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A survey of a selection of methods
for determination of Koebe sets

Abstract. In this article we take over methods for determination of Koebe
set based on extremal sets for a given class of functions.

1. Introduction. Let A denote a set of all functions that are analytic in
the unit disk ∆ := {z ∈ C : |z| < 1} such that every f ∈ A satisfies the
conditions f(0) = f ′(0) − 1 = 0. Let S denote a class of functions f ∈ A
such that the functions f are univalent in ∆.

Definition 1. We define the Koebe set of the class A, where A ⊂ A is the
point-set

⋂
f∈A

f(∆) and denote it by K(A), so we have

K(A) =
⋂
f∈A

f(∆).

The set K(A) is a “maximal” set such that for every function f ∈ A the
set K(A) ⊂ f(∆), i.e. if for the set B we have that B ⊂ f(∆) for every
function f ∈ A, then B ⊂ K(A).

Definition 2. Let mA be an analytic and univalent function in the unit disk
∆. The function mA is called a minorant of the class A if the set mA(∆)
is the maximal set such that mA(∆) ⊂ f(∆) for every function f from the
class A provided that this function exists.
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From the definition of minorant we have that the minorant of the class
A exists if the Koebe set K(A) is a domain.

Remark 1. There are classes of functions for which the Koebe set is not
a domain. For example, for the class Ta3 of typically-real functions with
the fixed third coefficient a3 = f ′′′(0)

3! the set K(Ta3) is a collection of three
disconnected domains, where

Ta3 :=

{
f ∈ A : Im z Im f(z) ≥ 0 for z ∈ ∆ and

f ′′′(0)

3!
= a3

}
,

a3 ∈ [−1, 3].

The determination of the Koebe set for the class Ta3 is complicated and
this problem has been considered in [3].

We can give some other examples of classes of univalent functions for
which the setK(A) is a collection of three disconnected domains, for example
A = {f(z),−f(−z)}, where f ∈ S and

f(∆) = C \ ({ω = ω0 + t, t ≥ 0} ∪ {ω = ω0 + t, t ≥ 0})
where Reω0 < 0 and Imω > 0. Hence, we see that the Koebe set does not
have to be bounded.

2. Examples of Koebe sets.
1. The Koebe set for the class T of typically-real functions.
The Koebe set for the class T := {f ∈ A : Im f(z) Im z ≥ 0, z ∈ ∆} of

typically-real functions was founded by A. W. Goodman [1] in 1977. The
set K(T ) is symmetric with respect to the real axis, and its boundary in
the upper half plane is a curve given by the polar equation

g(θ) =

{
1
4 , if θ = 0 or θ = π,
π sin θ

4θ(π−θ) , if 0 < θ < π.

In the proof of this fact Goodman used the universal function F (z) =
1
π tan πz

1+z2
for which F (∆) = Cr

{
− i
π ,

i
π

}
and ± i

π ∈ ∂K(T ).

From the fact that Fc(z) :=
F ( z+c

1+cz
)−F (c)

(1−c2)F ′(c) belongs to the class T for c ∈
(−1, 1), we have

± i
π − F (c)

(1− c2)F ′(c)
∈ ∂K(T ).

This means that the boundary in the upper half plane of the domain K(T )
is given by the parametric equation

ω(c) =


i
π
−F (c)

(1−c2)F ′(c) for c ∈ (−1, 1),

−1
4 for c = −1,

1
4 for c = 1.
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From this we can get the polar equation.
2. The Koebe set of one subclass of the class of all functions that are

convex in the direction of the imaginary axis.
A function f is convex in the direction of eiα if f maps the unit disk ∆

onto a domain convex in the direction of eiα. This means that each line
parallel to a given line with the direction of eiα either misses f(∆) or is
contained in f(∆) or the intersection with f(∆) is either a segment or a
ray. Functions of this class will be denoted by CV(eiα).

For the class Q ⊂ H we define

QR := {f ∈ Q : an ∈ R for n ∈ N0}.
Let CVR(i) be the class of all functions that are convex in the direction of

the imaginary axis. We have f ∈ CVR(i) if and only if for every ω ∈ ∂f(∆),

Imω > 0⇒ (f(∆) ∩ {ω + it, t ≥ 0} = ∅ ∧ f(∆) ∩ {ω + it, t ≤ 0} = ∅) .
Using this property, we can consider the subclass of the class CVR(i).

Let for a fixed α from the interval [0, 1]

Kω,α :=
{
z : (1− α)

π

2
≤ arg(z − ω) ≤ (1 + α)

π

2
, where ω ∈ C

}
and

Aω,α := C\
{
Kω,α ∪Kω,α

}
, where Kω,α := {ω : ω ∈ Kω,α} .

Definition 3. f ∈ CVRα(i) if and only if

∀
ω∈∂f(∆)

Imω ≥ 0⇒
(
f(∆) ∩Kω,α = ∅ ∧ f(∆) ∩Kω,α = ∅

)
.

