ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA

URSZULA BEDNARZ and IWONA WŁOCH

Note about sequences of extremal ($A, 2 B$)-edge coloured trees

Abstract

In this paper we determine successive extremal trees with respect to the number of all $(A, 2 B)$-edge colourings.

1. Introduction. For concepts not defined here see [4]. Let G be an undirected, connected and simple graph with the vertex set $V(G)$ and the edge set $E(G)$. Then the order (number of vertices) and the size (number of edges) of G is denoted by n and m, respectively. Let $G(m)$ be a graph of size m. Then $P(m), C(m), T(m)$ and $S(m)$ denote a path, a cycle, a tree and a star of size m, respectively.

Let $P\left(m_{1}, m-m_{1}-1\right)$ be a 2 -palm of size $m, m \geq 5$ and the diameter 3 with two support vertices $x, y \in V\left(P\left(m_{1}, m-m_{1}-1\right)\right)$. Suppose that the support vertex x is adjacent to m_{1} leaves, then the vertex y is adjacent to $m-m_{1}-1$ leaves.

In a tree, a vertex of degree at least 3 is a branch vertex, a vertex of degree 1 is a leaf. If a tree has exactly three leaves, then it is named a tripod. In other words, every tripod has the unique branch vertex and consequently this branch vertex is the initial vertex of three elementary paths. Let $m \geq 3$, $p \geq 1, t \geq 1$ be integers. Then $T(m, p, t)$ denotes a tripod of size m and three paths of length p, t and $m-p-t$ with the branch vertex as the initial vertex of these paths. For convenience a path of length $i, i \geq 1$ we denote shortly by i-path.

[^0]Let b_{m} be the number of all nonisomorphic tripods of size m. Then it is given by the following recurrence relation $b_{m}=1+b_{m-2}+b_{m-3}-b_{m-5}$, for $m \geq 5$ with initial conditions $b_{0}=b_{1}=b_{2}=0, b_{3}=b_{4}=1$, see [9], [10].

The nth Fibonacci number F_{n} is defined recursively as follows: $F_{n}=$ $F_{n-1}+F_{n-2}, n \geq 2$ with $F_{0}=F_{1}=1$.

The telephone numbers $t(n)$ are defined by the recurrence relation $t(n)=$ $t(n-1)+(n-1) t(n-2)$, for $n \geq 2$ with $t(0)=t(1)=1$.

Fibonacci and telephone numbers have many interesting applications and interpretations also in graphs. Fibonacci numbers have a graph interpretation known as the Merrifield-Simmons index (i.e. the number of all independent sets) of the n-vertex path P_{n}, see [5], [6], [7, p. 85-86].

Telephone numbers have also a graph interpretation known as the Hosoya index (i.e. the number of all matchings) of the n-vertex complete graph K_{n}. For details see [8].

In [1] and [2] there was introduced the graph interpretation of Fibonacci numbers and telephone numbers with respect to the special edge colourings of a graph. We recall this definition.

Let $\mathcal{C}=\{A, B\}$ be the set of two colours. A graph G is $(A, 2 B)$-edge coloured if for every maximal B-monochromatic subgraph H of G there is a partition of H into edge disjoint paths of length 2. Clearly $(A, 2 B)$-edge colouring always exists, since we have no restriction on the colour A.

Let \mathcal{L} be a family of all distinct $(A, 2 B)$-edge coloured graphs obtained by $(A, 2 B)$-colouring of a graph G. Then $\mathcal{L}=\left\{G^{(1)}, G^{(2)}, \ldots, G^{(r)}\right\}, r \geq 1$, where $G^{(p)}, 1 \leq p \leq r$ denotes a graph obtained by $(A, 2 B)$-edge colouring of a graph G. For $(A, 2 B)$-edge coloured graph $G^{(p)}, 1 \leq p \leq r$ by $\theta\left(G^{(p)}\right)$ we denote the number of all partitions of B-monochromatic subgraphs of $G^{(p)}$ into edge disjoint paths of length 2. For the explanation, if $G^{(p)}$ is A monochromatic, then we put $\theta\left(G^{(p)}\right)=1$. The number of all $(A, 2 B)$-edge colourings we define as the graph parameter

