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Abstract. In this paper we prove that for each 1 < p, p̃ < ∞, the Banach
space (lp̃, ‖·‖p̃) can be equivalently renormed in such a way that the Banach
space (lp̃, ‖·‖L,α,β,p,p̃) is LUR and has a diametrically complete set with empty
interior. This result extends the Maluta theorem about existence of such a set
in l2 with the Day norm. We also show that the Banach space (lp̃, ‖·‖L,α,β,p,p̃)
has the weak fixed point property for nonexpansive mappings.

1. Introduction. Recently E. Maluta presented a reflexive LUR Banach
space which contains a diametrically complete set with empty interior [11].
Namely she proved that the Banach space l2 furnished with the Day norm
‖·‖L is such a Banach space. Next in [3] the authors introduced the gen-
eralized Day norm |||·|||β,p in c0 and showed its properties. In this paper
applying the generalized Day norm, we prove that for each 1 < p, p̃ <∞ in
the Banach space (lp̃, ‖·‖p̃) there exists an equivalent norm ‖·‖L,α,β,p,p̃ such
that (lp̃, ‖·‖L,α,β,p,p̃) contains diametrically complete set with empty inte-
rior. We also show that the Banach spaces (c0, |||·|||β,p) and (lp̃, ‖·‖L,α,β,p,p̃)
have the weak fixed point property for nonexpansive mappings.

2010 Mathematics Subject Classification. 46G20, 47H10, 52A05.
Key words and phrases. Diametrically complete set, Day norm, fixed point, Kadec–

Klee property, LUR space, nonexpansive mapping, non-strict Opial property, 1-
unconditional Schauder bases.



52 M. Budzyńska, A. Grzesik and M. Kot

2. Basic notions and facts. Throughout this paper all Banach spaces are
infinite dimensional and real. We will also use the notations, assumptions
and facts from [3]. Additionally, let us recall the following definition.

Definition 2.1 ([6] and [8], see also [1], [4] and [5]). Let (X, ‖·‖) be a Banach
space. We say that (X, ‖·‖) has the Kadec–Klee property with respect to
the weak topology (the Kadec–Klee property, for short) if each sequence
{xn} with limn ‖xn‖ = 1, which converges weakly to a point ξ with ‖ξ‖ = 1,
tends strongly to ξ.

It is known that for 1 < p < +∞ the Banach space lp with the standard
norm ‖·‖p has the Kadec–Klee property (see for example [4]).

We also need the definition of a diametrically complete set in a Banach
space.

Definition 2.2. Let (X, ‖·‖) be an infinite dimensional Banach space and
let C be a nonempty and non-singleton subset of X. We say that C is a
diametrically complete set in X if

diam‖·‖(C ∪ {x}) = sup{‖y − y′‖ : y, y′ ∈ C ∪ {x}}
> diam‖·‖(C) = sup{‖y − y′‖ : y, y′ ∈ C}

for each x ∈ X \ C.

It is obvious that a diametrically complete set has to be bounded, closed
and convex.

Next we give two results which establish relations between a diametral
property of a set and the interior of a diametrically complete set. First
in [14], J. P. Moreno, P. L. Papini and R. R. Phelps proved the following
theorem.

Theorem 2.3. Let (X, ‖·‖) be an infinite dimensional Banach space and
C ⊂ X be diametrically complete. If the interior of C is empty, then C is
diametral.

In [12], E. Maluta and P. L. Papini showed the following result.

Theorem 2.4. Each infinite dimensional and reflexive Banach space
(X, ‖·‖), which satisfies the non-strict Opial property and lacks normal
structure, contains diametrically complete sets whose interior is empty.

3. The generalized Day norm and renorming of Banach spaces.
In this section we apply the generalized Day norm |||·|||β,p in c0 to renorm a
Banach space (lp̃, ‖·‖p̃), where 1 < p, p̃ < +∞.

