doi: 10.17951/a.2017.71.1.55

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

55 - 60

VOL. LXXI, NO. 1, 201	7 SECTIO A	
-----------------------	------------	--

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

On almost complex structures from classical linear connections

ABSTRACT. Let $\mathcal{M}f_m$ be the category of *m*-dimensional manifolds and local diffeomorphisms and let *T* be the tangent functor on $\mathcal{M}f_m$. Let \mathcal{V} be the category of real vector spaces and linear maps and let \mathcal{V}_m be the category of *m*-dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors $F: \mathcal{V}_m \to \mathcal{V}$ admitting $\mathcal{M}f_m$ -natural operators \tilde{J} transforming classical linear connections ∇ on *m*-dimensional manifolds *M* into almost complex structures $\tilde{J}(\nabla)$ on $F(T)M = \bigcup_{x \in M} F(T_xM)$.

Introduction. All manifolds considered in the paper are assumed to be Hausdorff, finite dimensional, second countable, without boundaries and smooth (of class C^{∞}). Maps between manifolds are assumed to be smooth (of class C^{∞}).

The category of *m*-dimensional manifolds and local diffeomorphisms is denoted by $\mathcal{M}f_m$. The category of vector bundles and vector bundle homomorphisms is denoted by \mathcal{VB} . The category of *m*-dimensional real vector spaces and linear isomorphisms is denoted by \mathcal{V}_m . The category of finite dimensional real vector spaces and linear maps is denoted by \mathcal{V} .

The concepts of natural bundles and natural operators can be found in [3]. Let $F : \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor. The regularity of F means that F transforms smoothly parametrized families of morphisms into smoothly parametrized ones. Let $T : \mathcal{M}f_m \to \mathcal{VB}$ be the tangent functor

²⁰¹⁰ Mathematics Subject Classification. 58A20, 58A32.

Key words and phrases. Classical linear connection, almost complex structure, Weil bundle, natural operator.

sending any *m*-manifold M into the tangent bundle TM of M and any $\mathcal{M}f_m$ -map $\varphi: M \to M_1$ into the tangent map $T\varphi: TM \to TM_1$. Applying F to fibers T_xM of TM, one can define a vector natural bundle F(T) over *m*-manifolds of order 1 by

$$F(T)M = \bigcup_{x \in M} F(T_xM)$$
 and $F(T)\varphi = \bigcup_{x \in M} F(T_x\varphi) : F(T)M \to F(T)M_1$

for any *m*-manifold M and any $\mathcal{M}f_m$ -map $\varphi : M \to M_1$ between *m*-manifolds. In particular, if F is the identity functor, then F(T) = T. If $FV = \otimes^r V \otimes \otimes^q V^*$ then $F(T)M = \otimes^r TM \otimes \otimes^q T^*M$.

It is well known (see e.g. [1]), that if ∇ is a classical linear connection on a manifold M, then the tangent bundle TM of M possesses the (canonical) almost complex structure \tilde{J}^{∇} such that $\tilde{J}^{\nabla}(X^H) = X^V$ and $\tilde{J}^{\nabla}(X^V) =$ $-X^H$ for any vector field $X \in \mathcal{X}(M)$ on M, where $X^H \in \mathcal{X}(TM)$ is the ∇ -horizontal lift of X and $X^V \in \mathcal{X}(TM)$ is the vertical lift of X to TM.

In the present note we study the following problem.

Problem 1. Characterize all covariant regular functors $F : \mathcal{V}_m \to \mathcal{V}$ admitting $\mathcal{M}f_m$ -natural operators \tilde{J} transforming classical linear connections ∇ on *m*-manifolds M into almost complex structures $\tilde{J}(\nabla)$ on F(T)M.

1. Basic definitions. A classical linear connection on a manifold M is a **R**-bilinear map $\nabla : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$ such that $\nabla_{fX}Y = f\nabla_X Y$ and $\nabla_X fY = X fY + f\nabla_X Y$ for any smooth map $f : M \to \mathbf{R}$ and any vector fields $X, Y \in \mathcal{X}(M)$ on M. Equivalently, a classical linear connection on M is a right invariant decomposition $TLM = H^{\nabla} \oplus VLM$ of the tangent bundle TLM of LM, where LM is the principal bundle (with the structural group GL(m)) of linear frames of M and VLM is the vertical bundle of LM, see [2].