$$
\sigma_{(A, 2 B)}(G)=\sum_{p=1}^{r} \theta\left(G^{(p)}\right) .
$$

The parameter $\sigma_{(A, 2 B)}(G)$ was determined for paths, cycles and bounded for trees, for details see [1], [2], [3]. In this paper we give sequences of $(A, 2 B)$ extremal trees, i.e. consecutive trees with extremal values of the parameter $\sigma_{(A, 2 B)}(T(m))$.
2. Main results. In [2], the lower bound and the upper bound of the parameter $\sigma_{(A, 2 B)}(T(m)), m \geq 1$ were given. Moreover, in [1] it was proved that the upper bound is realized by telephone numbers. This result is presented in the following theorem.

Theorem 1 ([1], [2]). Let $T(m)$ be a tree of size $m, m \geq 1$. Then

$$
F_{m} \leq \sigma_{(A, 2 B)}(T(m)) \leq t(m)
$$

Moreover, $\sigma_{(A, 2 B)}(T(m))=F_{m}$ for $T(m) \cong P(m)$ and $\sigma_{(A, 2 B)}(T(m))=$ $t(m)$ for $T(m) \cong S(m)$.

Next in [1] the following estimations for the parameter $\sigma_{(A, 2 B)}(T(m, p, t))$ in the class of tripods were proved:
Theorem 2 ([1]). Let $m \geq 3$ be an integer. If $T(m) \nsubseteq P(m)$ and $T(m) \nsubseteq$ $T(m, p, t)$ for all $p \geq 1, t \geq 1$, then

$$
\sigma_{(A, 2 B)}(P(m)) \leq \sigma_{(A, 2 B)}(T(m, p, t)) \leq \sigma_{(A, 2 B)}(T(m))
$$

From the above theorems it is clear that a path $P(m)$ is the extremal tree achieving the minimum value of $\sigma_{(A, 2 B)}(T(m))$. Moreover, if we want to find the next successive smallest trees with respect to the parameter $\sigma_{(A, 2 B)}(T(m))$ we have to study the whole class of tripods. The maximum and minimum value of $\sigma_{(A, 2 B)}(T(m, p, t))$ were established in [3].
Theorem 3 ([3]). Let $m \geq 4, p \geq 1, t \geq 1$ be integers. Then

$$
F_{m-1}+2 F_{m-3} \leq \sigma_{(A, 2 B)}(T(m, p, t)) \leq 2 F_{m-1}
$$

Moreover, $\sigma_{(A, 2 B)}(T(m, p, t))=2 F_{m-1}$ if $T(m, p, t) \cong T(m, 1,1)$ and $\sigma_{(A, 2 B)}(T(m, p, t))=F_{m-1}+2 F_{m-3}$ if $T(m, p, t) \cong T(m, 2,2)$.

From Theorem 2 and Theorem 3 we can deduce that the tripod $T(m, 2,2)$ is the second smallest tree with respect to the $\sigma_{(A, 2 B)}(T(m))$. In [1] there was found the second minimal tripod $T(m, 4,2)$ with respect to the parameter $\sigma_{(A, 2 B)}(T(m))$ which is also, by Theorem 2, the third smallest in the class of trees. From Theorem 3 it is obvious that the $\operatorname{tripod} T(m, 1,1)$ is the largest in the class of tripods with respect to $\sigma_{(A, 2 B)}(T(m, p, t))$. If we investigate the whole class of tripods, we obtain the sequence of successive extremal tripods from the minimal $T(m, 2,2)$ to the maximal $T(m, 1,1)$.