Fix α ∈ (0, 1) and fix 1 < p, p̃ <∞. Next we choose a strictly decreasing
positive sequence β = {βj}j satisfying the following two conditions

• the series
∑∞

j=1 β
p
j is convergent,
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• there exists a constant L > 1 such that for each n ∈ N
∞∑

j=n+1

βpj ≤ Lβ
p
n+1.

Now we can observe that for each x = {xk}k ∈ lp̃, the sequence given by

u(x) = {ui(x)}i = {α‖x‖p̃, x1, x2, x2, . . . , xk, . . . , xk, . . . }

is an element of c0 (here the k-th coordinate of x is repeated exactly k times
and ‖·‖p̃ is the standard norm in lp̃). So we can apply the Day norm |||·|||β,p
([3]) to the element u(x) and set

‖x‖L,α,β,p,p̃ := |||u(x)|||β,p = ‖D(u(x))‖p,

where ‖·‖p is the standard norm in lp.
It is easy to note that

‖u(x)‖c0 = max{α‖x‖p̃, |x1|, |x2|, . . . },

β1α‖x‖p̃ ≤ ‖D(u(x))‖p = ‖x‖L,α,β,p,p̃ ≤

( ∞∑
j=1

βpj

) 1
p

‖x‖p̃,

and

β1‖u(x)‖c0 ≤ ‖D(u(x))‖p = |||u(x)|||β,p = ‖x‖L,α,β,p,p̃

≤

( ∞∑
j=1

βpj

) 1
p

‖u(x)‖c0

for each x ∈ lp̃. Therefore ‖·‖L,α,β,p,p̃ is a norm in lp̃, which is equivalent to
the original one.

Remark 3.1. The norm ‖·‖L connected with the Day norm |||·||| was in-
troduced by M. Smith ([16]) and our norm ‖·‖L,α,β,p,p̃ is a generalization of
the norm ‖·‖L . In his paper M. Smith proves that (l2, ‖·‖L) is a reflexive,
locally uniformly rotund Banach space that is not uniformly convex in every
direction. In [17], M. Smith and B. Turett show that (l2, ‖·‖L) lacks normal
structure.

4. The norm ‖·‖L,α,β,p,p̃ and the non-strict Opial property. To
get the result about the non-strict Opial property of the Banach space
(lp̃, ‖·‖L,α,β,p,p̃) we modify the Maluta proof of Theorem 3.1 in [11] (see
also the proof of Theorem 5.2 in [3]).

Theorem 4.1. The Banach space (lp̃, ‖·‖L,α,β,p,p̃) has the non-strict Opial
property.
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Proof. Assume that {xn}n = {{xin}i}n ⊂ lp̃ tends weakly to 0 ∈ lp̃ and let
x = {xi}i ∈ lp̃ \ {0}. Let us take 0 < ε < 1. By the Opial property of the
Banach space (lp̃, ‖·‖p̃) there exists ñ0 ∈ N such that for each ñ0 < n ∈ N
we have

‖xn‖p̃ < ‖xn − x‖p̃ + ε.

Next there exists ĩ ∈ N such that

|xi| < ε

for each ĩ < i ∈ N. Therefore,

|xin| ≤ |xin − xi|+ |xi| < |xin − xi|+ ε

for each ĩ < i ∈ N and all n ∈ N.
Now for each 1 ≤ i ≤ ĩ we have either xi = 0 or xi 6= 0. In the second case

setting ηi = min{ε, 12 |x
i|} and taking into account the weak convergence of

{xn}n to 0, we find ñi ∈ N such that

|xin| < ηi

for ñi < n ∈ N and hence we obtain

|xin − xi| ≥ |xi| − |xin|

> |xi| − ηi ≥
1

2
|xi| ≥ ηi > |xin|.

In the first case, i.e., xi = 0, we have

|xin| = |xin − xi|
for each n ∈ N.

So we have shown that

|xin| ≤ |xin − xi|
for each 1 ≤ i ≤ ĩ and all max{ñ1, . . . , ñĩ} < n ∈ N.

