) object P over M we have a function

D : C∞M (P )→ C∞M (QP ), D(σ)(x) = [j1
xσ]G, σ ∈ C∞M (P ), x ∈M.

The family D : idPBm(G)  Q of functions D for PBm(G)-objects P over
M is a gauge natural operator (in question).

We have the following theorem.

Theorem 1. The gauge natural operator D : idPBm(G)  Q (of Exam-
ple 1) is the unique one, transforming trivializations of P into principal
connections in P .

Proof. Suppose that A : idPBm(G)  Q is a gauge natural operator. We
have to show that A(σ)(x) = [j1

0(σ)]G for any PBm(G)-object P over M ,
any σ ∈ C∞M (P ) and any x ∈M .

Because of the invariance of A with respect to the principal bundle charts,
we may assume that P = Rm × G (the trivial principal bundle over M =
Rm), x = 0 ∈ Rm and σ(y) = (y, h(y)), y ∈ Rm, h : Rm → G. Then by
the invariance of A with respect to the PBm(G)-morphism f : Rm × G →
Rm × G, f(y, ξ) = (y, h(y)−1 · ξ), we may assume that σ(y) = (y, eG),
y ∈ Rm.

Denote A(σ)(0) = [j1
0ρ]G, ρ(0) = (0, eG). Using the invariance of A

with respect to PBm(G)-maps at : Rm × G → Rm × G, at(y, ξ) = (1
t y, ξ),

t > 0, we get the homogeneous condition A(σ)(0)) = [j1
0(at ◦ ρ ◦ (at)

−1)]G,
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t > 0. Putting t → 0, we get A(σ)(0) = [j1
0(σ)]G. (More precisely, writing

ρ(y) = (y, k(y)) with k(0) = eG, we have at ◦ ρ ◦ a−1
t (y) = (y, k(ty)), and

then [j1
0(at ◦ ρ ◦ a−1

t )]G → [j1
0(y, eG)]G = [j1

0σ]G if t→ 0.)
Theorem 1 is complete. �

2. Classical linear connections on P from trivializations of P →
M by means of classical linear connections on M . Classical linear
connections on a manifold M are principal connections in the principal
bundle LM of linear frames on M . Thus classical linear connections on M
are elements from C∞M (Q(LM)). We denote the set of torsion free classical
linear connections on M by C∞M (Qτ (LM)).

By [6], a gauge natural operator A : idPBm(G)×QτLB  QL transforming
pairs consisting of trivializations of P and torsion free classical linear con-
nections on M into classical linear connections on P is a PBm(G)-invariant
family of regular operators

A : C∞M (P )× C∞M (Qτ (LM))→ C∞P (Q(LP ))

for PBm(G) objects P over M . The regularity of A means that A transforms
smoothly parametrized families of pairs of trivializations of P and torsion
free classical linear connections on M into smoothly parametrized families
of classical linear connections on P . By [6], any (gauge) natural operator
A is local and it can be extended uniquely on locally defined pairs (σ,Λ) in
question.

Example 2. Let P be an PBm(G)-object over M . In Sect. 54.7 in [6],
the authors construct canonically the classical linear connection N(D,Λ)
on P from a principal connection D in P by means of a classical linear
connection Λ on M . So, using a trivialization σ ∈ C∞M (P ) of P and a
torsion free classical linear connection Λ on M we can produce a classical
linear connection

Q(σ,Λ) := N(D(σ),Λ)

on P , where D(σ) is the principal connection in P from σ as in Example 1.
The family Q : idPBm(G) × QτLB  QL of functions Q is a gauge natural
operator (in question).

Example 3. Let

∆ : G→ T(0,eG)(R
m ×G)⊗ T ∗(0,eG)(R

m ×G)⊗ T ∗(0,eG)(R
m ×G)

be a smooth map such that ∆(ξ) is a GL(Rm)× {idG}-invariant tensor of
type (1, 2) on Rm×G at (0, eG) for any ξ ∈ G. Then we have gauge natural
operator

A<∆> : idPBm(G) ×QτLB  QL

defined as follows.
Let σ ∈ C∞M (P ), Λ ∈ C∞M (Qτ (LM)), p ∈ Px, x ∈M . There is a principal

bundle chart ϕ : P|U → Rm ×G with ϕ(p) = (0, eG) and sending σ|U into a
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constant section σo = (idRm , ξo) ∈ C∞Rm(Rm×G) for some ξo ∈ G. Clearly,
ξo is defined by σ(x) = Rξo(p). Denote the base map of ϕ by ϕ : U → Rm.
Let Λ′ be the image of Λ|U by ϕ and let ψ be a Λ′-normal coordinate system
with center 0. Replacing ϕ by (ψ × idG) ◦ ϕ, we may additionally assume
that ϕ is a normal coordinate system of Λ with center x. Recalling that
QLP is the affine bundle with TP ⊗T ∗P ⊗T ∗P as the corresponding vector
bundle, we put

A<∆>(σ,Λ)(p) := Q(σ,Λ)(p)+T(0,eG)ϕ
−1⊗T ∗(0,eG)ϕ

−1⊗T ∗(0,eG)ϕ
−1(∆(ξo)) ,

where Q is as in Example 2. If ϕ1 is another such chart, then ϕ1 =
(B × idG) ◦ ϕ for a linear isomorphism B ∈ GL(Rm). So, the definition
of A<∆>(σ,Λ)(p) is independent of the choice of ϕ because of the invari-
ance of ∆(ξo).

