doi: 10.17951/a.2016.70.2.91

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXX, NO. 2, 2016	SECTIO A	91 - 95
-----------------------	----------	---------

WOJCIECH ZYGMUNT

On compactness and connectedness of the paratingent

ABSTRACT. In this note we shall prove that for a continuous function $\varphi : \Delta \to \mathbb{R}^n$, where $\Delta \subset \mathbb{R}$, the paratingent of φ at $a \in \Delta$ is a non-empty and compact set in \mathbb{R}^n if and only if φ satisfies Lipschitz condition in a neighbourhood of a. Moreover, in this case the paratingent is a connected set.

1. Notations and definitions. Let \mathbb{R} denote a real line, $\Delta \subset \mathbb{R}$ an interval and \mathbb{R}^n the Euclidean *n*-dimensional space with usual norm

$$||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2},$$

where $x = (x_1, x_2, \ldots, x_n)$. The symbol

$$\langle\!\langle A \rangle\!\rangle = \sup \left\{ \|x\| : x \in A \right\}$$

is defined for any $A \subset \mathbb{R}^n$, $A \neq \emptyset$. The differential quotient $\frac{\varphi(t)-\varphi(s)}{t-s}$, where $\varphi : \Delta \to \mathbb{R}^n$ is a continuous function, $t, s \in \Delta$ and t < s, is denoted by $\mathcal{D}q(t,s)$. Let $u^{\alpha} = (1-\alpha)t + \alpha\tau$ and $v^{\alpha} = (1-\alpha)s + \alpha\sigma$ for $t, s, \tau, \sigma \in \Delta$, $t < s, \tau < \sigma$ and $\alpha \in [0, 1]$. Evidently, $u^{\alpha} < v^{\alpha}$.

The set of all points $x \in \mathbb{R}^n$ for which there exist two sequences $\{t_k\}, \{s_k\} \subset \Delta$ such that $t_k < s_k$, both sequences converge to a and

$$x = \lim_{k \to \infty} \mathcal{D}q\left(t_k, s_k\right),$$

²⁰¹⁰ Mathematics Subject Classification. 26A24, 54C50.

Key words and phrases. Paratingent, continuous function, Lipschitz condition.

is called the paratingent of φ at a and is denoted by $(\mathcal{P}\varphi)(a)$.

We shall say that a function $\varphi : \Delta \to \mathbb{R}^n$ satisfies Lipschitz condition in a neighbourhood of a point $a \in \Delta$, if

$$\exists_{L>0} \exists_{\delta>0} \forall_{t,s \in \Delta, |t-a| < \delta, |s-a| < \delta} \|\varphi(t) - \varphi(s)\| \le L |t-s|.$$

The distance of a point x from set A is denoted by

$$\delta(x, A) = \inf \{ \|x - y\| : y \in A \}.$$

2. Theorems.

Theorem 2.1. The paratingent $(\mathcal{P}\varphi)(a)$ is a closed set in \mathbb{R}^n .

Proof. Let $x^m \in (\mathcal{P}\varphi)(a)$, $m = 1, 2, ..., \text{ and } \lim_{m \to \infty} x^m = x$. So we have $x^m = \lim_{k \to \infty} \mathcal{D}q(t_k^m, s_k^m)$,

where $t_k^m, s_k^m \in \Delta, t_k^m < s_k^m$, $\lim_{k \to \infty} t_k^m = \lim_{k \to \infty} s_k^m = a$ and $m = 1, 2, \dots$. Then there exists k_m for any m such that $|t_{k_m}^m - a| < \frac{1}{m}, |s_{k_m}^m - a| < \frac{1}{m}$,

Then there exists k_m for any m such that $|t_{k_m}^m - a| < \frac{1}{m}, |s_{k_m}^m - a| < \frac{1}{m}$ and $\left\| \mathcal{D}q\left(t_{k_m}^m, s_{k_m}^m\right) - x^m \right\| < \frac{1}{m}$. Hence

$$x = \lim_{m \to \infty} \mathcal{D}q\left(t_{k_m}^m, s_{k_m}^m\right),$$

where $\lim_{k\to\infty} t_{k_m}^m = \lim_{k\to\infty} s_{k_m}^m = a$. Thus $x \in (\mathcal{P}\varphi)(a)$, so $(\mathcal{P}\varphi)(a)$ is closed.