Let $T(m, p, t)$ be an arbitrary tripod, where $m \geq 4, p \geq 1, t \geq 1$. For $t=$ $2,4, \ldots,\left\lfloor\frac{m}{3}\right\rfloor, \ldots, 3,1$ we obtain the successive smallest tripods with respect to the parameter $\sigma_{(A, 2 B)}(T(m))$. The integer t assumes the consecutive even numbers from 2 to $\left\lfloor\frac{m}{3}\right\rfloor$, if $\left\lfloor\frac{m}{3}\right\rfloor$ is even or to $\left\lfloor\frac{m}{3}\right\rfloor-1$, if $\left\lfloor\frac{m}{3}\right\rfloor$ is odd. Then t assumes the consecutive odd numbers from $\left\lfloor\frac{m}{3}\right\rfloor$ or $\left\lfloor\frac{m}{3}\right\rfloor-1$ to 1 . In other words, the tripod $T(m, p, 2)$ always achieves the smallest value of $\sigma_{(A, 2 B)}(T(m, p, t))$ and the tripod $T(m, p, 1)$ always achieves the largest value of this parameter.

Moreover, for each value of t we can construct a sequence of extremal tripods with respect to the integer p.

If $t=1$, then the successive smallest tripods are given respectively for $p=2,4, \ldots,\left\lfloor\frac{m-1}{2}\right\rfloor, \ldots, 3,1$.

If $t=2$, then $p=2,4, \ldots,\left\lfloor\frac{m-2}{2}\right\rfloor, \ldots, 5,3$.

If $t=3$, then $p=4,6, \ldots,\left\lfloor\frac{m-3}{2}\right\rfloor, \ldots, 5,3$.
If $t=4$, then $p=4,6, \ldots,\left\lfloor\frac{m-4}{2}\right\rfloor, \ldots, 7,5$.
\vdots
If $t=\left\lfloor\frac{m}{3}\right\rfloor$ and $\left\lfloor\frac{m}{3}\right\rfloor$ is even, then $p=\left\lfloor\frac{m}{3}\right\rfloor, \ldots,\left\lfloor\frac{m-\left\lfloor\frac{m}{3}\right\rfloor}{2}\right\rfloor, \ldots,\left\lfloor\frac{m}{3}\right\rfloor+1$, and if $\left\lfloor\frac{m}{3}\right\rfloor$ is odd, then $p=\left\lfloor\frac{m}{3}\right\rfloor+1, \ldots,\left\lfloor\frac{m-\left\lfloor\frac{m}{3}\right\rfloor}{2}\right\rfloor, \ldots,\left\lfloor\frac{m}{3}\right\rfloor$.

For example if we consider the tripods $T(12, p, t)$ for all possible p, t, then the sequence of successive smallest tripods with respect to the increasing parameter $\sigma_{(A, 2 B)}(T(m, p, t))$ is as follows

$$
\begin{aligned}
& T(12,2,2), T(12,4,2), T(12,5,2), T(12,3,2), T(12,4,4), T(12,4,3), \\
& T(12,3,3), T(12,2,1), T(12,4,1), T(12,5,1), T(12,3,1), T(12,1,1) .
\end{aligned}
$$

The above considerations give an answer to the question given in [1].
Let $t_{i}(m), i=1, \ldots, b_{m+1}$ be the i th minimum tree of size m with respect to the parameter $\sigma_{(A, 2 B)}(T(m))$. Then

$$
\begin{aligned}
& t_{1}(m) \cong P(m), t_{2}(m) \cong T(m, 2,2), t_{3}(m) \cong T(m, 4,2), \\
& t_{4}(m) \cong T(m, 6,2), \ldots, t_{m-1}(m) \cong T(m, 5,1), \\
& t_{m}(m) \cong T(m, 3,1), t_{m+1}(m) \cong T(m, 1,1) .
\end{aligned}
$$