Putting together all above inequalities, we get

|xin| < |xin − xi|+ ε

for each i ∈ N and for all max{ñ1, . . . , ñĩ} < n ∈ N.
The above considerations yield the following inequalities

(∗) |ui(xn)| < |ui(xn − x)|+ ε

for each i ∈ N and for all max{ñ0, ñ1, . . . , ñĩ} < n ∈ N.
Now let us take max{ñ0, ñ1, . . . , ñĩ} < n ∈ N. Then using Corollary 2.8

from [3] and applying (∗), we obtain

‖xn‖L,α,β,p,p̃ = |||u(xn)|||β,p = ‖D(u(xn))‖p̃

=

[ ∞∑
j=1

(
βj

∣∣∣uτ(j,u(xn))(xn)
∣∣∣)p] 1

p
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<

{ ∞∑
j=1

βj

[∣∣∣uτ(j,u(xn))(xn − x)
∣∣∣+ ε

]p} 1
p

≤

{ ∞∑
j=1

βj

[∣∣∣uτ(j,u(xn−x))(xn − x)
∣∣∣+ ε

]p} 1
p

≤

[ ∞∑
j=1

(
βj

∣∣∣uτ(j,u(xn−x))(xn − x)
∣∣∣)p] 1

p

+ ε

[ ∞∑
j=1

βpj

] 1
p

= ‖D(u(xn − x))‖p + ε

[ ∞∑
j=1

βpj

] 1
p

= |||u(xn − x)|||β,p + ε

[ ∞∑
j=1

βpj

] 1
p

= ‖xn − x‖L,α,β,p,p̃ + ε

[ ∞∑
j=1

βpj

] 1
p

.

Finally, by passing n to +∞, we get

lim sup
n
‖xn‖L,α,β,p,p̃ ≤ lim sup

n
‖xn − x‖L,α,β,p,p̃ + ε

[ ∞∑
j=1

βpj

] 1
p

and by arbitrariness of 0 < ε < 1, we obtain

lim sup
n
‖xn‖L,α,β,p,p̃ ≤ lim sup

n
‖xn − x‖L,α,β,p,p̃.

�

Observe that the Banach space (lp̃, |||·|||L,α,β,p,p̃) does not have the Opial
property as the following example shows.

Example 4.2. Consider (lp̃, |||·|||L,α,β,p,p̃) with the standard basis {ei}i. Let
us take a sequence {un}n = {en+1}n. This sequence is weakly convergent
to 0 ∈ c0 and for

u = min

{
1,

(
1

αp̃
− 1

) 1
p̃

}
e1

we have

lim
n
|||un|||L,α,β,p,p̃ = lim

n
|||un − u|||L,α,β,p,p̃ =

( ∞∑
j=1

βpj

) 1
p

.
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5. The norm ‖·‖L,α,β,p,p̃ and normal structure. The following theo-
rem is valid.

Theorem 5.1. The Banach space (lp̃, ‖·‖L,α,β,p,p̃) lacks normal structure

for α ≤ 2
− 1
p̃ .

Proof. As usual in lp̃ we have the standard basis {ei}i. The proof is a small
modification of the proof due to M. A. Smith and B. Turett ([17]). Observe
that for m2 > m1 we have

em2 − em1 = {0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . }.

Clearly,

α‖em2 − em1‖p̃ = α2
1
p̃ ≤ 1

and therefore[
m1+m2∑
j=1

βpj

] 1
p

≤ ‖em2 − em1‖L,α,β,p,p̃ = |||em2 − em1 |||β,p

≤

[
m1+m2+1∑

j=1

βpj

] 1
p

≤

[ ∞∑
j=1

βpj

] 1
p

.

This means that

diam‖·‖L,α,β,p,p̃{ei}i =

[ ∞∑
j=1

βpj

] 1
p

.