Theorem 2.2. The paratingent $(\mathcal{P}\varphi)(a)$ is a non-empty and compact set if and only if the function φ satisfies Lipschitz condition in a neighbourhood of a.

Proof. (\Leftarrow)

Let φ satisfy Lipschitz condition, hence there exist L > 0 and $\delta > 0$ such that $\|\mathcal{D}q(t,s)\| \leq L$ for any $t, s \in \Delta$, $|t-a| < \delta$ and $|s-a| < \delta$. Hence the paratingent $(\mathcal{P}\varphi)(a)$ is bounded. Thus, by Theorem 2.1, $(\mathcal{P}\varphi)(a)$ is compact.

Let now $t_k, s_k \to a$ with $t_k < s_k$. The sequence $\{\mathcal{D}q(t_k, s_k)\}$ is bounded, so it contains a convergent subsequence, i.e. $\lim_{m\to\infty} \mathcal{D}q(t_{k_m}, s_{k_m}) = x \in (\mathcal{P}\varphi)(a)$, hence $(\mathcal{P}\varphi)(a)$ is non-empty. (\Rightarrow)

Let $(\mathcal{P}\varphi)(a)$ be non-empty and compact, and assume that φ does not satisfy Lipschitz condition in any neighbourhood of a.

Firstly, let $x \in (\mathcal{P}\varphi)(a)$. There exists M such that $\langle\!\langle (\mathcal{P}\varphi)(a) \rangle\!\rangle \leq M$. As x belongs to $(\mathcal{P}\varphi)(a)$, we have $x = \lim_{k \to \infty} \mathcal{D}q(t_k, s_k)$ for some sequences $\{t_k\}, \{s_k\} \subset \Delta, t_k < s_k$ and $t_k, s_k \to a$. Hence there exists k_0 such that $\|\mathcal{D}q(t_k, s_k)\| < 2M$ for $k \geq k_0$.

On the other hand, as φ does not satisfy Lipschitz condition, there exist sequences $\{\tau_k\}, \{\sigma_k\} \subset \Delta, \ \tau_k < \sigma_k$ and $|\tau_k - a|, |\sigma_k - a| < \frac{1}{k}$ such that $\|\mathcal{D}q(\tau_k, \sigma_k)\| > 4M$ for $k = 1, 2, \ldots$ Let now $\varrho_k(\alpha) = \|\mathcal{D}q(u_k^{\alpha}, v_k^{\alpha})\|$, where $\alpha \in [0, 1]$ and u^{α}, v^{α} were defined in the first section. Function $\varrho_k : [0, 1] \to \mathbb{R}$ is continuous and such that $\varrho_k(0) < 2M$ and $\varrho_k(1) > 4M$ for any $k = 1, 2, \ldots$. Thus there exists a sequence $\alpha_k \in [0, 1]$ such that $\varrho_k(\alpha_k) = \|\mathcal{D}q(u_k^{\alpha_k}, v_k^{\alpha_k})\| = 3M$.

Of course $u_k^{\alpha_k}, v_k^{\alpha_k} \to a$ as k tends to infinity. The sequence of quotients $\mathcal{D}q\left(u_k^{\alpha_k}, v_k^{\alpha_k}\right)$ is bounded, hence it contains a subsequence $\mathcal{D}q\left(u_{k_m}^{\alpha_{k_m}}, v_{k_m}^{\alpha_{k_m}}\right)$ convergent to a point $y \in (\mathcal{P}\varphi)(a)$. But we have $\|y\| = 3M$, which contradicts the assumption $\|y\| \leq M$ as $(\mathcal{P}\varphi)(a)$ is bounded by the constant M. Therefore φ must satisfy Lipschitz condition in some neighbourhood of a.

