Connections from trivializations

Dedicated to Professor Ivan Kolár on the occasion of his 80th birthday
with respect and gratitude

Abstract. Let P be a principal fiber bundle with the basis M and with the structural group G. A trivialization of P is a section of P. It is proved that there exists only one gauge natural operator transforming trivializations of P into principal connections in P. All gauge natural operators transforming trivializations of P and torsion free classical linear connections on M into classical linear connections on P are completely described.

Introduction. All manifolds considered in the paper are assumed to be finite dimensional, Hausdorff, second countable, without boundary and smooth (of class C^∞). Maps between manifolds are assumed to be smooth (of class C^∞).

Let M be a manifold and let $p : P \to M$ (or shortly P) be a principal fibre bundle with the basis M and with the structure group G. Let $R : P \times G \to P$ be the right action.

A trivialization of P is a section $\sigma : M \to P$ of P.

A principal connection in P is a right invariant sub-bundle Γ of the tangent bundle TP of P such that $TP = VP \oplus \Gamma$, where $VP = \bigcup_{x \in M} TP_x \subset TP$ is the vertical bundle (over P) of $P \to M$, see [4]. The right invariance of Γ means that $TR_\xi(\Gamma) = \Gamma$ for any $\xi \in G$.

2010 Mathematics Subject Classification. 58A20, 58A32.

Key words and phrases. Gauge natural bundle, gauge natural operator, principal connection.
Equivalently, a principal connection in P is a right invariant section $\Gamma : P \to J^1P$ of the first jet prolongation $\pi_0^1 : J^1P \to P$ of $P \to M$. Then the equivalence is given by the equality $\Gamma_p = \text{im}\ T_x\sigma$, where $\Gamma(p) = j_x^1\sigma$, $p \in P_x$, $x \in M$.

The right action of G on P induces a right action of G on the first jet prolongation J^1P of P by $v \cdot g = j^1_x(\sigma \cdot g)$, $v = j_x^1\sigma \in J^1P$, $g \in G$. The orbit of $j_x^1\sigma$ with respect to the action will be denoted by $[j_x^1\sigma]_G$. The fiber bundle $QP := J^1P/G = \{[j_x^1\sigma]_G \mid j_x^1\sigma \in J^1P\}$ over M of orbits of the right action of G on J^1P is called the principal connection bundle of P. Principal connections $\Gamma : P \to J^1P$ in P are in bijection with sections $\Gamma : M \to QP$ of $QP \to M$. The bijection is given by $\Gamma(x) := [j_x^1\sigma]_G$, where $\Gamma(p) = j_x^1\sigma$, $p \in P_x$, $x \in M$.

If $P = LM$ is the principal bundle (with the structure group $G = GL(m)$) of linear frames of a manifold M, a principal connection Λ in LM is called a classical linear connection on M.

Equivalently, a classical linear connection on M is a bilinear map $\nabla = \nabla^\Lambda : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$ such that $\nabla f X Y = f \nabla X Y$ and $\nabla X f Y = f \nabla X Y + X(f)Y$ for any vector fields $X, Y \in \mathcal{X}(M)$ on M and any map $f : M \to \mathbb{R}$, see [4].

A classical linear connection Λ on M is torsion-free if its torsion tensor T_Λ vanishes. (The torsion tensor T_Λ is a tensor field of type $(1, 2)$ on M given by $T_\Lambda(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$.)

Equivalently, a classical linear connection on M is a linear section $\Lambda : TM \to J^1TM$ of the first jet prolongation $J^1TM \to TM$ of the tangent bundle TM of M, see [6].

In Section 1 of the present paper, we study the problem how a trivialization σ of P can induce a principal connection $A(\sigma)$ in P. This problem is reflected in the concept of gauge natural operators A in the sense of [6] producing principal connections $A(\sigma) : M \to QP$ in $P \to M$ from trivializations σ of P. We prove that any gauge natural operator A in question is given by $A(\sigma)(x) := [j_x^1\sigma]_G$.

In Section 2 of the present paper, we study the problem how a pair (σ, Λ) of a trivialization σ of P and a torsion free classical linear connection Λ on M can induce a classical linear connection $A(\sigma, \Lambda)$ on P. This problem is reflected in the concept of gauge natural operators A in the sense of [6] producing classical linear connections $A(\sigma, \Lambda)$ on P from trivializations σ of P by means of classical linear connections Λ on M. We describe completely all gauge natural operators A in question.