Now we determine the successive trees with respect to the decreasing parameter $\sigma_{(A, 2 B)}(T(m))$. To do this we use among others the following lemma.
Lemma 1 ([2]). Let $G=H \cup T(l) \cup\{e\}$ be a connected graph, where H is a connected graph, $T(l)$ is a tree of size $l, l \geq 1$ and H and $T(l)$ are vertex disjoint. Assume that $e=u v$, where $u \in V(H)$ and $v \in V(T(l))$. Then

$$
\begin{equation*}
\sigma_{(A, 2 B)}(H \cup P(l) \cup\{e\}) \leq \sigma_{(A, 2 B)}(G) \leq \sigma_{(A, 2 B)}(H \cup S(l) \cup\{e\}), \tag{1}
\end{equation*}
$$

where the vertex v is identified with the center of the star $S(l)$. Moreover, the equality holds if $T(l) \cong P(l)$ or $T(l) \cong S(l)$.
Theorem 4. Let $m \geq 5, m_{1} \geq 2$ be integers. Then

$$
\sigma_{(A, 2 B)}(T(m)) \leq \sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-1\right)\right) \leq \sigma_{(A, 2 B)}(S(m))
$$

Proof. The inequality $\sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-1\right)\right) \leq \sigma_{(A, 2 B)}(S(m))$ follows immediately from Theorem 1. Let $T(m) \not \equiv S(m)$ and $T(m) \not \equiv P\left(m_{1}, m-\right.$ $\left.m_{1}-1\right)$. Then $\operatorname{diam} T(m) \geq 4$. Let $\bar{P}=x-y$ be the path which realizes the diameter $\operatorname{diam} T(m)$. Then $x, y \in V(T(m))$ are leaves. Let $u \in V(T(m))$ be adjacent to the vertex x and the edge $e \in \bar{P}$ be incident with u and e is not incident with a leaf. Then $T(m)=T\left(m_{1}\right) \cup T\left(m_{2}\right) \cup\{e\}$, where $m_{1}+m_{2}+1=m$. Applying Lemma 1, we have $\sigma_{(A, 2 B)}(T(m)) \leq \sigma_{(A, 2 B)}\left(S\left(m_{1}\right) \cup S\left(m_{2}\right) \cup\{e\}\right)=\sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-1\right)\right)$, which ends the proof.

Let $T_{i}(m)$ be the i th maximum tree of size m with respect to the parameter $\sigma_{(A, 2 B)}(T(m))$.

Theorem 5. Let $m \geq 5$ be an integer. Then $T_{1}(m)=S(m), \sigma_{(A, 2 B)}(S(m))$ $=t(m)$ and $T_{i}(m)=P(m-i, i-1)$ for $2 \leq i \leq m-\left\lceil\frac{m-1}{2}\right\rceil$.
Theorem 6. Let $m \geq 5, m_{1} \geq 2$ be integers. If $T(m) \nsupseteq S(m)$ and $T(m) \nexists$ $P\left(m_{1}, m-m_{1}-1\right)$, then $\sigma_{(A, 2 B)}(T(m)) \leq \sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right)$.
Proof. Since $T(m) \nsubseteq S(m)$ and $T(m) \nsubseteq P\left(m_{1}, m-m_{1}-1\right)$ then diam $T(m)$ ≥ 4. Let $e \in E(T(m))$ is not incident with a leaf. Such edge there exists because $\operatorname{diam} T(m) \geq 4$. Let $T(m)=T\left(m_{1}\right) \cup\{e\} \cup T\left(m_{2}\right)$, where $m=m_{1}+$ $m_{2}+1$. Then $\operatorname{diam} T\left(m_{1}\right) \geq 2$ or $\operatorname{diam} T\left(m_{2}\right) \geq 2$. Suppose without loss of generality that $\operatorname{diam} T\left(m_{2}\right) \geq 2$. Let us consider the following possibilities: 1. $c(e)=A$. Then

$$
\sigma_{A(e)}(T(m))=\sigma_{(A, 2 B)} T\left(m_{1}\right) \sigma_{(A, 2 B)} T\left(m_{2}\right)
$$

2. $c(e)=2 B$. Then

$$
\begin{aligned}
\sigma_{2 B(e)}(T(m))= & \sigma_{2 B(e)}\left(T\left(m_{1}\right) \cup\{e\}\right) \sigma_{(A, 2 B)}\left(T\left(m_{2}\right)\right) \\
& +\sigma_{(A, 2 B)}\left(T\left(m_{1}\right)\right) \sigma_{2 B(e)}\left(T\left(m_{2}\right) \cup\{e\}\right)
\end{aligned}
$$