We have the following theorem.

Theorem 2. Let A : idPBm × QτLB  QL be a gauge natural operator.
There is the smooth map ∆ : G → T(0,eG)(R

m × G) ⊗ T ∗(0,eG)(R
m × G) ⊗

T ∗(0,eG)(R
m×G) such that ∆(ξ) is GL(Rm)×{idG}-invariant for any ξ ∈ G

and A = A<∆>.
The maps ∆ (in question) are in bijection with the triples (a, b, c) of
smooth maps a, b : G→ Lie (G)∗ and c : G→ Lie (G)⊗Lie (G)∗⊗Lie (G)∗,
where Lie (G) is the Lie algebra of G. So, if we choose the basis in Lie (G),
the gauge natural operators A (in question) are in bijection with the (2k +
k3)-tuples of smooth maps G→ R, where k = dim(G).

Proof. We have to put

∆(ξo) := A(σo,Λo)(0, eG)−Q(σo,Λo)(0, eG) ,

where ξo ∈ G, σo = (idRm , ξo) and Λo is the torsion free flat classical linear
connection on Rm and Q is as in Example 2. Then ∆ is smooth in ξo (as A
is regular) and ∆(ξo) is GL(Rm)×{idG}-invariant because A, Q, σo, Λo, 0
and eG are. We prove that A = A<∆>.

It is sufficient to show that A(σ,Λ)(p) = A<∆>(σ,Λ)(p) for any PBm(G)-
object P over M , σ ∈ C∞M (P ), Λ ∈ C∞M (Qτ (LM)), p ∈ Px, x ∈M . Because
of the invariance of A and A<∆> with respect to chart ϕ as in Example 3, we
may assume that P = Rm×G, M = Rm, σ = σo = (idRm , ξo), Λ is a torsion
free classical linear connection on Rm with Λ(0) = Λo(0), p = (0, eG), x = 0.

The invariance of A with respect to the PBm(G)-maps at from the proof
of Theorem 1 gives the homogeneous condition

A(σo, (at)∗Λ)(0, eG) = Tat ⊗ T ∗at ⊗ T ∗at(A(σo,Λ)(0, eG))

for t>0. Because of the non-linear Petree theorem (see Corollary 19.8 in [6])
we may assume that the Cristoffel symbols Λ are polynomial maps. Then by
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the homogeneous function theorem (see [6]) we deduce that A(σo,−)(0, eG)
depends on Λ(0) (and similarly for A<∆> instead of A). So,

A(σo,Λ)(0, eG) = A(σo,Λo)(0, eG) = A<∆>(σo,Λo)(0, eG)

= A<∆>(σo,Λ)(0, eG).

We else describe all maps ∆ from Example 3.
Let ∆ be a map in question. We see that T(0,eG)(R

m × G) = Rm ⊕
Lie (G) modulo the standard identification. Then for any ξ ∈ G, ∆(ξ)
can be considered as the GL(Rm) × {idLie (G)} invariant tensor ∆(ξ) from
(Rm ⊕ Lie (G)) ⊗ (Rm ⊕ Lie (G))∗ ⊗ (Rm ⊕ Lie (G))∗ = (Rm ⊗ Rm∗ ⊗
Rm∗)⊕ (Rm⊗Rm∗⊗Lie (G)∗)⊕ (Rm⊗Lie (G)∗⊗Rm∗)⊕ (Rm⊗Lie (G)∗⊗
Lie (G)∗))⊕(Lie (G)⊗Rm∗⊗Rm∗)⊕(Lie (G)⊗Rm∗⊗Lie (G)∗)⊕(Lie (G)⊗
Lie (G)∗ ⊗Rm∗)⊕ (Lie (G)⊗ Lie (G)∗ ⊗ Lie (G)∗).

Thus ∆(ξ) = (∆1(ξ), . . . ,∆8(ξ)), where ∆i(ξ) for i = 1, . . . , 8 are the
respective components of ∆(ξ) with respect to the above decomposition. By
the GL(Rm) × {idLie (G)}-invariance, ∆2(ξ), ∆3(ξ) and ∆8(ξ) may be not
zero, only. Moreover, ∆8(ξ) may be arbitrary (smoothly depending on ξ),
∆2(ξ) = idRm ⊗ δ2(ξ) and ∆3(ξ) = δ3(ξ)⊗ idRm (modulo the permutation),
where δ2(ξ) and δ3(ξ) are arbitrary elements from Lie (G)∗ (smooth in ξ).
Then the maps ∆ from Example 3 are in bijection with the triples (a, b, c) of
smooth maps a, b : G→ Lie (G)∗ and c : G→ Lie (G)⊗Lie (G)∗⊗Lie (G)∗,
a = δ2, b = δ3, c = ∆8. �
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