ANNALES
 UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA
 LUBLIN - POLONIA

ANDRZEJ WALENDZIAK
 On branchwise commutative pseudo-BCH algebras

Abstract

Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.

1. Introduction. In 1966, Imai and Iséki ($[9,13]$) introduced BCK and BCI algebras. In 1983, Hu and Li ([8]) defined BCH algebras. It is known that BCK and BCI algebras are contained in the class of BCH algebras. In [11, 12], Iorgulescu introduced many interesting generalizations of BCI and BCK algebras (see also [10]).

In 2001, Georgescu and Iorgulescu ([7]) defined pseudo-BCK algebras as an extension of BCK algebras. In 2008, Dudek and Jun ([1]) introduced pseudo-BCI algebras as a natural generalization of BCI algebras and of pseudo-BCK algebras. These algebras have also connections with other algebras of logic such as pseudo-MV algebras and pseudo-BL algebras defined by Georgescu and Iorgulescu in [5] and [6], respectively. Recently, Walendziak ([14]) introduced pseudo-BCH algebras as an extension of BCH algebras. In $[15,16]$, he studied ideals in such algebras.

[^0]In this paper we consider branches of pseudo- BCH algebras and introduce the concept of a branchwise commutative pseudo-BCH algebra. We show that every such algebra is a pseudo-BCI algebra. We also give some conditions equivalent to branchwise commutativity. Finally, we obtain a system of identities defining the class of branchwise commutative pseudoBCH algebras.
2. Preliminaries. We recall that an algebra $\mathfrak{X}=(X ; *, 0)$ of type $(2,0)$ is called a $B C H$ algebra if it satisfies the following axioms:
(BCH-1) $\quad x * x=0$;
(BCH-2) $(x * y) * z=(x * z) * y$;
(BCH-3) $\quad x * y=y * x=0 \Longrightarrow x=y$.
A BCH algebra \mathfrak{X} is said to be a BCI algebra if it satisfies the identity
(BCI) $\quad((x * y) *(x * z)) *(z * y)=0$.
A BCK algebra is a BCI algebra \mathfrak{X} satisfying the law $0 * x=0$.
Definition 2.1 ([1]). A pseudo-BCI algebra is a structure $\mathfrak{X}=(X ; \leqslant, *, \diamond, 0)$, where " \leqslant " is a binary relation on the set X, "*" and " $>$ " are binary operations on X and " 0 " is an element of X, satisfying the axioms:

```
\((\) pBCI-1) \(\quad(x * y) \diamond(x * z) \leqslant z * y, \quad(x \diamond y) *(x \diamond z) \leqslant z \diamond y ;\)
(pBCI-2) \(\quad x *(x \diamond y) \leqslant y, \quad x \diamond(x * y) \leqslant y ;\)
(pBCI-3) \(x \leqslant x\);
(pBCI-4) \(x \leqslant y, y \leqslant x \Longrightarrow x=y\);
(pBCI-5) \(\quad x \leqslant y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0\).
```

A pseudo-BCI algebra \mathfrak{X} is called a pseudo-BCK algebra if it satisfies the identities
(pBCK) $0 * x=0 \diamond x=0$.
Definition 2.2 ([14]). A pseudo-BCH algebra is an algebra $\mathfrak{X}=(X ; *, \diamond, 0)$ of type $(2,2,0)$ satisfying the axioms:
(pBCH-1) $\quad x * x=x \diamond x=0$;
(pBCH-2) $\quad(x * y) \diamond z=(x \diamond z) * y$;
(pBCH-3) $\quad x * y=y \diamond x=0 \Longrightarrow x=y$;
(pBCH-4) $\quad x * y=0 \Longleftrightarrow x \diamond y=0$.
We define a binary relation \leqslant on X by

$$
x \leqslant y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0 .
$$

Throughout this paper \mathfrak{X} will denote a pseudo-BCH algebra.