A complex structure on a real vector space W is a linear endomorphism $J: W \to W$ such that $J^2 = -id_W$.

An almost complex structure on a manifold N is a tensor field $\tilde{J}: TN \to TN$ on N of type (1,1) (affinor) such that $\tilde{J} \circ \tilde{J} = -id_{TN}$.

The general concept of natural operators can be found in the fundamental monograph [3]. We need the following particular case of the one, only.

Let $F: \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor. A $\mathcal{M}f_m$ -natural operator transforming classical linear connections ∇ on *m*-manifolds *M* into almost complex structures $\tilde{J}(\nabla) : TF(T)M \to TF(T)M$ on F(T)M is a $\mathcal{M}f_m$ invariant family $\tilde{J}: Q \rightsquigarrow (ACS)F(T)$ of operators

$$\tilde{J}: Q(M) \to (ACS)(F(T)M)$$

for *m*-manifolds M, where Q(M) is the set of classical linear connections on M and (ACS)(N) is the set of almost complex structures on N. The invariance of \tilde{J} means that if $\nabla \in Q(M)$ and $\nabla_1 \in Q(M_1)$ are φ -related by an embedding $\varphi : M \to M_1$ (i.e. if φ is (∇, ∇_1) -affine embedding), then $\tilde{J}(\nabla)$ and $\tilde{J}(\nabla_1)$ are $F(T)\varphi$ -related (i.e. $TF(T)\varphi \circ \tilde{J}(\nabla) = \tilde{J}(\nabla_1) \circ TF(T)\varphi$).

Let F be as above. A \mathcal{V}_m -canonical complex structure on $V \oplus FV$ is a \mathcal{V}_m -invariant system J of complex structures

$$J: V \oplus FV \to V \oplus FV$$

on (vector spaces) $V \oplus FV$ for *m*-dimensional real vectors spaces *V*. The invariance means that $(\varphi \oplus F\varphi) \circ J = J \circ (\varphi \oplus F\varphi)$ for any linear isomorphism $\varphi : V \to V_1$ between *m*-dimensional vector spaces.

2. The main result. The main result of the present note is the following theorem.

Theorem 1. Let $F : \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor. The following conditions are equivalent:

- (i) There exists a $\mathcal{M}f_m$ -natural operator $\tilde{J}: Q \rightsquigarrow (ACS)F(T)$.
- (ii) There exists a \mathcal{V}_m -canonical complex structure J on $V \oplus FV$.

Proof. (i) \Rightarrow (ii). Let $\tilde{J}: Q \rightsquigarrow (ACS)F(T)$ be a $\mathcal{M}f_m$ -natural operator in question. Let V be a \mathcal{V}_m -object and let ∇^V be the (\mathcal{V}_m -canonical) torsion free flat classical linear connection on V. Then the almost complex structure $\tilde{J}(\nabla^V): TF(T)V \rightarrow TF(T)V$ on F(T)V restricts to the complex structure

$$J := \tilde{J}(\nabla^{V})_{0_{0_{V}}} : T_{0_{0_{V}}}F(T)V \to T_{0_{0_{V}}}F(T)V$$

on the tangent space $T_{0_{0_V}}F(T)V$ of F(T)V at $0_{0_V} \in F(T)V$, where 0_V is the zero in V and 0_{0_V} is the zero in $F(T)_{0_V}V$. We see that $T_{0_{0_V}}F(T)V = V \oplus FV$ modulo the usual identifications. (For, $TV = V \oplus V$, then $F(T)V = V \oplus FV$, and then $T_{0_{0_V}}F(T)V = V \oplus FV$.) So,

$$J: V \oplus FV \to V \oplus FV$$

is the complex structure on $V \oplus FV$ for any \mathcal{V}_m -object V. Because of the canonical character of the construction of J, J is \mathcal{V}_m -canonical.