Therefore $\sigma_{(A, 2 B)}(T(m))=\sigma_{A(e)}(T(m))+\sigma_{2 B(e)}(T(m))$. Hence

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m))= & \sigma_{(A, 2 B)} T\left(m_{1}\right) \sigma_{(A, 2 B)} T\left(m_{2}\right) \\
& +\sigma_{(A, 2 B)}\left(T\left(m_{1}\right) \cup\{e\}\right) \sigma_{(A, 2 B)}\left(T\left(m_{2}\right)\right) \\
& +\sigma_{(A, 2 B)}\left(T\left(m_{1}\right)\right) \sigma_{(A, 2 B)}\left(T\left(m_{2}\right) \cup\{e\}\right)
\end{aligned}
$$

Since $\operatorname{diam} T\left(m_{2}\right) \geq 2$ then applying Lemma 1, we have

$$
\begin{aligned}
\sigma_{(A, 2 B)}(T(m)) \leq & \sigma_{(A, 2 B)}\left(P\left(m_{2}-1,1\right)\right) \sigma_{(A, 2 B)}\left(S\left(m_{1}\right)\right) \\
& +\sigma_{2 B(e)}\left(P\left(m_{2}-2,1\right)\right) \sigma_{(A, 2 B)}\left(S\left(m_{1}\right)\right) \\
& +\sigma_{(A, 2 B)}\left(P\left(m_{2}-1,1\right)\right) \sigma_{2 B(e)}\left(P\left(m_{2}-1,1\right)\right) \\
= & \sigma_{(A, 2 B)}\left(P\left(m_{2}-1\right) \cup S\left(m_{1}\right) \cup\{e\}\right) \\
= & \sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right)
\end{aligned}
$$

which ends the proof.
Theorem 7. Let $m \geq 5$ be an integer. Then
$\sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right)=t\left(m_{1}+1\right) t\left(m-m_{1}-1\right)+t\left(m_{1}\right) t\left(m-m_{1}-2\right)$.
Proof. Let $e, e^{\prime} \in E\left(P\left(m_{1}, m-m_{1}-2\right)\right)$ be not incident with a leaf. If $c(e)=c\left(e^{\prime}\right)=2 B$ and a 2-path $e-e^{\prime}$ belongs to a partition of $2 B$ monochromatic subgraph into 2-paths, then we have $t\left(m_{1}\right) t\left(m-m_{1}-2\right)$ possibilities in this case. Otherwise the tree $P\left(m_{1}, m-m_{1}-2\right)$ can be considered as the union of two stars $S\left(m_{1}+1\right)$ and $S\left(m-m_{1}-1\right)$ and the result follows.

From the above theorems we have
Corollary 8. Let $m \geq 5, m_{1} \geq 2$ be integers, $T(m) \nsubseteq S(m)$ and $T(m) \nsubseteq$ $P\left(m_{1}, m-m_{1}-1\right)$. Then

$$
\sigma_{(A, 2 B)}(T(m)) \leq t\left(m_{1}+1\right) t\left(m-m_{1}-1\right)+t\left(m_{1}\right) t\left(m-m_{1}-2\right) .
$$

In the same way as for the palm $P\left(m_{1}, m-m_{1}-1\right)$, see [1], we can show the behavior of the parameter $\sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right)$ after moving an edge adjacent to a support vertex to another support vertex. So we omit the proof.
Lemma 2. Let $m \geq 6, m_{1} \geq 2$ be integers and $m_{1} \geq m-m_{1}-2$. Then

$$
\sigma_{(A, 2 B)}\left(P\left(m_{1}+1, m-m_{1}-3\right)\right)>\sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right) .
$$

