doi: 10.17951/a.2017.71.1.61

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXI, NO. 1, 2017	SECTIO A	61 - 64
------------------------	----------	---------

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

The natural operators of general affine connections into general affine connections

ABSTRACT. We reduce the problem of describing all $\mathcal{M}f_m$ -natural operators transforming general affine connections on *m*-manifolds into general affine ones to the known description of all $GL(\mathbf{R}^m)$ -invariant maps $\mathbf{R}^{m*} \otimes \mathbf{R}^m \to \otimes^k \mathbf{R}^{m*} \otimes \otimes^k \mathbf{R}^m$ for k = 1, 3.

Introduction. All manifolds considered in this paper are assumed to be finite dimensional, without boundaries, second countable, Hausdorff and smooth (of class C^{∞}). Maps between manifolds are assumed to be smooth (of class C^{∞}). The category of *m*-dimensional manifolds and their embeddings is denoted by $\mathcal{M}f_m$.

A classical linear connection on a manifold M is a right invariant connection Γ on the principal fiber bundle LM of linear frames of M. It can be considered equivalently as the corresponding **R**-bilinear map $\nabla : \mathcal{X}(M) \times$ $\mathcal{X}(M) \to \mathcal{X}(M)$ such that $\nabla_{fX}Y = f\nabla_X Y$ and $\nabla_X fY = X(f)Y + f\nabla_X Y$ for any map $f: M \to \mathbf{R}$ and any vector fields $X, Y \in \mathcal{X}(M)$ on M, see [2].

A general affine connection on M is a right invariant connection Γ on the principal fiber bundle AM of affine frames of M. It can be equivalently considered as the corresponding pair (∇, K) consisting of a classical linear connection ∇ on M and a tensor field K of type (1, 1) on M, see [2].

The general concept of natural operators can be found in [3].

²⁰¹⁰ Mathematics Subject Classification. 58A32.

Key words and phrases. General affine connection, natural operator.

In the present note, we study the problem of finding all $\mathcal{M}f_m$ -natural operators $B: Q_{gen-af} \rightsquigarrow Q_{gen-af}$ transforming general affine connections (∇, K) on *m*-manifolds *M* into general affine connections $B(\nabla, K)$ on *M*.

Given an $\mathcal{M}f_m$ -natural operator $B: Q_{gen-af} \rightsquigarrow Q_{gen-af}$, we define an $\mathcal{M}f_m$ -natural operator $\Delta: Q_{gen-af} \rightsquigarrow (\otimes^2 T^* \otimes T) \oplus (T^* \otimes T)$ by

$$B(\nabla, K) = (\nabla, K) + \Delta(\nabla, K)$$

for all general affine connections (∇, K) on *m*-manifolds *M*, and vice versa. So, to find all $\mathcal{M}f_m$ -natural operators $B: Q_{gen-af} \rightsquigarrow Q_{gen-af}$ it is sufficient to find all $\mathcal{M}f_m$ -natural operators $\Delta: Q_{gen-af} \rightsquigarrow (\otimes^2 T^* \otimes T) \oplus (T^* \otimes T)$ transforming general affine connections (∇, K) on *m*-manifolds *M* into pairs $\Delta(\nabla, K) = (\Delta^1(\nabla, K), \Delta^2(\nabla, K))$ of tensor fields $\Delta^1(\nabla, K)$ of type (1, 2) and $\Delta^2(\nabla, K)$ of type (1, 1) on *M*.

In the present note, we prove that the above problem of finding all $\mathcal{M}f_m$ natural operators $B: Q_{gen-af} \rightsquigarrow Q_{gen-af}$ (or $\Delta: Q_{gen-af} \rightsquigarrow (\otimes^2 T^* \otimes T) \oplus$ $(T^* \otimes T)$) can be reduced to the one of describing all $GL(\mathbf{R}^m)$ -invariant maps $\mathbf{R}^{m*} \otimes \mathbf{R}^m \to \otimes^k \mathbf{R}^{m*} \otimes \otimes^k \mathbf{R}^m$ for k = 1, 3.

This "reduction" is satisfactory, because the $GL(\mathbf{R}^m)$ -invariant maps $\mathbf{R}^{m*} \otimes \mathbf{R}^m \to \otimes^k \mathbf{R}^{m*} \otimes \otimes^k \mathbf{R}^m$ for k = 1, 2, 3 are described in [1].

