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Properties of modulus of monotonicity
and Opial property in direct sums

Abstract. We give an example of a Banach lattice with a non-convex mod-
ulus of monotonicity, which disproves a claim made in the literature. Results
on preservation of the non-strict Opial property and Opial property under
passing to general direct sums of Banach spaces are established.

1. Introduction. Geometry of Banach spaces is an important field of func-
tional analysis with many applications, in particular to metric fixed point
theory. The most classical and most frequently applied geometric proper-
ties of Banach spaces are uniform convexity and uniform smoothness. There
are scaling functions corresponding to these properties called the modulus
of convexity and modulus of smoothness. It is well known that these prop-
erties are dual to each other. This theorem has its quantitative form in the
so-called Lindenstrauss formula relating the modulus of smoothness of the
dual space to the modulus of convexity of the initial space (see Proposition
1.e.2 [6]).

Most examples of Banach spaces are sequence spaces or function spaces.
In such spaces we have the natural order which in many cases makes them
Banach lattices. Having a lattice, we can consider not only general geometric
properties but also specific properties related to order. The basic properties
of this kind are uniform monotonicity and order uniform smoothness. They
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are in a sense lattice counterparts of uniform convexity and uniform smooth-
ness. As in the classical case, they have corresponding scaling functions and
in [5] a counterpart of the Lindenstrauss formula was given. However, [5]
contains also an additional formula of this kind. As a consequence of this
additional formula it is claimed that the modulus of monotonicity is a con-
vex function. In the first part of this paper we give a simple example of a
two-dimensional Banach lattice with a non-convex modulus of monotonic-
ity. This disproves the claim made in [5] and shows that the modification of
the Lindenstrauss formula given in [5] is false. We show that although the
modulus of monotonicity need not be convex, it is continuous in the interval
[0, 1).

In the second part of this paper we study the non-strict Opial property
and Opial property in general direct sums of Banach spaces. The Opial
property was introduced in [8] and has many applications in metric fixed
point theory (see [3]). Constructing a general direct sum, we use a func-
tion lattice called a substitution space. In the most standard cases this
is the space Rn with a lattice norm or lp space. We establish a result on
permanence of Opial properties under passing to a direct sum. In case of
the Opial property it is necessary to assume that a substitution space E is
uniformly monotone and in the proof its modulus of monotonicity is used.
In [2], results on the non-strict Opial property and Opial property in direct
sums were proved, but only for particular cases of substitution spaces. Our
theorem generalizes these results.

2. Preliminaries. In this paper we consider only real Banach spaces.
Given such space X, by BX and SX we denote the closed unit ball and
the unit sphere of X, respectively. To describe general construction of a di-
rect sums of Banach spaces we introduce some preliminary notation. Given
a nonempty set of indices I, consider the space Map(I,R) of all functions
from I to R with the standard operations and order. For a set A ⊂ I, by
1A we denote the characteristic function of A.

Let (E, ‖·‖E) be a real Banach space such that E is a linear subspace of
Map(I,R), which satisfies the following monotonicity assumption. If f ∈ E,
g ∈ Map(I,R) and |g| ≤ |f |, then g ∈ E and ‖g‖E ≤ ‖f‖E . This condition
implies in particular that if there is a function f ∈ E such that f(i0) 6= 0
for a given i0 ∈ I, then 1{i0} ∈ E. Consequently, we can and do assume
that all functions f ∈ Map(I,R) with finite supports supp f belong to E.
Following [4], we call such space E a substitution space. By E0 we denote
the closure of linear subspace spanned by all functions 1{i}, where i ∈ I.

Now, given a substitution space E on a set I and a family {Xi}i∈I of
Banach spaces, we define the direct sum,

Y =

(∑
i∈I

Xi

)
E
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as the space of all functions x ∈
∏
i∈I Xi, where x(i) ∈ Xi for every i ∈ I

such that bxe ∈ E, where bxe(i) = ‖x(i)‖ for i ∈ I (compare for example
[1, p. 5]). We endow Y with the norm given by the formula

‖x‖ = ‖bxe‖E .
Observe that if E = E0, then for every x ∈ Y and every γ > 0 there exists
a finite set A ⊂ suppx such that ‖x− 1Ax‖ ≤ γ.