Example 2.3 ([14], Example 4.12). Let $X=\{0, a, b, c, d\}$. Define binary operations $*$ and \diamond on X by the following tables:

$*$	0	a	b	c	d
0	0	0	0	0	d
a	a	0	a	0	d
b	b	b	0	0	d
c	c	b	c	0	d
d	d	d	d	d	0

\diamond	0	a	b	c	d
0	0	0	0	0	d
a	a	0	a	0	d
b	b	b	0	0	d
c	c	c	a	0	d
d	d	d	d	d	0

Then $\mathfrak{X}=(X ; *, \diamond, 0)$ is a pseudo- BCH algebra.
Let $\mathfrak{X}=(X ; *, \diamond, 0)$ be a pseudo-BCH algebra satisfying (pBCK), and let $(G ; \cdot, 1)$ be a group. Denote $Y=G-\{1\}$ and suppose that $X \cap Y=\emptyset$. Define the binary operations * and \diamond on $X \cup Y$ by

$$
x * y= \begin{cases}x * y & \text { if } x, y \in X \tag{1}\\ x y^{-1} & \text { if } x, y \in Y \text { and } x \neq y \\ 0 & \text { if } x, y \in Y \text { and } x=y \\ y^{-1} & \text { if } x \in X, y \in Y \\ x & \text { if } x \in Y, y \in X\end{cases}
$$

and

$$
x \diamond y= \begin{cases}x \diamond y & \text { if } x, y \in X \tag{2}\\ y^{-1} x & \text { if } x, y \in Y \text { and } x \neq y \\ 0 & \text { if } x, y \in Y \text { and } x=y \\ y^{-1} & \text { if } x \in X, y \in Y \\ x & \text { if } x \in Y, y \in X\end{cases}
$$

Then $(X \cup Y ; *, \diamond, 0)$ is a pseudo-BCH algebra (see [15]).
Example 2.4. Consider the set $X=\{0, a, b, c\}$ with the operation $*$ defined by the following table:

$$
\begin{array}{c|cccc}
* & 0 & a & b & c \\
\hline 0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
b & b & a & 0 & a \\
c & c & a & a & 0
\end{array}
$$

By simple calculation we can get that $\mathfrak{X}=(X ; *, 0)$ is a BCH algebra. Let \mathfrak{G} be the group of all permutations of $\{1,2,3\}$. We have $G=\{\imath, d, e, f, g, h\}$, where $\imath=(1), d=(12), e=(13), f=(23), g=(123)$, and $h=(132)$. Applying (1) and (2), we obtain the following tables:

$*$	0	a	b	c	d	e	f	g	h
0	0	0	0	0	d	e	f	h	g
a	a	0	0	0	d	e	f	h	g
b	b	a	0	a	d	e	f	h	g
c	c	a	a	0	d	e	f	h	g
d	d	d	d	d	0	h	g	e	f
e	e	e	e	e	g	0	h	f	d
f	f	f	f	f	h	g	0	d	e
g	g	g	g	g	e	f	d	0	h
h	h	h	h	h	f	d	e	g	0

and

\diamond	0	a	b	c	d	e	f	g	h
0	0	0	0	0	d	e	f	h	g
a	a	0	0	0	d	e	f	h	g
b	b	a	0	a	d	e	f	h	g
c	c	a	a	0	d	e	f	h	g
d	d	d	d	d	0	g	h	f	e
e	e	e	e	e	h	0	g	d	f
f	f	f	f	f	g	h	0	e	d
g	g	g	g	g	f	d	e	0	h
h	h	h	h	h	e	f	d	g	0

Then $(\{0, a, b, c, d, e, f, g, h\} ; *, \diamond, 0)$ is a pseudo-BCH algebra.
From [14] it follows that in any pseudo-BCH algebra \mathfrak{X}, for all $x, y \in X$, we have:

```
(P1) \(x \leqslant x\),
(P2) \(x \leqslant y, y \leqslant x \Longrightarrow x=y\),
(P3) \(\quad x *(x \diamond y) \leqslant y \quad\) and \(\quad x \diamond(x * y) \leqslant y\),
(P4) \(x \leqslant 0 \Longrightarrow x=0\),
(P5) \(x * 0=x \diamond 0=x\),
(P6) \(0 * x=0 \diamond x\),
(P7) \(x \leqslant y \Longrightarrow 0 * x=0 \diamond y\),
(P8) \(0 *(x * y)=(0 * x) \diamond(0 * y)\),
(P9) \(0 *(x \diamond y)=(0 * x) *(0 * y)\).
```

Remark. By Theorem 3.4 of [14], a pseudo-BCH algebra is a pseudo-BCI algebra if and only if it satisfies the following implication:
(*)

$$
x \leqslant y \Longrightarrow(x * z \leqslant y * z, x \diamond z \leqslant y \diamond z)
$$

Proposition 2.5. For a pseudo- $B C H$ algebra \mathfrak{X} the following conditions are equivalent:
(a) \mathfrak{X} is a pseudo-BCI algebra,
(b) \mathfrak{X} satisfies axiom (pBCI-1),
(c) \mathfrak{X} satisfies condition $\left({ }^{*}\right)$.