1. The crucial lemma. We prove the following lemma.

Lemma 1. There is the bijection between the set C of all $\mathcal{M}f_m$ -natural operators $\Delta : Q_{gen-af} \rightsquigarrow (\otimes^2 T^* \otimes T) \oplus (T^* \otimes T)$ and the set D of all $GL(\mathbf{R}^m)$ -invariant maps $(\bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \to (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \to (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m)$.

Proof. We define a map $\Phi : C \to D$ as follows.

Any $\Delta \in C$ is determined by the values

$$\Delta(\nabla, K)(x) = (\Delta^1(\nabla, K)(x), \Delta^2(\nabla, K)(x))$$

$$\in (\otimes^2 T^*_x M \otimes T_x M) \oplus (T^*_x M \otimes T_x M)$$

for all *m*-manifolds M, all linear connections ∇ on M, all tensor fields Kof type (1, 1) on M and all $x \in M$. Because of the $\mathcal{M}f_m$ -invariance of Δ , we may assume that $M = \mathbf{R}^m$, x = 0. We can even assume that $id_{\mathbf{R}^m}$ is ∇ -normal with center 0 (then $\nabla(0) \in \bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m$ because the Christoffel symbols ∇^i_{jk} of ∇ satisfy $\nabla^i_{jk}(0) + \nabla^i_{kj}(0) = 0$). Then using the invariance of Δ with respect to the homotheties $a_t = t i d_{\mathbf{R}^m}$ for t > 0, we obtain the homogeneity condition

$$\Delta((a_t)_*\nabla, (a_t)_*K)(0) = (t\Delta^1(\nabla, K)(0), \Delta^2(\nabla, K)(0))$$

Because of the homogeneous function theorem [3], this type of the homogeneity implies that $\Delta(\nabla, K)(0)$ depends on $\nabla(0)$ and $j_0^1 K$ (only). Let $(\Lambda, \tau_0, \tau_1) \in (\bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) = (\bigwedge^2 T_0^* \mathbf{R}^m \otimes \mathbf{R}^m)$ $T_0\mathbf{R}^m) \oplus J_0^1(T^*\mathbf{R}^m \otimes T\mathbf{R}^m)$, where $\tilde{=}$ is the usual $GL(\mathbf{R}^m)$ -invariant identification. We put

$$\Phi(\Delta)(\Lambda,\tau_0,\tau_1) := \Delta(\nabla,K)(0) \in (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m)$$

(modulo the usual $GL(\mathbf{R}^m)$ -invariant identification), where ∇ is the linear connection on \mathbf{R}^m such that the Christoffel symbols of ∇ with respect to the chart $id_{\mathbf{R}^m}$ are constant maps and $\nabla(0) = \nabla^o(0) + \Lambda$ and ∇^o is the usual flat torsion free connection on \mathbf{R}^m and K is the tensor field of type (1,1)on \mathbf{R}^m such that the coefficients of K in the chart $id_{\mathbf{R}^m}$ are polynomials of degree not more than 1 and $j_0^1 K = (\tau_0, \tau_1)$.

Since Δ is determined by $\Phi(\Delta)$, Φ is injective.

It remains to show that Φ is surjective. Let $c: (\bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \to (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m)$ be a $GL(\mathbf{R}^m)$ -invariant map (an element from D). Using the usual $GL(\mathbf{R}^m)$ -invariant identification $\mathbf{R}^m = T_0 \mathbf{R}^m$, we have the $GL(\mathbf{R}^m)$ -invariant map

$$c: (\bigwedge^2 T_0^* \mathbf{R}^m \otimes T_0 \mathbf{R}^m) \oplus (J_0^1 (T^* \mathbf{R}^m \otimes T \mathbf{R}^m)) \to \\ \to (\otimes^2 T_0^* \mathbf{R}^m \otimes T_0 \mathbf{R}^m) \oplus (T_0^* \mathbf{R}^m \otimes T_0 \mathbf{R}^m) \,.$$