Let us list some standard examples of substitution spaces, which give
also standard particular cases of direct sums. If I = {1, . . . , n}, we can
take E = Map(I,R) = Rn endowed with a monotone norm. Then, trivially,
E0 = E.

Let now I be an infinite set. The standard and most frequently used
substitution space is E = lp(I), where 1 ≤ p <∞. Also in this case E0 = E.
As the next example we take the space E = l∞(I) of all bounded functions
f : I → R with the norm ‖f‖ = supi∈I |f(i)|. In this case E0 = c0(I) and
this is another example of a substitution space.

The following simple remark will be used in the proof of our main result.

Remark 1. Consider a direct sum Y =
(∑

i∈I Xi

)
E

and a finite set I0 ⊂ I.
Assume that for a sequence (xn) in Y the following limits exist

ξ(i) = lim
n→∞

‖xn(i)‖

for every i ∈ I0. It is easy to see that

lim
n→∞

∣∣‖xn‖ − ‖1I0ξ + 1I\I0bxne‖
∣∣ = 0.

It follows that if the limit limn→∞ ‖xn‖ exists, then

lim
n→∞

‖xn‖ = lim
n→∞

‖1I0ξ + 1I\I0bxne‖.

3. Modulus of monotonicity. Substitution spaces are Banach lattices,
so dealing with a direct sum we use properties related to the order in a
lattice E. Let us therefore recall some basic notation and terminology from
the Banach lattice theory. More information on this subject can be found
in the monographs [6] and [7].

Given a Banach lattice X, by X+ we denote the non-negative cone, i.e.
X+ = {x ∈ X : x ≥ 0}. Next, we put B(X+) = BX ∩ X+ and S(X+) =
SX ∩X+.

Recall that a Banach lattice X (or its norm) is strictly monotone if the
conditions 0 ≤ x ≤ y and x 6= y imply ‖x‖ < ‖y‖. A strengthened version of
strict monotonicity is called uniform monotonicity. It can be defined with
the help of the following modulus of monotonicity of a Banach lattice X:

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ ≤ 1, ‖y‖ ≥ ε}
where ε ∈ [0, 1]. It is easy to establish the following basic properties of this
modulus.
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• We have δm,X(0) = 0 ≤ δm,X(ε) ≤ ε.
• In the definition of δm,X(ε) the conditions ‖x‖ ≤ 1, ‖y‖ ≥ ε can be

replaced by ‖x‖ = 1, ‖y‖ = ε.
• The function δm,X is non-decreasing.
• If 0 ≤ u ≤ v and v 6= 0, then

δm,X

(
‖v − u‖
‖v‖

)
≤ 1−

∥∥∥∥ u

‖v‖

∥∥∥∥
and consequently,

(3.1) ‖v‖δm,X
(
‖v − u‖
‖v‖

)
≤ ‖v‖ − ‖u‖.

• A lattice X is strictly monotone if and only if δm,X(1) = 1.
A lattice X is uniformly monotone, if δm,X(ε) > 0 for every ε > 0. In
case X is finite dimensional, uniform monotonicity is equivalent to strict
monotonicity.

Another geometric property of Banach lattices is order uniform smooth-
ness introduced in [5]. Given a Banach lattice X, we put

ρm,X(t) = sup{‖x ∨ ty‖ − 1 : x, y ∈ B(X+)},
where t ≥ 0. A lattice X is order uniformly smooth if

lim
t→0

ρm,X(t)

t
= 0.

Order uniform smoothness is dual to uniform monotonicity. It is a con-
sequence of the following counterpart of the Lindenstrauss formula given in
Theorem 3(c) [5]:

(3.2) ρm,X∗(t) = sup{εt− δm,X(ε) : 0 ≤ ε ≤ 1}.
From (3.2) it follows in particular that ρm,X∗ is convex as a supremum of a
family of convex functions. Theorem 3(d) [5] contains a formula obtained
from (3.2) by interchanging ρ and δ. As a consequence, in Proposition 4
[5] it is claimed that δm,X is a convex functions. However, as we shall see
below, this is not true. Consequently, also the formula from Theorem 3(d)
[5] is false.