Now we compute limm dist‖·‖L,α,β,p,p̃(em+1, conv{e1, . . . , em}). Let us take

a1 + · · ·+ am = 1, where 0 ≤ ak ≤ 1 for 1 ≤ k ≤ m. Then we have

em+1 −
m∑
k=1

akek =

{
e∗j

(
em+1 −

m∑
k=1

akek

)}
j

= {−a1, . . . ,−am, 1, 0, . . . }

for all m ∈ N. But we also have

α

∥∥∥∥∥em+1 −
m∑
k=1

akek

∥∥∥∥∥
p̃

≤ 1.

Hence we get m+1∑
j=1

βpj

 1
p

≤

∥∥∥∥∥em+1 −
m∑
k=1

akek

∥∥∥∥∥
L,α,β,p,p̃

≤ diam‖·‖L,α,β,p,p̃{ei}i =

[ ∞∑
j=1

βpj

] 1
p

.
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This means that

lim
m

dist‖·‖L,α,β,p,p̃(em+1, conv{e1, . . . , em}) =

[ ∞∑
j=1

βpj

] 1
p

.

�

6. The norm ‖·‖L,α,β,p,p̃ and asymptotic normal structure. We have
the following result.

Theorem 6.1. The Banach space (lp̃, ‖·‖L,α,β,p,p̃) fails asymptotic normal

structure for α ≤ 4
− 1
p̃ .

Proof. Once again {ei}i is the standard basis in lp̃. Analogously as in [13]
(see also [2]) we put

(∗∗) xn =

{
(1− j

22i
)ei + ei+1, if n = 22i + j, j = 1, 2, . . . , 22i

ei+1 + j
22i+1 )ei+2, if n = 22i+1 + j, j = 1, 2, . . . , 22i+1.

and
C = conv{xn : n = 5, 6, . . . }.

Directly from (∗∗) we get

0 = lim
n
‖xn − xn+1‖p̃ = lim

n
‖xn − xn+1‖L,α,β,p,p̃

and
α diam‖·‖p̃(C) ≤ α4

1
p̃ ≤ 1.

Next it is easy to see that |xkn−xkm| ≤ 1 for every k,m, n ∈ N and therefore

‖xn − xm‖L,α,β,p,p̃ ≤

[ ∞∑
j=1

βpj

] 1
p

.

On the other hand, for example, if i1 +2 < i2, n1 = 22i1 +1, n2 = 22i2 +1 >
22i1+4 + 1, then we have

xn2 − xn1 = {xkn2
− xkn1

}k
= {0, . . . , 0, xi1n2

− xi1n1
, xi1+1

n2
− xi1+1

n1
, 0, . . . , 0, xi2n2

− xi2n1
, xi2+1

n2
− xi2+1

n1
, 0, . . . }

=
{

0, . . . , 0,
1

22i1
− 1,−1, 0, . . . , 0, 1− 1

22i2
, 1, 0, . . .

}
.

and
α‖xn2 − xn1‖p̃ ≤ α diam‖·‖p̃(C) ≤ 1.

Thus directly from the definition of the norm ‖·‖L,α,β,p,p̃ we get[
i1+i2+2∑
j=1

βpj

] 1
p

≤ ‖xn2 − xn1‖L,α,β,p,p̃ ≤

[ ∞∑
j=1

βpj

] 1
p

.
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This means that

diamL,α,β,p,p̃(C) = diam‖·‖L,α,β,p,p̃{xn} =

[ ∞∑
j=1

βpj

] 1
p

.

Similarly, we obtain∥∥∥∥∥
m∑
l=1

alxl − xn

∥∥∥∥∥
L,α,β,p,p̃

≥

[
i+1∑
j=1

βpj

] 1
p

for each convex combination
∑m

l=1 alxl and for every sufficiently large n,
where i is connected with n by (∗∗). This implies

lim
n

∥∥∥∥∥
m∑
l=1

alxl − xn

∥∥∥∥∥
L,α,β,p,p̃

=

[ ∞∑
j=1

βpj

] 1
p

= diam‖·‖L,α,β,p,p̃(C).