Let (∇, K) be a general connection on an *m*-manifold *M*. Using *c*, we define a pair $\Delta_c(\nabla, K)$ consisting of tensor fields $\Delta_c^1(\nabla, K)$ of type (1,2) and $\Delta_c^2(\nabla, K)$ of type (1,1) on *M* as follows. Let $x \in M$. Consider a normal coordinate system φ of ∇ with center *x*. Then $(\varphi_*\nabla)_0 \in \bigwedge^2 T_0^* \mathbf{R}^m \otimes T_0 \mathbf{R}^m$ modulo the obvious $GL(\mathbf{R}^m)$ -invariant identification and $j_0^1(\varphi_*K) \in J_0^1(T^*\mathbf{R}^m \otimes T\mathbf{R}^m)$. We put

$$(\varphi_*\Delta_c(\nabla, K))_0 := c((\varphi_*\nabla)_0, j_0^1(\varphi_*K)).$$

If ψ is another normal coordinate system of ∇ with center x, then $\psi = \eta \circ \varphi$ for a $GL(\mathbf{R}^m)$ -map η . Then $(\psi_*\Delta_c(\nabla, K))_0 = (\varphi_*\Delta_c(\Delta, K))_0$ because of the $GL(\mathbf{R}^m)$ -invariance of c. That is why, the definition of $\Delta_c(\nabla, K)$ is correct. Thus we have the $\mathcal{M}f_m$ -natural operator $\Delta_c : Q_{gen-af} \rightsquigarrow (\otimes^2 T^* \otimes T) \oplus (T^* \otimes T)$. Clearly, $\Phi(\Delta_c) = c$.

2. The main result. The main result of the note is the following "reduction" theorem.

Theorem 1. The problem of finding all $\mathcal{M}f_m$ -natural operators $B: Q_{gen-af}$ $\rightsquigarrow Q_{gen-af}$ can be reduced to the one of describing all $GL(\mathbf{R}^m)$ -invariant maps $\mathbf{R}^{m*} \otimes \mathbf{R}^m \to \otimes^k \mathbf{R}^{m*} \otimes \otimes^k \mathbf{R}^m$ for k = 1, 3.

Proof. Any $GL(\mathbf{R}^m)$ -invariant map $c : (\bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \to (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m)$ is the system of $GL(\mathbf{R}^m)$ -invariant maps

$$c_1: (\bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \to \otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m$$

and

2

$$c_2: (\bigwedge^{\sim} \mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\mathbf{R}^{m*} \otimes \mathbf{R}^m) \oplus (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \to \mathbf{R}^{m*} \otimes \mathbf{R}^m.$$

Using the invariance of c_i with respect to the homotheties $a_t = tid_{\mathbf{R}^m}$ for t > 0, we obtain the respective homogeneity conditions. Then (by the homogeneous function theorems) $c_1(\Lambda, \tau_0, \tau_1)$ is linear in Λ and τ_1 and not necessarily linear in τ_0 . Then c_1 can be treated as the sum of $GL(\mathbf{R}^m)$ -linear maps

$$c_1': \mathbf{R}^{m*} \otimes \mathbf{R}^m \to (\bigwedge^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m)^* \otimes (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \subset \otimes^3 \mathbf{R}^{m*} \otimes \otimes^3 \mathbf{R}^m$$

 $c_1'': \mathbf{R}^{m*} \otimes \mathbf{R}^m \to (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m)^* \otimes (\otimes^2 \mathbf{R}^{m*} \otimes \mathbf{R}^m) \tilde{=} \otimes^3 \mathbf{R}^{m*} \otimes \otimes^3 \mathbf{R}^m$. By the same arguments, $c_2(\Lambda, \tau_0, \tau_1)$ is independent of Λ and τ_1 . Then

 $c_2: \mathbf{R}^{m*} \otimes \mathbf{R}^m \to \mathbf{R}^{m*} \otimes \mathbf{R}^m$ is a $GL(\mathbf{R}^m)$ -invariant map. Now, Theorem 1 is an immediate consequence of Lemma 1.

References

- Dębecki, J., The natural operators transforming affinors to tensor fields of type (3,3), Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica **39** (2000), 37–49.
- [2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.
- [3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. S. Łojasiewicza 6
Cracow
Poland
e-mail:Wlodzimierz.Mikulski@im.uj.edu.pl

Received December 31, 2016