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On compactness and connectedness
of the paratingent

Abstract. In this note we shall prove that for a continuous function ϕ : ∆→
Rn, where ∆ ⊂ R, the paratingent of ϕ at a ∈ ∆ is a non-empty and compact
set in Rn if and only if ϕ satisfies Lipschitz condition in a neighbourhood of
a. Moreover, in this case the paratingent is a connected set.

1. Notations and definitions. Let R denote a real line, ∆ ⊂ R an inter-
val and Rn the Euclidean n-dimensional space with usual norm

‖x‖ =

( n∑
i=1

x2
i

)1/2

,

where x = (x1, x2, . . . , xn). The symbol

〈〈A〉〉 = sup
{
‖x‖ : x ∈ A

}
is defined for any A ⊂ Rn, A 6= ∅. The differential quotient ϕ(t)−ϕ(s)

t−s , where
ϕ : ∆ → Rn is a continuous function, t, s ∈ ∆ and t < s, is denoted by
Dq (t, s). Let uα = (1− α)t+ ατ and vα = (1− α)s+ ασ for t, s, τ, σ ∈ ∆,
t < s, τ < σ and α ∈ [0, 1]. Evidently, uα < vα.

The set of all points x ∈ Rn for which there exist two sequences {tk}, {sk}
⊂ ∆ such that tk < sk, both sequences converge to a and

x = lim
k→∞

Dq (tk, sk) ,
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is called the paratingent of ϕ at a and is denoted by (Pϕ)(a).
We shall say that a function ϕ : ∆ → Rn satisfies Lipschitz condition in

a neighbourhood of a point a ∈ ∆, if

∃L>0 ∃δ>0 ∀t,s∈∆, |t−a|<δ, |s−a|<δ ‖ϕ(t)− ϕ(s)‖ ≤ L |t− s|.
The distance of a point x from set A is denoted by

δ(x,A) = inf
{
‖x− y‖ : y ∈ A

}
.

2. Theorems.

Theorem 2.1. The paratingent (Pϕ)(a) is a closed set in Rn.

Proof. Let xm ∈ (Pϕ)(a), m = 1, 2, . . . , and limm→∞ x
m = x. So we have

xm = lim
k→∞

Dq (tmk , s
m
k ) ,

where tmk , s
m
k ∈ ∆, tmk < smk , limk→∞ t

m
k = limk→∞ s

m
k = a and m = 1, 2, . . . .

Then there exists km for any m such that |tmkm − a| <
1
m , |smkm − a| <

1
m ,

and
∥∥Dq (tmkm , smkm)− xm∥∥ < 1

m . Hence

x = lim
m→∞

Dq
(
tmkm , s

m
km

)
,

where limk→∞ t
m
km

= limk→∞ s
m
km

= a. Thus x ∈ (Pϕ)(a), so (Pϕ)(a) is
closed. �

Theorem 2.2. The paratingent (Pϕ)(a) is a non-empty and compact set if
and only if the function ϕ satisfies Lipschitz condition in a neighbourhood
of a.

Proof. (⇐)
Let ϕ satisfy Lipschitz condition, hence there exist L > 0 and δ > 0 such

that ‖Dq (t, s) ‖ ≤ L for any t, s ∈ ∆, |t − a| < δ and |s − a| < δ. Hence
the paratingent (Pϕ)(a) is bounded. Thus, by Theorem 2.1, (Pϕ)(a) is
compact.

Let now tk, sk → a with tk < sk. The sequence
{
Dq (tk, sk)

}
is bounded,

so it contains a convergent subsequence, i.e. limm→∞Dq (tkm , skm) = x ∈
(Pϕ)(a), hence (Pϕ)(a) is non-empty.
(⇒)

Let (Pϕ)(a) be non-empty and compact, and assume that ϕ does not
satisfy Lipschitz condition in any neighbourhood of a.

Firstly, let x ∈ (Pϕ)(a). There exists M such that 〈〈(Pϕ)(a)〉〉 ≤ M . As
x belongs to (Pϕ)(a), we have x = limk→∞Dq (tk, sk) for some sequences
{tk}, {sk} ⊂ ∆, tk < sk and tk, sk → a. Hence there exists k0 such that
‖Dq (tk, sk) ‖ < 2M for k ≥ k0.

On the other hand, as ϕ does not satisfy Lipschitz condition, there exist
sequences {τk}, {σk} ⊂ ∆, τk < σk and |τk − a|, |σk − a| < 1

k such that
‖Dq (τk, σk) ‖ > 4M for k = 1, 2, . . . .
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Let now %k(α) = ‖Dq (uαk , v
α
k ) ‖, where α ∈ [0, 1] and uα, vα were defined

in the first section. Function %k : [0, 1] → R is continuous and such that
%k(0) < 2M and %k(1) > 4M for any k = 1, 2, . . . . Thus there exists a
sequence αk ∈ [0, 1] such that %k(αk) =

∥∥Dq (uαk
k , vαk

k

)∥∥ = 3M .
Of course uαk

k , vαk
k → a as k tends to infinity. The sequence of quotients

Dq
(
uαk
k , vαk

k

)
is bounded, hence it contains a subsequence Dq

(
u
αkm
km

, v
αkm
km

)
convergent to a point y ∈ (Pϕ)(a). But we have ‖y‖ = 3M , which con-
tradicts the assumption ‖y‖ ≤ M as (Pϕ)(a) is bounded by the constant
M . Therefore ϕ must satisfy Lipschitz condition in some neighbourhood
of a. �

Theorem 2.3. If ϕ : ∆→ Rn satisfies Lipschitz condition in a neighbour-
hood of a ∈ ∆, then the paratingent (Pϕ)(a) is a continuum, i.e. it is a
non-empty compact and connected set.