Proof. The equivalence of (a) and (c) follows from the above remark.
$(\mathrm{a}) \Longrightarrow(\mathrm{b})$ is obvious.
(b) \Longrightarrow (a): By assumption, \mathfrak{X} satisfies (pBCI-1) and (pBCI-5). The axioms (pBCI-2)-(pBCI-4) follow from the properties (P1)-(P3).
3. Atoms and branches. An element a of \mathfrak{X} is called an atom if $x \leqslant a$ implies $x=a$ for all $x \in X$, that is, a is a minimal element of $(X ; \leqslant)$. Let us denote by $\mathrm{A}(\mathfrak{X})$ the set of all atoms of \mathfrak{X}. By (P4), $0 \in \mathrm{~A}(\mathfrak{X})$.

Proposition 3.1 ([14], Propositions 4.1 and 4.2). Let \mathfrak{X} be a pseudo-BCHalgebra and let $a \in X$. Then the following conditions are equivalent:
(i) a is an atom,
(ii) $x \diamond(x * a)=a \quad$ for all $x \in X$,
(iii) $0 \diamond(0 * a)=a$,
(iv) $x *(x \diamond a)=a \quad$ for all $x \in X$,
(v) $0 *(0 \diamond a)=a$.

Proposition 3.2 ([14], Proposition 4.3). Let \mathfrak{X} be a pseudo-BCH algebra and let $a \in X$. Then a is an atom if and only if there is an element $x \in X$ such that $a=0 * x$.

As a consequence of Proposition 3.2, we obtain
Corollary 3.3. For every $x \in X$, we have $0 * x \in \mathrm{~A}(\mathfrak{X})$.
For $x \in X$, set

$$
\bar{x}=0 \diamond(0 * x) .
$$

By (P6), $\bar{x}=0 *(0 * x)=0 \diamond(0 \diamond x)=0 *(0 \diamond x)$. Note that the map $\varphi(x)=0 *(0 * x)$ was introduced in [17] for BZ algebras (such algebras are a generalization of BCI algebras). Different properties of this map were used in many papers (for example, [18], [2] and [3]).
Proposition 3.4 ([14], Proposition 4.4). Let \mathfrak{X} be a pseudo-BCH algebra. For any $x, y \in X$ we have:
(i) $\overline{x * y}=\bar{x} * \bar{y}$,
(ii) $\overline{x \diamond y}=\bar{x} \diamond \bar{y}$,
(iii) $\overline{\bar{x}}=\bar{x}$.

For BZ algebras, (iii) was proved in [17]. In [14], the set $\{x \in X: x=\bar{x}\}$ is called the centre of \mathfrak{X} and it is denoted by Cen \mathfrak{X}. We conclude from Proposition 3.1 that Cen $\mathfrak{X}=\mathrm{A}(\mathfrak{X})$. Then $\mathrm{A}(\mathfrak{X})=\{\bar{x}: x \in X\}$. By Proposition 3.4, $\mathrm{A}(\mathfrak{X})$ is a subalgebra of \mathfrak{X}.

For any pseudo-BCH algebra \mathfrak{X}, we set

$$
\mathrm{K}(\mathfrak{X})=\{x \in X: 0 \leqslant x\} .
$$

From Corollary 4.19 of [14] it follows that $\mathrm{K}(\mathfrak{X})$ is a subalgebra of \mathfrak{X}.

Observe that

$$
\mathrm{A}(\mathfrak{X}) \cap \mathrm{K}(\mathfrak{X})=\{0\} .
$$

Indeed, $0 \in \mathrm{~A}(\mathfrak{X}) \cap \mathrm{K}(\mathfrak{X})$ and if $x \in \mathrm{~A}(\mathfrak{X}) \cap \mathrm{K}(\mathfrak{X})$, then $x=0 *(0 * x)=$ $0 * 0=0$.

Lemma 3.5. Let $x, y \in X$. If $x * y \in \mathrm{~K}(\mathfrak{X})$, then $y * x, x \diamond y, y \diamond x \in \mathrm{~K}(\mathfrak{X})$.
Proof. Let $x * y \in \mathrm{~K}(\mathfrak{X})$. Then $0 *(x * y)=0$. We deduce from (P8) that $(0 * x) \diamond(0 * y)=0$, and hence $0 * x \leqslant 0 * y$. Since $0 * x, 0 * y \in \mathrm{~A}(\mathfrak{X})$ (see Corollary 3.3), we have $0 * x=0 * y$. Consequently,

$$
0 *(y * x)=(0 * y) \diamond(0 * x)=(0 * y) \diamond(0 * y)=0
$$

that is, $0 *(y * x)=0$. Applying (P9), we also deduce that $0 *(x \diamond y)=0$ and $0 *(y \diamond x)=0$. Therefore, $y * x, x \diamond y, y \diamond x \in \mathrm{~K}(\mathfrak{X})$.