Example 1. To construct a lattice with a non-convex modulus of mono-
tonicity we consider the space X = R2 with the norm

‖x‖ = max

{
|x1|+

4

9
|x2|,

3

8
|x1|+ |x2|

}
,

where x = (x1, x2).
The unit sphere SX is the octagon with vertices (±1, 0), (0,±1),

(
±2

3 ,±
3
4

)
.

The positive part S(X+) of the unit sphere consists of two segments: s1 =[
(0, 1),

(
2
3 ,

3
4

)]
and s2 =

[(
2
3 ,

3
4

)
, (1, 0)

]
. It is therefore a graph of the func-

tion δ1(x1) = min{1− 3
8x1,

9
4(1−x1)} (see Figure 1). Interchanging the axes,



Properties of modulus of monotonicity and Opial property in direct sums 73

s1

s2

ε2
3

3
4

δ1(ε)

1

1

x1

x2

Figure 1

we can consider S(X+) as the graph of δ2(x2) = min{1− 4
9x2,

8
3(1− x2)}.

Clearly, δm,X(ε) = 1 − max ‖x − y‖, where the maximum is taken over
all points x = (x1, x2), y = (y1, y2) such that 0 ≤ y ≤ x, ‖y‖ = ε, ‖x‖ = 1.
It is easy to see that when y runs over εs2, the maximal value of ‖x− y‖ is
attained at y = (ε, 0) and x = (ε, δ1(ε)). For such points ‖x − y‖ = δ1(ε).
Analogously, when y runs over εs1, the maximal value of ‖x − y‖ equals
δ2(ε). It follows that δm,X(ε) = min{1 − δ1(ε), 1 − δ2(ε)} which is not a
convex function (see Figure 2).

3
4

1
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2
3

1

1

1
4

δm,X

Figure 2
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In the explicit form

δm,X(ε) =


3
8ε if ε ∈

[
0, 23
)
,

9
4ε−

5
4 if ε ∈

[
2
3 ,

9
13

)
,

4
9ε if ε ∈

[
9
13 ,

3
4

)
,

8
3ε−

5
3 if ε ∈

[
3
4 , 1
]
.

Since, in general, δm,X need not be convex, the question about its con-
tinuity appears. The answer is positive: δm,X is continuous in the interval
[0, 1). To see this it is enough to represent δm,X as an infimum of a family
of convex functions. For this purpose, given u, v ∈ S(X+) and ε ∈ [0, 1),
we put δu,v(ε) = 1 − λ, where λ ∈ [0, 1] is the unique number for which
‖εu+ λv‖ = 1. Then δu,v is a convex function on [0, 1) and

(3.3) δm,X(ε) = inf{δu,v(ε) : u, v ∈ S(X+)}

for every ε ∈ [0, 1).
Now from (3.3) we can easily conclude that

|δm,X(ε1)− δm,X(ε2)| ≤
1

1− a
|ε1 − ε2|

for all ε1, ε2 ∈ [0, a], a < 1, which in particular shows that δm,X is continuous
in [0, 1).

4. Opial property in direct sums. Recall that a Banach space X has
the non-strict Opial property if

lim inf
n→∞

‖xn‖ ≤ lim inf
n→∞

‖xn − x‖

for every weakly null sequence (xn) in X and every x ∈ X.
If

lim inf
n→∞

‖xn‖ < lim inf
n→∞

‖xn − x‖

for every weakly null sequence (xn) in X and every non-zero x ∈ X, we say
that X has the Opial property.

We show that these properties are preserved under passing to direct sums.

Theorem 1. Let E be a substitution space on I such that E0 = E, {Xi}i∈I
be a family of Banach spaces and

Y =

(∑
i∈I

Xi

)
E

.

(i) If all spaces Xi have the non-strict Opial property, then also Y has
the non-strict Opial property.

(ii) If E is uniformly monotone and all spaces Xi have the Opial prop-
erty, then also Y has the Opial property.
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Proof. Let (xn) be a weakly null sequence in Y and x ∈ Y . Since E = E0,
for every γ > 0 there is a finite set I0 ⊂ suppx such that

‖x− 1I0x‖ ≤ γ.