Natural operators producing connections have been studied in many papers, e.g. [1], [2], [3], [5], [6], etc.

1. Principal connections in P from trivializations of P. Let G be a Lie group and m a positive integer. Let $\mathcal{PB}_m(G)$ be the category of principal bundles with m-dimensional bases and with the structure group G and all
(local) principal bundle isomorphisms with \(\text{id}_G \) as the group isomorphism. Let \(\mathcal{FM} \) be the category of fibred manifolds and their fibred maps.

Any \(\mathcal{PB}_m(G) \)-object \(P \) over \(M \) induces the principal connection bundle \(QP \rightarrow P/G \) over \(M \) (see Introduction) and any \(\mathcal{PB}_m(G) \)-morphism \(f : P \rightarrow P' \) with the base map \(f : M \rightarrow M' \) induces fibred map \(Qf : QP \rightarrow QP' \) covering \(f \) defined by \(Qf \circ [j^1_2 \sigma]_G := [j^1_2 \sigma \circ \overline{f}^{-1}]_G, [j^1_2 \sigma]_G \in QP \). The correspondence \(Q : \mathcal{PB}_m(G) \rightarrow \mathcal{FM} \) is a gauge bundle functor in the sense of [6].

The general concept of gauge natural operators can be found in [6]. In particular, a gauge natural operator \(A : \mathcal{PB}_m(G) \rightarrow Q \) transforming trivializations of \(P \) into principal connections in \(P \) is a \(\mathcal{PB}_m(G) \)-invariant system of operators

\[
A : C_M^\infty(P) \rightarrow C_M^\infty(QP)
\]

for all \(\mathcal{PB}_m(G) \)-objects \(P \rightarrow M \), where \(C_M^\infty(P) \) is the set of all trivializations of \(P \) (possible \(C_M^\infty(P) = \emptyset \) for some \(P \)) and \(C_M^\infty(QP) \) is the set of all principal connections in \(P \). The invariance of \(A \) means that if \(\sigma \in C_M^\infty(P) \) and \(\sigma^1 \in C_M^\infty(P') \) are \(f \)-related by an \(\mathcal{PB}_m(G) \)-map \(f : P \rightarrow P' \) with the base map \(f : M \rightarrow M' \) (i.e. \(f \circ \sigma = \sigma^1 \circ \overline{f} \)), then \(A(\sigma) \) and \(A(\sigma^1) \) are \(Qf \)-related (i.e. \(Qf \circ A(\sigma) = A(\sigma^1) \circ f \)). By [6], any (gauge) natural operator \(A \) is local and it can be extended uniquely on locally defined trivializations.

Example 1. For any \(\mathcal{PB}_m(G) \)-object \(P \) over \(M \) we have a function

\[
D : C_M^\infty(P) \rightarrow C_M^\infty(QP), \quad D(\sigma)(x) = [j^1_0 \sigma]_G, \quad \sigma \in C_M^\infty(P), \quad x \in M.
\]

The family \(D : \text{id}_{\mathcal{PB}_m(G)} \rightarrow Q \) of functions \(D \) for \(\mathcal{PB}_m(G) \)-objects \(P \) over \(M \) is a gauge natural operator (in question).

We have the following theorem.

Theorem 1. The gauge natural operator \(D : \text{id}_{\mathcal{PB}_m(G)} \rightarrow Q \) (of Example 1) is the unique one, transforming trivializations of \(P \) into principal connections in \(P \).

Proof. Suppose that \(A : \text{id}_{\mathcal{PB}_m(G)} \rightarrow Q \) is a gauge natural operator. We have to show that \(A(\sigma)(x) = [j^1_0 \sigma]_G \) for any \(\mathcal{PB}_m(G) \)-object \(P \) over \(M \), any \(\sigma \in C_M^\infty(P) \) and any \(x \in M \).