(ii) \Rightarrow (i). Suppose $J : V \oplus FV \to V \oplus FV$ is a \mathcal{V}_m -canonical complex structure. Let $\nabla \in Q(M)$ be a classical linear connection on an *m*-manifold M. Let $v \in F(T)_x M, x \in M$. Since F(T) is of order 1, $F(T)M = LM[F(T)_0 \mathbf{R}^m]$ (the associated space). Then the ∇ -decomposition $TLM = H^{\nabla} \oplus VLM$ induces (in obvious way) the ∇ -decomposition $TF(T)M = \tilde{H}^{\nabla} \oplus VF(T)M$. Then we have the identification

$$T_v F(T)M = H_v^{\nabla} \oplus V_v F(T)M \tilde{=} T_x M \oplus F(T)_x M = T_x M \oplus F(T_x M)$$

~ _

canonically depending on ∇ , where the equality is the connection decomposition, the identification $\tilde{=}$ is the usual one (namely, $\tilde{H}_v^{\nabla} = T_x M$ modulo the tangent of the projection of F(T)M, and $V_v F(T)M = T_v (F(T)_x M) =$ $F(T)_x M$ modulo the standard identification) and the second equality is by the definition of F(T)M. We define $\tilde{J}(\nabla)_{|v}: T_v F(T)M \to T_v F(T)M$ by

$$\tilde{J}(\nabla)_{|v} := J : T_x M \oplus F(T_x M) \to T_x M \oplus F(T_x M)$$

modulo the above identification $T_v F(T) M \cong T_x M \oplus F(T_x M)$. Then $\tilde{J}(\nabla)$: $TF(T)M \to TF(T)M$ is an almost complex structure on F(T)M. By the canonical character of $\tilde{J}(\nabla)$, the (resulting) family $\tilde{J}: Q \rightsquigarrow (ACS)F(T)$ is a $\mathcal{M}f_m$ -natural operator. \Box

3. Corollaries. We start with the following two lemmas.

Lemma 1. Let $F : \mathcal{V}_m \to \mathcal{V}$ be a regular covariant functor. Suppose that there is no non-zero \mathcal{V}_m -canonical linear map $V \to FV$. Then there is no \mathcal{V}_m -canonical complex structure on $V \oplus FV$.

Proof. Suppose $J: V \oplus FV \to V \oplus FV$ is a \mathcal{V}_m -canonical complex structure. Since there is no non-zero \mathcal{V}_m -canonical linear map $V \to FV$, then $J_{|V \times \{0\}}: V \to V$ (modulo the identification $V = V \times \{0\}$) is a canonical complex structure on V. On the other hand, any \mathcal{V}_m -canonical linear map $V \to V$ is a constant multiple of the identity map id_V . It is a contradiction. \Box

Lemma 2. Let r, q be non-negative integers. If $r - q \neq 1$, there is no non-zero \mathcal{V}_m -canonical linear map $k: V \to \otimes^r V \otimes \otimes^q V^*$.

Proof. Let $k: V \to \otimes^r V \otimes \otimes^q V^*$ be a \mathcal{V}_m -canonical linear map. Let $v \in V$. The invariance of k with respect to homotheties tid_V (for t > 0) gives the homogeneity condition $tk(v) = t^{r-q}k(v)$. Then k(v) = 0 if $r - q \neq 1$.

Then we have the following corollary of Theorem 1.

Corollary 1. Let r, q be non-negative integers. If $r - q \neq 1$, there is no $\mathcal{M}f_m$ -natural operator $\tilde{J}: Q \rightsquigarrow (ACS) \otimes^r T \otimes^q T^*$ sending classical linear connections ∇ on m-manifolds M into almost complex structures $\tilde{J}(\nabla)$ on $\otimes^r TM \otimes \otimes^q T^*M$.

Proof. We have $F(T)M = \otimes^r TM \otimes \otimes^q T^*M$ for $FV = \otimes^r V \otimes \otimes^q V^*$. By Lemma 2, there is no \mathcal{V}_m -canonical non-zero linear map $V \to FV$ if $r - q \neq 1$. So, by Lemma 1, there is no \mathcal{V}_m -canonical complex structure on $V \oplus FV = V \oplus (\otimes^r V \otimes \otimes^q V^*)$ if $r - q \neq 1$. Then there is no $\mathcal{M}f_m$ -natural operator \tilde{J} in question if $r - q \neq 1$ because of Theorem 1. \Box

We have also the following two lemmas.

Lemma 3. Let p be a positive integer. Let $F : \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor given by $FV = V \times \cdots \times V$ ((p-1) times of V) and $F\varphi = \varphi \times \cdots \times \varphi$ ((p-1) times of φ). There is a \mathcal{V}_m -canonical complex structure on $V \oplus FV$ if and only if p is even.