Theorem 2.3. If $\varphi : \Delta \to \mathbb{R}^n$ satisfies Lipschitz condition in a neighbourhood of $a \in \Delta$, then the paratingent $(\mathcal{P}\varphi)(a)$ is a continuum, i.e. it is a non-empty compact and connected set.

Proof. By Theorem 2.2 it is enough to show that $(\mathcal{P}\varphi)(a)$ is connected.

Assume "a contrario" that $(\mathcal{P}\varphi)(a)$ is not connected, i.e. $(\mathcal{P}\varphi)(a) = E_0 \cup E_1$, where sets $\emptyset \neq E_i, i = 0, 1$ are compact and $E_0 \cap E_1 = \emptyset$. Then $d = \inf \{ \|x - y\| : x \in E_0, y \in E_1 \} > 0.$

Let $g : \mathbb{R}^n \to \mathbb{R}$ be a function given by the formula $g(x) = \delta(x, E_0) - \delta(x, E_1)$. Function g is continuous. Moreover, if $x \in E_0$, then $g(x) \leq -d$, and if $x \in E_1$, then $g(x) \geq d$. Hence $g(x) \neq 0$ for all $x \in (\mathcal{P}\varphi)(a)$.

Let us now fix $x^0 \in E_0$ and $x^1 \in E_1$. So we have $x^0 = \lim_{k \to \infty} \mathcal{D}q(t_k, s_k)$ and $x^1 = \lim_{k \to \infty} \mathcal{D}q(\tau_k, \sigma_k)$ for some sequences $\{t_k\}, \{s_k\}, \{\tau_k\}, \{\sigma_k\} \subset \Delta$, $t_k < s_k, \tau_k < \sigma_k$ and

$$\lim_{k \to \infty} t_k = \lim_{k \to \infty} s_k = \lim_{k \to \infty} \tau_k = \lim_{k \to \infty} \sigma_k = a.$$

There exists k_0 such that $g(\mathcal{D}q(t_k, s_k)) < -\frac{d}{2}$ and $g(\mathcal{D}q(\tau_k, \sigma_k)) > \frac{d}{2}$ for $k \geq k_0$.

Let us now consider a family of functions $h_k : [0,1] \to \mathbb{R}$, for $k \ge k_0$, given by the formula $h_k(\alpha) = g(\mathcal{D}q(u_k^{\alpha}, v_k^{\alpha}))$. We have $h_k(0) = g(\mathcal{D}q(t_k, s_k)) < -\frac{d}{2} < 0$ and $h_k(1) = g(\mathcal{D}q(\tau_k, \sigma_k)) > \frac{d}{2} > 0$. There exists a sequence $\alpha_k \in [0,1]$ such that $h_k(\alpha_k) = 0$ for $k \ge k_0$. The sequence $\mathcal{D}q(u_k^{\alpha_k}, v_k^{\alpha_k})$ is bounded, so it contains a subsequence $\mathcal{D}q(u_{k_m}^{\alpha_{k_m}}, v_{k_m}^{\alpha_{k_m}})$ convergent to point $y \in (\mathcal{P}\varphi)(a) = E_0 \cup E_1$. Hence $g(y) \ne 0$, which contradicts the fact that

$$g(y) = g\left(\lim_{m \to \infty} \mathcal{D}q\left(u_{k_m}^{\alpha_{k_m}}, v_{k_m}^{\alpha_{k_m}}\right)\right) = \lim_{m \to \infty} g\left(\mathcal{D}q\left(u_{k_m}^{\alpha_{k_m}}, v_{k_m}^{\alpha_{k_m}}\right)\right)$$
$$= \lim_{m \to \infty} h_{k_m}(\alpha_{k_m}) = 0.$$

Therefore, the set $(\mathcal{P}\varphi)(a)$ is connected, which completes the proof.