Theorem 9. Let $T(m)$ be a tree of size $m, m \geq 6, T(m) \nsubseteq S(m)$ and $T(m) \nexists P\left(m_{1}, m-m_{1}-1\right)$ for all $m_{1} \geq 2$. Then

$$
\sigma_{(A, 2 B)}(T(m)) \leq \sigma_{(A, 2 B)}(P(m-3,1))
$$

Proof. Let $T(m)$ be a tree of size $m, m \geq 6$ such that $T(m) \nexists S(m)$ and $T(m) \nexists P\left(m_{1}, m-m_{1}-1\right)$ for all $m_{1} \geq 2$. Then by Theorem 6 , $\sigma_{(A, 2 B)}(T(m)) \geq \sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right)$ for all $m \geq 2$. If $m-m_{1}-2=1$, then $m_{1}=m-3$ and $P\left(m_{1}, m-m_{1}-2\right) \not \equiv P(m-3,1)$, so the result follows. Let $m-m_{1}-2 \geq 2$ and without loss of the generality, suppose that $m_{1} \geq m-m_{1}-2$. Applying Lemma 2, we obtain

$$
\sigma_{(A, 2 B)}\left(P\left(m_{1}, m-m_{1}-2\right)\right)<\sigma_{(A, 2 B)}\left(P\left(m_{1}+1, m-m_{1}-3\right)\right) .
$$

If $m-m_{1}-3 \geq 2$, then we apply Lemma 2 until we obtain the palm $P(m-3,1)$, which ends the proof.

Let $T_{i}^{*}(m)$ be the i th maximum tree of size m in the class of 2 -palms $P\left(m_{1}, m-m_{1}-2\right)$ for $m_{1} \geq 2$ with respect to the parameter $\sigma_{(A, 2 B)}(T(m))$. From the above considerations we have

Theorem 10. Let $m \geq 5$ be an integer. Then $T_{i}^{*}(m)=P(m-i-2, i)$ for $i=1,2, \ldots,\left\lceil\frac{m-2}{2}\right\rceil$.

References

[1] Bednarz, U., Włoch, I., Fibonacci and telephone numbers in extremal trees, Discuss. Math. Graph Theory, doi 10.7151/dmgt.1997, in press.
[2] Bednarz, U., Włoch, I., Wołowiec-Musiał, M., Total graph interpretation of numbers of the Fibonacci type, J. Appl. Math. 2015 (2015), ID 837917, 7 pp.
[3] Bednarz, U., Bród, D., Szynal-Liana, A., Włoch, I., Wołowiec-Musiał, M., On Fibonacci numbers in edge coloured trees, Opuscula Math. 37 (4) (2017), 479-490.
[4] Diestel, R., Graph Theory, Springer-Verlag, Heidelberg, New York, 2005.
[5] Gutman, I., Wagner, S., Maxima and minima of the Hosoya index and the MerrifieldSimmons index. A survey of results and techniques, Acta Appl. Math. 112 (3) (2010), 323-346.
[6] Prodinger, H., Tichy, R. F., Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), 16-21.
[7] Riordan, J., Introduction to Combinatorial Analysis, Dover Publ., Inc., New York, 2002.
[8] Tichy, R. F., Wagner, S., Extremal problems for topological indices in combinatorial chemistry, J. Comput. Biol. 12 (7) (2005), 1004-1013.
[9] Weisstein, E., Tripod index entries for linear recurrence with constant coefficients, MathWorld, Wolfram Web Resource, Mar. 05 2011, URL http://mathworld.wolfram.com/Tripod.html
[10] The On-Line Encyclopedia of Integer Sequences, URL https://oeis.org/

Urszula Bednarz	Iwona Włoch
Faculty of Mathematics	Faculty of Mathematics
and Applied Physics	and Applied Physics
Rzeszów University of Technology	Rzeszów University of Technology
al. Powstańców Warszawy 12	al. Powstańców Warszawy 12
35-359 Rzeszów	35-359 Rzeszów
Poland	Poland
e-mail: ubednarz@prz.edu.pl	e-mail: iwloch@prz.edu.pl

Received March 23, 2017

[^0]: 2010 Mathematics Subject Classification. 11B37, 11C20, 15B36, 05C69.
 Key words and phrases. Edge colouring, trees, Fibonacci numbers, telephone numbers.