Proof. Any \mathcal{V}_m -canonical map $J: V \times \cdots \times V$ (*p* times of V) $\to V \times \cdots \times V$ (*p* times of V) is of the form $J(w) = Cw^T$, $w = (w_1, \ldots, w_p)$ for some $p \times p$ matrix C with real coefficients. If $J \circ J = -id_V$, then $C^2 = -id$, and then p is even. On the other hand, if p is even we have the \mathcal{V}_m -canonical almost complex structure on $V \times \cdots \times V$ (*p* times of V). Namely, the $\frac{p}{2}$ copies of the canonical almost complex structure on $V \times V$, $(v, w) \to (-w, v)$. \Box

Lemma 4 (Lemma 5.1 in [4]). Let A be a p-dimensional Weil algebra and let T^A be the corresponding Weil functor. For any classical linear connection ∇ on an m-manifold M, we have the base-preserving fibred diffeomorphism $I^A_{\nabla}: T^A M \to TM \otimes \mathbf{R}^{p-1}$ canonically depending on ∇ .

We see that $TM \otimes \mathbf{R}^{p-1} = TM \times_M \cdots \times_M TM$ ((p-1) times of TM) = F(T)M, where $F : \mathcal{V}_m \to \mathcal{V}$, $FV = V \times \cdots \times V$ ((p-1) times of V), $F\varphi = \varphi \times \cdots \times \varphi$ ((p-1) times of $\varphi)$. So, we have the following corollary of Theorem 1 (and Lemmas 3 and 4).

Corollary 2. Let A be a Weil algebra. There exists a $\mathcal{M}f_m$ -natural operator $\tilde{J}: Q \rightsquigarrow (ACS)T^A$ sending classical linear connections ∇ on m-manifolds M into almost complex structures $\tilde{J}(\nabla)$ on T^AM if and only if A is even dimensional.

Remark 1. If m is odd and the dimension of A is odd, then $T^A M$ is odd dimensional and there is no $\mathcal{M}f_m$ -natural operator in question because of the clear argument. But if m is even and A is odd dimensional, then $T^A M$ is even dimensional and theoretically there may exist $\mathcal{M}f_m$ -natural operators in question. By Corollary 2, such $\mathcal{M}f_m$ -operators do not exist. For example, there is no $\mathcal{M}f_m$ -natural operator $\tilde{J}: Q \rightsquigarrow (ACS)T^2$ (even if m is even), where $T^2 M = J_0^2(\mathbf{R}, M)$ is the second order tangent bundle.

The bundle LM of linear frames of M is open in $TM \times_M \cdots \times_M TM$ (m times of TM). By Corollary 2, if m is odd, there is an $\mathcal{M}f_m$ -natural operator \tilde{J} sending classical linear connections ∇ into almost complex structures $\tilde{J}(\nabla)$ on $TM \times_M \cdots \times_M TM$ (m times of TM). So, we have the following corollary.

Corollary 3. If m is odd, there is a $\mathcal{M}f_m$ -natural operator \tilde{J}_1 sending classical linear connections ∇ on m-manifolds M into almost complex structures $\tilde{J}_1(\nabla)$ on LM such that $\tilde{J}_1(\nabla)$ is the restriction of $\tilde{J}(\nabla)$.

Remark 2. For any positive integer m there are many $\mathcal{M}f_m$ -natural operators $\tilde{J}_2: Q \rightsquigarrow (ACS)L$. However, by Corollary 2, any such $\tilde{J}_2(\nabla)$ cannot be extended canonically to an almost complex structure $\tilde{J}(\nabla)$ on the whole $TM \times_M \cdots \times_M TM$ (m times of TM) if m is even.

References

 Dombrowski, P., On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73–88. [2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York-London, 1963.

- [3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [4] Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319–324.

Jan KurekWłodzimierz M. MikulskiInstitute of MathematicsInstitute of MathematicsMaria Curie-Skłodowska UniversityJagiellonian Universitypl. M. Curie-Skłodowskiej 1ul. S. Łojasiewicza 6LublinCracowPolandPolande-mail: kurek@hektor.umcs.lublin.ple-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received December 19, 2016