It is easy to see that for α1 < α2 we have CVRα2(i) ⊂ CVRα1(i). The
class CVRα(i) is convex in the direction of eiθ for θ ∈ [(1− α)π2 , (1 + α)π2 ].

The set Aω,α is the domain for ω 6= 0 and Imω > 0. For Imω > 0 from
the Riemann theorem we have that there exists only one univalent function
fω,α in the unit disk ∆ such that f(∆) = Aω,α, fω,α(0) = 0 and f ′ω,α(0) > 0.

Let K(A) be a domain and the point ω ∈ ∂K(A).

Definition 4. The function fω ∈ A such that ω ∈ ∂fω(∆) is called the
extremal function for a given Koebe domain for the class A and the domain
fω(∆) is called the extremal domain for the class A.

Theorem 5. If Imω > 0, then the set Aω,α is the extremal domain for the
class CVRα(i) when f ′ω,α(0) = 1.

Proof. Let Imω > 0 and f ′ω(0) = 1. From the definition of the class
CVRα(i) we have that the function fω,α ∈ CVRα(i). Assume that there
exists a function f ∈ CVRα(i) such that the point ω−εi ∈ ∂f(∆) for ε with
0 < ε ≤ Imω. By the definition of the domain Aω,α we have Aω,α−εi ⊂ Aω,α
and by the definition of the class CVRα(i) we have f(∆) ⊂ Aω−εi. Hence,
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f(∆) ⊂ fω−εi(∆) $ fω(∆), which means that f ≺ fω−εi and fω−εi ≺ fω.
Hence, 1 = f ′(0) ≤ f ′ω−εi(0) < f ′ω(0) = 1, which is a contradiction. Hence,
the interval [Reω, ω) ⊂ f(∆) for every function f from the class CVRα(i).

Due to real coefficients the segment (ω, ω) ⊂ f(∆) for every function f
from the class CVRα(i), so we have (ω, ω) ⊂ K(CVRα(i)). From this and the
fact that ω ∈ ∂fω(∆) we have that ω ∈ ∂K(CVRα(i)) and ω ∈ ∂K(CVRα(i))
also when ω ∈ R. �

From the Schwarz–Christoffel formula we have

fω,α(z) =

z∫
0

[
(ζ − eiθ)(ζ − e−iθ)

]1−α
(1− ζ2)2−α dζ,

where

ω = ω(θ) =

eiθ∫
0

[
(ζ − eiθ)(ζ − e−iθ)

]1−α
(1− ζ2)2−α dζ, θ ∈ [0, π].

From the above, we have

Theorem 6. The Koebe set of the class CVRα(i) is a domain and its bound-
ary is a curve given by the equation

ω(θ) =

1∫
0

eiθ
[
(1− t)(1− te2iθ)

]1−α
(1− t2e2iθ)2−α dt, θ ∈ [−π, π],

where ω(θ) for θ ∈ [−π, 0] determines the equality ω(θ) = ω(−θ).

3. Other forms of the Koebe domains for the class CVRα(i).

(1) Notice that the Bieberbach’s transformation
f( z+c

1+cz
)−f(c)

(1−c2)f ′(c) remains in-
variant in CVRα(i) and the extremal functions fω(θ) for c ∈ (−1, 1).
Moreover, for Imω(θ) > 0 we have

{fθ,c : c ∈ (−1, 1)} =
{
fω(θ) : θ ∈ (0, π)

}
,

where

fθ,c(z) :=
fω(θ)(

z+c
1+cz )− fω(θ)(c)

(1− c2)f ′ω(θ)(c)
.

Taking θ = π
2 , we have

ω(π2 )−
c∫

0

(1+ζ2)1−α

(1−ζ2)2−αdζ

(1− c2)α−1(1 + c2)1−α ∈ ∂K(CVRα(i)).
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It means that the boundary of Koebe domain for the class CVRα(i)
is given by the equation

υ(c) =

(
1− c2

1 + c2

)1−α
ω (π

2

)
−

c∫
0

(1 + ζ2)1−α

(1− ζ2)2−αdζ

 .

(2) A minorant of the class CVRα(i).
By Theorem 2, we have the equation of boundary of the domain for
the class K(CVRα(i))

ω(θ) =

1∫
0

eiθ
[
(1− t)(1− te2iθ)

]1−α
(1− t2e2iθ)2−α dt, θ ∈ [−π, π].

Notice that for the function

f(z) :=

1∫
0

z
[
(1− t)(1− t2z2)

]1−α
(1− t2z2)2−α dt

we have f(eiθ) = ω(θ) for θ ∈ [−π, π]. Hence, f(∆) = K(CVRα(i)),
which means that 1

f ′(0)f(z) ∈ CVRα(i). From the above, we see that
the minorant of the class CVRα(i) is the function f(z), therefore
mCVRα(i)(z) = f(z). Hence, K(CVRα(i)) = f(∆), where

f(z) =

1∫
0

z
[
(1− t)(1− t2z2)

]1−α
(1− t2z2)2−α dt.
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