Hence we have

lim
n
‖x− xn‖L,α,β,p,p̃ = diam‖·‖L,α,β,p,p̃(C)

for each x ∈ C and therefore the set C lacks asymptotic normal structure.
�

7. The norm ‖·‖L,α,β,p,p̃ and LUR. Here applying the Smith method
(Example 1 in [16]), we arrive at the following theorem.

Theorem 7.1. The Banach space (lp̃, ‖·‖L,α,β,p,p̃) is LUR.

Proof. Let x ∈ lp̃ and {xn}n ⊂ lp̃ be such that ‖x‖L,α,β,p,p̃ = 1,
limn ‖xn‖L,α,β,p,p̃ = 1 and limn ‖x + xn‖L,α,β,p,p̃ = 2. Then we also have
|||u(x)|||β,p = 1, limn |||u(xn)|||β,p = 1 and limn |||u(x) + u(xn)|||β,p = 2. Ap-
plying local uniform convexity (LUR) of (c0, |||·|||β,p), we immediately obtain
the strong convergence of the sequence {u(xn)} to u(x) in the norm |||·|||β,p.
But we have

β1‖u(x)− u(xn)‖c0 ≤ |||u(x)− u(xn)|||β,p

≤

[ ∞∑
j=1

βpj

] 1
p

‖u(x)− u(xn)‖c0

and

‖u(x)− u(xn)‖c0 = max{α |‖x‖p̃ − ‖xn‖p̃| , |x1 − x1n|, |x2 − x2n|, . . . }.

This implies that limn ‖xn‖p̃ = ‖x‖p̃ and limn x
i
n = xi for i = 1, 2, . . . .

Hence the sequence {xn} tends weakly to x. Finally, by the Kadec–Klee
property of (lp̃, ‖·‖p̃) we have limn xn = x in (lp̃, ‖·‖p̃) and therefore in
(lp̃, ‖·‖L,α,β,p,p̃), too. �
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8. Diametrically complete sets with empty interior in the space
(lp̃, ‖·‖L,α,β,p,p̃). Using the properties of the norm ‖·‖L,α,β,p,p̃ and the
Maluta–Papini Theorem, we obtain

Theorem 8.1. For α ≤ 2
− 1
p̃ the Banach space (lp̃, ‖·‖L,α,β,p,p̃) is LUR and

contains a diametrically complete set whose interior is empty.

Proof. It is a simple consequence of Theorems 2.4, 4.1, 5.1 and 7.1. �

9. The weak fixed point property. We begin with the following defini-
tion.

Definition 9.1. Let (X, ‖·‖) be a Banach space with a Schauder basis
{ei}i. We say that a Schauder basis {ei}i is unconditional if whenever the
series

∑∞
i=1 x

iei converges, it converges unconditionally, i.e.,
∑∞

i=1 x
σ̃(i)eσ̃(i)

converges for every permutation σ̃ of N.

The following theorem shows a few equivalent definitions of uncondition-
ality of a Schauder basis (see for example [10] and [15]).

Theorem 9.2. Let (X, ‖·‖) be a Banach space with a Schauder basis {ei}i.
The following statements are equivalent:

(1) the basis {ei}i is an unconditional basis;
(2) for every choice of signs {εi}i (i.e. εi = ±1)

∑∞
i=1 εix

iei converges
whenever

∑∞
i=1 x

iei converges;
(3) for every convergent series

∑∞
i=1 x

iei and for every sequence of sca-
lars {bi}i such that |bi| ≤ |xi| for all i the series

∑∞
i=1 b

iei converges.