Because of the invariance of \(A \) with respect to the principal bundle charts, we may assume that \(P = \mathbb{R}^m \times G \) (the trivial principal bundle over \(M = \mathbb{R}^m \)), \(x = 0 \in \mathbb{R}^m \) and \(\sigma(y) = (y, h(y)), y \in \mathbb{R}^m, h : \mathbb{R}^m \rightarrow G \). Then by the invariance of \(A \) with respect to the \(\mathcal{PB}_m(G) \)-morphism \(f : \mathbb{R}^m \times G \rightarrow \mathbb{R}^m \times G, f(y, \xi) = (y, h(y)^{-1} \cdot \xi) \), we may assume that \(\sigma(y) = (y, e_G) \), \(y \in \mathbb{R}^m \).

Denote \(A(\sigma)(0) = [j^1_0 \rho]_G, \rho(0) = (0, e_G) \). Using the invariance of \(A \) with respect to \(\mathcal{PB}_m(G) \)-maps \(a_t : \mathbb{R}^m \times G \rightarrow \mathbb{R}^m \times G, a_t(y, \xi) = (t^2 y, \xi), t > 0 \), we get the homogeneous condition \(A(\sigma)(0) = [j^1_0 (a_t \circ \rho \circ (a_t)^{-1})]_G \),
2. Classical linear connections on \(P \) from trivializations of \(P \to M \) by means of classical linear connections on \(M \).

Classical linear connections on a manifold \(M \) are principal connections in the principal bundle \(LM \) of linear frames on \(M \). Thus classical linear connections on \(M \) are elements from \(C_M^\infty(Q(LM)) \). We denote the set of torsion free classical linear connections on \(M \) by \(C_M^\infty(Q(LM)) \).

By [6], a gauge natural operator \(A : \text{id}_{\mathcal{PB}_m(G)} \times Q_L B \to Q_L \) transforming pairs consisting of trivializations of \(P \) and torsion free classical linear connections on \(M \) into classical linear connections on \(P \) is a \(\mathcal{PB}_m(G) \)-invariant family of regular operators

\[
A : C_M^\infty(P) \times C_M^\infty(Q_L(LM)) \to C_P^\infty(Q(LP))
\]

for \(\mathcal{PB}_m(G) \) objects \(P \) over \(M \). The regularity of \(A \) means that \(A \) transforms smoothly parametrized families of pairs of trivializations of \(P \) and torsion free classical linear connections on \(M \) into smoothly parametrized families of classical linear connections on \(P \). By [6], any (gauge) natural operator \(A \) is local and it can be extended uniquely on locally defined pairs \((\sigma, \Lambda)\) in question.

Example 2. Let \(P \) be an \(\mathcal{PB}_m(G) \)-object over \(M \). In Sect. 54.7 in [6], the authors construct canonically the classical linear connection \(N(D, \Lambda) \) on \(P \) from a principal connection \(D \) in \(P \) by means of a classical linear connection \(\Lambda \) on \(M \). So, using a trivialization \(\sigma \in C_M^\infty(P) \) of \(P \) and a torsion free classical linear connection \(\Lambda \) on \(M \) we can produce a classical linear connection

\[
Q(\sigma, \Lambda) := N(D(\sigma), \Lambda)
\]

on \(P \), where \(D(\sigma) \) is the principal connection in \(P \) from \(\sigma \) as in Example 1. The family \(Q : \text{id}_{\mathcal{PB}_m(G)} \times Q_L B \to Q_L \) of functions \(Q \) is a gauge natural operator (in question).

Example 3. Let

\[
\Delta : G \to T_{(0, e_G)}(\text{Gl}(m)) \otimes T^*_{(0, e_G)}(\text{Gl}(m)) \otimes T_{(0, e_G)}(\text{Gl}(m))
\]

be a smooth map such that \(\Delta(\xi) \) is a \(\text{Gl}(m) \times \{id_G\} \)-invariant tensor of type \((1, 2)\) on \(\text{Gl}(m) \times G \) at \((0, e_G)\) for any \(\xi \in G \). Then we have gauge natural operator

\[
A^{<\Delta>} : \text{id}_{\mathcal{PB}_m(G)} \times Q_L B \to Q_L
\]

defined as follows.