Passing to a subsequence, we can assume that the following limits exist:

lim
n→∞

‖xn‖, lim
n→∞

‖xn − x‖,

and
ξ(i) = lim

n→∞
‖xn(i)‖, ζ(i) = lim

n→∞
‖xn(i)− x(i)‖

for every i ∈ I0. Assuming that all spaces Xi have the non-strict Opial
property, we obtain the inequality ξ(i) ≤ ζ(i) for every i ∈ I0. Consequently,
the following inequality

un = 1I0ξ + 1I\I0bxne ≤ vn = 1I0ζ + 1I\I0bxne

holds in E. Using Remark 1, we therefore get

lim
n→∞

‖xn‖ = lim
n→∞

‖un‖E ≤ lim sup
n→∞

‖vn‖E

= lim sup
n→∞

‖xn − 1I0x‖

≤ lim
n→∞

‖xn − x‖+ ‖x− 1I0x‖

≤ lim
n→∞

‖xn − x‖+ γ.

Passing to the limit with γ → 0, we obtain the conclusion of part (i).
To prove part (ii) we assume that E is uniformly monotone and all spaces

Xi have the Opial property. Let (xn) be a weakly null sequence in Y and
x ∈ Y \ {0}. We put M = ‖x‖ + 2 supn∈N ‖xn‖ and fix i0 ∈ suppx. Then
x(i0) 6= 0. For every γ > 0 there is a finite set J0 ⊂ suppx such that
‖x− 1J0x‖ ≤ γ. Clearly, we also have ‖x− 1I0x‖ ≤ γ where I0 = J0 ∪ {i0}.

In what follows we keep the notation and assumptions from the first part
of the proof. Since (xn(i)) is a weakly null sequence in Xi, the inequality
ζ(i) ≥ ‖x(i)‖ holds for every i ∈ I0 and hence

‖vn‖E ≥ ‖1I0ζ‖E ≥ ‖1I0x‖ ≥ ‖x(i0)‖ > 0.

On the other hand,

‖vn‖E ≤ ‖1I0ζ‖E + sup
n∈N
‖1I\I0xn‖ ≤M.

Using (3.1), we therefore obtain

‖un‖E ≤ ‖vn‖E − δm,E
(
‖vn − un‖E
‖vn‖E

)
‖vn‖E

≤ ‖vn‖E − δm,E
(
‖1I0(ζ − ξ)‖E

M

)
‖x(i0)‖ ≤ ‖vn‖E − c
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where c = δm,E

(
ζ(i0)−ξ(i0)

M

)
‖x(i0)‖. By our assumption Xi0 has the Opial

property, so ζ(i0) > ξ(i0) and consequently, c > 0. Applying Remark 1, we
conclude that

lim
n→∞

‖xn‖ = lim
n→∞

‖un‖E ≤ lim sup
n→∞

‖vn‖E − c

≤ lim
n→∞

‖xn − x‖+ ‖x− 1I0x‖ − c

≤ lim
n→∞

‖xn − x‖+ γ − c.

Finally, passing to the limit with γ → 0, we get

lim
n→∞

‖xn‖ ≤ lim
n→∞

‖xn − x‖ − c < lim
n→∞

‖xn − x‖,

which gives us the conclusion of part (ii). �

Now we give examples showing that the assumptions imposed in Theo-
rem 1 can not be dropped. In these examples we treat sequence spaces as
direct sums of copies of the space R, so in this case Y = E. Trivially, R
with the absolute value norm has the Opial property.

As the first example we consider Y = E = l∞. Then, E0 = c0 6= E, so
our assumption on E is not satisfied. It is easy to see that l∞ does not have
the non-strict Opial property, i.e., the conclusion of Theorem 1 (i) does not
hold.

Our second example is the space Y = E = c0. In this case E0 = E, but
δm,E(ε) = 0 for every ε ∈ [0, 1], so the assumption from Theorem 1 (ii) is not
satisfied. Clearly, c0 does not have the Opial property, i.e., the conclusion
of Theorem 1 (ii) does not hold.
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