3. Remarks. The definition of paratingent used in this note is an analytic modification by A. Bielecki [2] of the original definition given by G. Bouligand [3]. The Bouligand definition has a geometrical character and it applies to every general set $E \subset \mathbb{R}^n$. Let us recall this definition (cf. [4, Def. VII.1.1]):

Definition. In the Euclidean space \mathbb{R}^n the direction of a half-line (or in other words a ray xy^{\rightarrow}) with origin at a point x and passing through a point y is identified in the well-known way with a point of the unit sphere in \mathbb{R}^n . This identification gives us the topological structure in the set of all directions (i.e. rays).

Paratingent of the set $E \subset \mathbb{R}^n$ at point $x \in E$ is the set $(\mathcal{P}_E)(x)$ of all limits of the directions of sequences of half-lines $y_k z_k^{\rightarrow}$, where $y_k, z_k \in E$ and $y_k, z_k \to x$.

If a point x is an accumulation point of the set E, then the paratingent $(\mathcal{P}_E)(x)$ is always compact and non-empty set (cf. [4, Proposition VII.1.2]). So let $\varphi : \Delta \to \mathbb{R}^n$ be a given continuous function. Then the paratingent in the Bouligand sense of the function φ at point $a \in \Delta$ is the set $(\mathcal{P}_{\mathrm{Gr}\varphi})((a,\varphi(a)))$, where $\mathrm{Gr}\varphi = \{(t,\varphi(t)) : t \in \Delta\} \subset \mathbb{R}^{1+n}$ is the graph of the function φ . Of course the set $(\mathcal{P}_{\mathrm{Gr}\varphi})((a,\varphi(a)))$ is always non-empty and compact in \mathbb{R}^{n+1} .

Instead, the paratingent presented in this note (i.e. in Bielecki sense) of a function φ at a point a, i.e. the set $(\mathcal{P}\varphi)(a) \subset \mathbb{R}^n$, can be empty, bounded or unbounded.

Examples: Let $\varphi : \mathbb{R} \to \mathbb{R}$. (1) $\varphi(t) = t^{1/3}$, then $(\mathcal{P}\varphi)(0) = \emptyset$, but

$$(\mathcal{P}_{\mathrm{Gr}\varphi})(0,\varphi(0)) = \{(0,-1),(0,1)\} \subset \mathbb{R}^2;$$

(2) $\varphi(t) = |t|$, then $(\mathcal{P}\varphi)(0) = [-1,1] \subset \mathbb{R}$, but

$$(\mathcal{P}_{\mathrm{Gr}\varphi})(0,\varphi(0)) = \left\{ (\cos t, \sin t) : t \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \cup \left[\frac{3}{4}\pi, \frac{5}{4}\pi \right] \right\} \subset \mathbb{R}^2;$$

(3) $\varphi(t) = \sqrt{|t|}$, then $(\mathcal{P}\varphi)(0) = \mathbb{R}$, but

$$(\mathcal{P}_{\mathrm{Gr}\varphi})(0,\varphi(0)) = \left\{ (\cos t, \sin t) : t \in [0,2\pi] \right\} \subset \mathbb{R}^2.$$

In the literature (cf. [1, 5, 6]) the paratingent was considered only as a set-valued function acting from \mathbb{R} into a family of non-empty subsets of \mathbb{R}^n . Instead in this note we characterize the set $(\mathcal{P}\varphi)(a)$ by the properties of φ .

Acknowledgement. The author is grateful to the anonymous referee for his/her helpful suggestions.

References

- Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.
- [2] Bielecki, A., Sur certaines conditions nécessaires et suffisantes pour l'unicité des solutions des systèmes d'équations différentielles ordinaires et des équations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49–106.
- [3] Bouligand, G., Introduction à la géometrie infinitésimale directe, Vuibert, Paris, 1932.
- [4] Choquet, G., *Outils topologiques et métriques de l'analyse mathématique*, Centre de Documentation Univ., Course rédigé par C. Mayer, Paris, 1969.
- [5] Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67–74.
- [6] Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335–1368.

Wojciech Zygmunt Faculty of Mathematics, Informatics and Landscape Architecture, KUL al. Racławickie 14 20-950 Lublin Poland e-mail: wzygmunt@kul.lublin.pl

Received September 8, 2016