Let \(\sigma \in C_M^\infty(P) \), \(\Lambda \in C_M^\infty(Q_L(LM)) \), \(p \in P_x, x \in M \). There is a principal bundle chart \(\varphi : P_U \to \text{Gl}(m) \times G \) with \(\varphi(p) = (0, e_G) \) and sending \(\sigma|_U \) into a
constant section \(\sigma^o = (id_{R^m}, \xi^o) \in C^\infty_{R^m}(R^m \times G) \) for some \(\xi^o \in G \). Clearly, \(\xi^o \) is defined by \(\sigma(x) = R_{\xi^o}(p) \). Denote the base map of \(\varphi \) by \(\varphi : U \rightarrow R^m \).

Let \(\Lambda' \) be the image of \(\Lambda U \) by \(\varphi \) and let \(\psi \) be a \(\Lambda' \)-normal coordinate system with center 0. Replacing \(\varphi \) by \((\psi \times id_G) \circ \varphi \), we may additionally assume that \(\varphi \) is a normal coordinate system of \(\Lambda \) with center \(x \).

Recalling that \(QLP \) is the affine bundle with \(TP \otimes T^*P \otimes T^*P \) as the corresponding vector bundle, we put

\[
A^{<\Delta>}(<\sigma, \Lambda>)(p) := Q(<\sigma, \Lambda>)(p) + T_{(0,e_G)}(\varphi^{-1} \otimes T^*_{(0,e_G)}(\varphi^{-1}(\Delta(\xi^o))),
\]

where \(Q \) is as in Example 2. If \(\varphi_1 \) is another chart, then \(\varphi_1 = (B \times id_G) \circ \varphi \) for a linear isomorphism \(B \in GL(R^m) \). So, the definition of \(A^{<\Delta>}(<\sigma, \Lambda>)(p) \) is independent of the choice of \(\varphi \) because of the invariance of \(\Delta(\xi^o) \).

We have the following theorem.

Theorem 2. Let \(A : id_{PB_m} \times Q, LB \rightarrow QL \) be a gauge natural operator. There is the smooth map \(\Delta : G \rightarrow T_{(0,e_G)}(R^m \times G) \otimes T^*_{(0,e_G)}(R^m \times G) \) such that \(\Delta(\xi) \) is \(GL(R^m) \times \{id_G\} \)-invariant for any \(\xi \in G \) and \(A = A^{<\Delta>} \).

The maps \(\Delta \) (in question) are in bijection with the triples \((a,b,c) \) of smooth maps \(a, b : G \rightarrow \text{Lie}(G)^* \) and \(c : G \rightarrow \text{Lie}(G) \otimes \text{Lie}(G)^* \otimes \text{Lie}(G)^* \), where \(\text{Lie}(G) \) is the Lie algebra of \(G \). So, if we choose the basis in \(\text{Lie}(G) \), the gauge natural operators \(A \) (in question) are in bijection with the \((2k + k^3)\)-tuples of smooth maps \(G \rightarrow R \), where \(k = \dim(G) \).

Proof. We have to put

\[
\Delta(\xi^o) = A(<\sigma^o, \Lambda^o>)(0,e_G) - Q(<\sigma^o, \Lambda^o>)(0,e_G),
\]

where \(\xi^o \in G, \sigma^o = (id_{R^m}, \xi^o) \) and \(\Lambda^o \) is the torsion free flat classical linear connection on \(R^m \) and \(Q \) is as in Example 2. Then \(\Delta \) is smooth in \(\xi^o \) (as \(A \) is regular) and \(\Delta(\xi^o) \) is \(GL(R^m) \times \{id_G\} \)-invariant because \(A, Q, \sigma^o, \Lambda^o, 0 \) and \(e_G \) are. We prove that \(A = A^{<\Delta>} \).

It is sufficient to show that \(A(<\sigma, \Lambda>)(p) = A^{<\Delta>}(<\sigma, \Lambda>)(p) \) for any \(PB_m(G) \)-object \(P \) over \(M, \sigma \in C^\infty_M(P), \Lambda \in C^\infty_M(Q_G(LM)), p \in P, x \in M \). Because of the invariance of \(A \) and \(A^{<\Delta>} \) with respect to chart \(\varphi \) as in Example 3, we may assume that \(P = R^m \times G, M = R^m, \sigma = \sigma^o = (id_{R^m}, \xi^o), \Lambda \) is a torsion free classical linear connection on \(R^m \) with \(\Lambda(0) = \Lambda^o(0), p = (0,e_G), x = 0 \).