Proof. By Theorem 2.2 it is enough to show that (Pϕ)(a) is connected.
Assume “a contrario” that (Pϕ)(a) is not connected, i.e. (Pϕ)(a) = E0∪

E1, where sets ∅ 6= Ei, i = 0, 1 are compact and E0 ∩ E1 = ∅. Then
d = inf

{
‖x− y‖ : x ∈ E0, y ∈ E1

}
> 0.

Let g : Rn → R be a function given by the formula g(x) = δ(x,E0) −
δ(x,E1). Function g is continuous. Moreover, if x ∈ E0, then g(x) ≤ −d,
and if x ∈ E1, then g(x) ≥ d. Hence g(x) 6= 0 for all x ∈ (Pϕ)(a).

Let us now fix x0 ∈ E0 and x1 ∈ E1. So we have x0 = limk→∞Dq (tk, sk)
and x1 = limk→∞Dq (τk, σk) for some sequences {tk}, {sk}, {τk}, {σk} ⊂ ∆,
tk < sk, τk < σk and

lim
k→∞

tk = lim
k→∞

sk = lim
k→∞

τk = lim
k→∞

σk = a.

There exists k0 such that g
(
Dq (tk, sk)

)
< −d

2 and g
(
Dq (τk, σk)

)
> d

2 for
k ≥ k0.

Let us now consider a family of functions hk : [0, 1]→ R, for k ≥ k0, given
by the formula hk(α) = g

(
Dq (uαk , v

α
k )
)
. We have hk(0) = g

(
Dq (tk, sk)

)
<

−d
2 < 0 and hk(1) = g

(
Dq (τk, σk)

)
> d

2 > 0. There exists a sequence
αk ∈ [0, 1] such that hk(αk) = 0 for k ≥ k0. The sequence Dq

(
uαk
k , vαk

k

)
is

bounded, so it contains a subsequence Dq
(
u
αkm
km

, v
αkm
km

)
convergent to point

y ∈ (Pϕ)(a) = E0 ∪ E1. Hence g(y) 6= 0, which contradicts the fact that

g(y) = g
(

lim
m→∞

Dq
(
u
αkm
km

, v
αkm
km

) )
= lim

m→∞
g
(
Dq
(
u
αkm
km

, v
αkm
km

) )
= lim

m→∞
hkm(αkm) = 0.

Therefore, the set (Pϕ)(a) is connected, which completes the proof. �
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3. Remarks. The definition of paratingent used in this note is an analytic
modification by A. Bielecki [2] of the original definition given by G. Bouli-
gand [3]. The Bouligand definition has a geometrical character and it ap-
plies to every general set E ⊂ Rn. Let us recall this definition (cf. [4, Def.
VII.1.1]):

Definition. In the Euclidean space Rn the direction of a half-line (or in
other words a ray xy→) with origin at a point x and passing through a
point y is identified in the well-known way with a point of the unit sphere
in Rn. This identification gives us the topological structure in the set of all
directions (i.e. rays).

Paratingent of the set E ⊂ Rn at point x ∈ E is the set (PE)(x) of all
limits of the directions of sequences of half-lines ykz→k , where yk, zk ∈ E and
yk, zk → x.

If a point x is an accumulation point of the set E, then the paratingent
(PE)(x) is always compact and non-empty set (cf. [4, Proposition VII.1.2]).
So let ϕ : ∆ → Rn be a given continuous function. Then the paratin-
gent in the Bouligand sense of the function ϕ at point a ∈ ∆ is the set
(PGrϕ)((a, ϕ(a))), where Grϕ =

{
(t, ϕ(t)) : t ∈ ∆

}
⊂ R1+n is the graph of

the function ϕ. Of course the set (PGrϕ)((a, ϕ(a))) is always non-empty and
compact in Rn+1.

Instead, the paratingent presented in this note (i.e. in Bielecki sense) of
a function ϕ at a point a, i.e. the set (Pϕ)(a) ⊂ Rn, can be empty, bounded
or unbounded.

Examples: Let ϕ : R→ R.
(1) ϕ(t) = t1/3, then (Pϕ)(0) = ∅, but

(PGrϕ)(0, ϕ(0)) =
{

(0,−1), (0, 1)
}
⊂ R2;

(2) ϕ(t) = |t|, then (Pϕ)(0) = [−1, 1] ⊂ R, but

(PGrϕ)(0, ϕ(0)) =

{
(cos t, sin t) : t ∈

[
− π

4
,
π

4

]
∪
[

3

4
π,

5

4
π

]}
⊂ R2;

(3) ϕ(t) =
√
|t| , then (Pϕ)(0) = R, but

(PGrϕ)(0, ϕ(0)) =
{

(cos t, sin t) : t ∈ [0, 2π]
}
⊂ R2.

In the literature (cf. [1, 5, 6]) the paratingent was considered only as a
set-valued function acting from R into a family of non-empty subsets of Rn.
Instead in this note we characterize the set (Pϕ)(a) by the properties of ϕ.

Acknowledgement. The author is grateful to the anonymous referee for
his/her helpful suggestions.



On compactness and connectedness of the paratingent 95

References

[1] Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts,
1990.

[2] Bielecki, A., Sur certaines conditions nécessaires et suffisantes pour l’unicité des so-
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