It is known that if {ei}i is an unconditional Schauder basis in a Banach
space (X, ‖·‖), then

sup

{∥∥∥∥∥
∞∑
i=1

εix
iei

∥∥∥∥∥ :

∥∥∥∥∥
∞∑
i=1

xiei

∥∥∥∥∥ = 1 and εi = ±1

}
is finite (see for example [10] and [15]). Hence we state

Definition 9.3. If a Schauder basis {ei}i is an unconditional basis in a
Banach space (X, ‖·‖), then the number

K := sup

{∥∥∥∥∥
∞∑
i=1

εix
iei

∥∥∥∥∥ :

∥∥∥∥∥
∞∑
i=1

xiei

∥∥∥∥∥ = 1 and εi = ±1

}
is called the unconditional constant of {ei}i . If this constant K is equal to
1, then we say that {ei}i is a 1-unconditional basis.

Next we recall the definition of the weak fixed point property.
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Definition 9.4. Let (X, ‖·‖) be a Banach space and let C be a weakly
compact and convex subset of X. We say that C has the fixed point property
if each nonexpansive mappings T : C → C (i.e. ‖Tx1 − Tx2‖ ≤ ‖x1 − x2‖
for every x1, x2 ∈ C) has a fixed point.

If each weakly compact and convex subset C of X has the fixed point
property, then we say that a Banach space (X, ‖·‖) has the weak fixed point
property.

The following theorem is generally known.

Theorem 9.5 ([4]). Let (X, ‖·‖) be a Banach space, C ⊂ X be weakly
compact and convex and let T : C → C be a nonexpansive mapping. Then
there exists a separable subspace X1 ⊂ X such that the set C1 = C ∩X1 is
a weakly compact, convex and T -invariant, i.e. T (C1) ⊂ C1.

In 1965, W. A. Kirk [7] published his famous fixed point theorem.

Theorem 9.6. Let C be a nonempty, weakly compact, convex subset of a
Banach space (X, ‖·‖), and suppose C has normal structure. Then each
nonexpansive mapping T : C → C has a fixed point.

Next in 1981, J. B. Baillon and R. Schöneberg [2] extended Kirk’s Theo-
rem, using asymptotic normal structure.

Theorem 9.7. Every reflexive Banach space with asymptotic normal struc-
ture has the weak fixed point property for nonexpansive mappings.

Observe that by Theorems 7.6 and 8.2 from [3] we are not able to apply
the above fixed point theorems to the Banach space (c0, |||·|||β,p).

However, the following theorem, which is due to P.-K. Lin ([9]), is valid.

Theorem 9.8. Each Banach space (X, ‖·‖) with a 1-unconditional Schau-
der basis {ei}i has the weak fixed point property.

Directly from the definitions of a 1-unconditional Schauder basis and the
norm |||·|||β,p we get

Theorem 9.9. Let {ei}i be a standard basis in c0 = c0(N). Then {ei}i is
a 1-unconditional Schauder basis in (c0, |||·|||β,p).

Thus we are ready to prove

Theorem 9.10. The Banach space (c0(Γ), |||·|||β,p) has the weak fixed point
property.

Proof. By Theorem 9.5 we can assume that Γ = N and c0(Γ) = c0. Since
by Theorem 9.9 the standard basis {ei} in c0 is a 1-unconditional Schauder
basis in (c0, |||·|||β,p), we can apply Theorem 9.8 to get our result. �
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Next, if α ≤ 4
− 1
p̃ , then by Theorem 5.1 and 6.1 we are not able to apply

Theorems 9.6 and 9.7 to the Banach space (lp̃, ‖·‖L,α,β,p,p̃). But directly from
the definitions of a 1-unconditional Schauder basis and the norm |||·|||β,p, we
obtain

Theorem 9.11. Let {ei}i be a standard basis in (lp̃, ‖·‖p̃). Then {ei}i is a
1-unconditional Schauder basis in (lp̃, ‖·‖L,α,β,p,p̃).

So we are ready to prove

Theorem 9.12. The Banach space (lp̃, ‖·‖L,α,β,p,p̃) has the weak fixed point
property.

Proof. Since by Theorem 9.11 the standard basis {ei} in (lp̃, ‖·‖p̃) is a 1-
unconditional Schauder basis in (lp̃, ‖·‖L,α,β,p,p̃), the Lin Theorem implies
our result. �
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