The invariance of \(A \) with respect to the \(PB_m(G) \)-maps \(a_t \) from the proof of Theorem 1 gives the homogeneous condition

\[
A(<\sigma^o, (a_t), \Lambda>)(0,e_G) = Ta_t \otimes T^*a_t \otimes T^*a_t(A(<\sigma^o, \Lambda>)(0,e_G)),
\]

for \(t > 0 \). Because of the non-linear Petree theorem (see Corollary 19.8 in [6]) we may assume that the Cristoffel symbols \(\Lambda \) are polynomial maps. Then by
the homogeneous function theorem (see [6]) we deduce that $A(\sigma^o, -)(0, e_G)$ depends on $\Lambda(0)$ (and similarly for $A^{<\Delta>}$ instead of A). So,

$$A(\sigma^o, \Lambda)(0, e_G) = A(\sigma^o, \Lambda^o)(0, e_G) = A^{<\Delta>}(\sigma^o, \Lambda^o)(0, e_G)$$

$$= A^{<\Delta>}(\sigma^o, \Lambda)(0, e_G).$$

We else describe all maps Δ from Example 3.

Let Δ be a map in question. We see that $T_{(0, e_G)}(\mathbb{R}^m \times G) = \mathbb{R}^m \oplus \text{Lie}(G)$ modulo the standard identification. Then for any $\xi \in G$, $\Delta(\xi)$ can be considered as the $GL(\mathbb{R}^m) \times \{id_{\text{Lie}(G)}\}$ invariant tensor $\Delta(\xi)$ from $(\mathbb{R}^m \oplus \text{Lie}(G)) \otimes (\mathbb{R}^m \oplus \text{Lie}(G))^* \oplus (\mathbb{R}^m \oplus \text{Lie}(G))^* = (\mathbb{R}^m \otimes \mathbb{R}^{m*} \oplus \mathbb{R}^{m*} \otimes \mathbb{R}^m) \oplus (\mathbb{R}^m \otimes \text{Lie}(G)^* \otimes \mathbb{R}^m) \oplus (\mathbb{R}^m \otimes \text{Lie}(G)^* \oplus \mathbb{R}^m) \oplus (\mathbb{R}^m \otimes \text{Lie}(G) \otimes \mathbb{R}^m) \oplus (\text{Lie}(G) \otimes \mathbb{R}^{m*} \otimes \mathbb{R}^m) \oplus (\text{Lie}(G) \otimes \mathbb{R}^m \otimes \text{Lie}(G)^*) \oplus (\text{Lie}(G) \otimes \mathbb{R}^m \otimes \text{Lie}(G)^*) \oplus (\text{Lie}(G) \otimes \text{Lie}(G)^* \otimes \text{Lie}(G)^*).

Thus $\Delta(\xi) = (\Delta_1(\xi), \ldots, \Delta_8(\xi))$, where $\Delta_i(\xi)$ for $i = 1, \ldots, 8$ are the respective components of $\Delta(\xi)$ with respect to the above decomposition. By the $GL(\mathbb{R}^m) \times \{id_{\text{Lie}(G)}\}$-invariance, $\Delta_2(\xi)$, $\Delta_3(\xi)$ and $\Delta_8(\xi)$ may be not zero, only. Moreover, $\Delta_5(\xi)$ may be arbitrary (smoothly depending on ξ), $\Delta_2(\xi) = id_{\mathbb{R}^m} \otimes \delta_2(\xi)$ and $\Delta_3(\xi) = \delta_3(\xi) \otimes id_{\mathbb{R}^m}$ (modulo the permutation), where $\delta_2(\xi)$ and $\delta_3(\xi)$ are arbitrary elements from $\text{Lie}(G)^*$ (smooth in ξ). Then the maps Δ from Example 3 are in bijection with the triples (a, b, c) of smooth maps $a, b : G \rightarrow \text{Lie}(G)^*$ and $c : G \rightarrow \text{Lie}(G) \otimes \text{Lie}(G)^* \otimes \text{Lie}(G)^*$, $a = \delta_2$, $b = \delta_3$, $c = \Delta_8$. □

References

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
Lublin
Poland
e-mail: kurek@hektor.umcs.lublin.pl
Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. S. Łojasiewicza 6
Cracow
Poland
e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received July 25, 2016