For any element a of a pseudo-BCH-algebra \mathfrak{X}, we define a subset $\mathrm{V}(a)$ of X as

$$
\mathrm{V}(a)=\{x \in X: a \leq x\}
$$

Note that $\mathrm{V}(a) \neq \emptyset$, because $a \leq a$ gives $a \in \mathrm{~V}(a)$. Furthermore, $\mathrm{V}(0)=$ $\mathrm{K}(\mathfrak{X})$. If $a \in \mathrm{~A}(\mathfrak{X})$, then the set $\mathrm{V}(a)$ is called a branch of \mathfrak{X} determined by element a.

Example 3.6. Let $\mathfrak{X}=(\{0, a, b, c, d\} ; *, \diamond, 0)$ be the pseudo-BCH algebra given in Example 2.3. It is easily seen that $\mathrm{A}(\mathfrak{X})=\{0, d\}$ and \mathfrak{X} has two branches $\mathrm{V}(0)=\{0, a, b, c\}$ and $\mathrm{V}(d)=\{d\}$.
Example 3.7. Let $\mathfrak{X}=(\{0, a, b, c, d, e, f, g, h\} ; *, \diamond, 0)$ be the pseudo-BCH algebra from Example 2.4. Obviously, $\mathrm{A}(\mathfrak{X})=\{0, d, e, f, g, h\}$. The algebra \mathfrak{X} has the following branches: $\mathrm{V}(0)=\{0, a, b, c\}, \mathrm{V}(d)=\{d\}, \mathrm{V}(e)=\{e\}$, $\mathrm{V}(f)=\{f\}, \mathrm{V}(g)=\{g\}, \mathrm{V}(h)=\{h\}$.
Proposition 3.8 ([14], Proposition 4.23). Let \mathfrak{X} be a pseudo-BCH algebra. Then:
(i) $\quad X=\bigcup\{\mathrm{V}(a): a \in \mathrm{~A}(\mathfrak{X})\}$.
(ii) if $a, b \in \mathrm{~A}(\mathfrak{X})$ and $a \neq b$, then $V(a) \cap \mathrm{V}(b)=\emptyset$.

Proposition 3.9. Two elements x, y are in the same branch of \mathfrak{X} if and only if $x * y \in \mathrm{~K}(\mathfrak{X})$ (or equivalently, $x \diamond y \in \mathrm{~K}(\mathfrak{X})$).

Proof. If x and y are in the same branch $\mathrm{V}(a)$, then $a \leqslant x$ and $a \leqslant y$. By (P6) and (P7), $0 * x=0 * a=0 * y$. Applying (P8), we obtain $0 *(x * y)=$ $(0 * x) \diamond(0 * y)=0$. Thus $0 \leqslant x * y$, that is, $x * y \in \mathrm{~K}(\mathfrak{X})$.

Conversely, suppose that $x * y \in \mathrm{~K}(\mathfrak{X})$ and $x \in \mathrm{~V}(a), y \in \mathrm{~V}(b)$ for some $a, b \in \mathrm{~A}(\mathfrak{X})$. Hence $a \leqslant x$ and $b \leqslant y$. Using (P6) and (P7), we get $0 * a=0 * x$ and $0 * b=0 * y$. Therefore, $a=\bar{x}$ and $b=\bar{y}$. From Proposition 3.4 we have $\overline{x * y}=\bar{x} * \bar{y}=a * b$ and $\overline{y \diamond x}=b \diamond a$. Since $x * y \in \mathrm{~K}(\mathfrak{X})$ and also $y \diamond x \in \mathrm{~K}(\mathfrak{X})$ (see Lemma 3.5) we conclude that $\overline{x * y}=\overline{y \diamond x}=0$. Therefore, $a * b=b \diamond a=0$ which gives $a=b$. So x and y are in the same branch.

Proposition 3.10. Comparable elements of \mathfrak{X} are in the same branch.
Proof. Let $x, y \in X$ and let $x \leqslant y$. Then $x * y=0 \in \mathrm{~K}(\mathfrak{X})$. By Proposition $3.9, x$ and y are in the same branch.

Proposition 3.11. If elements x and y are comparable, then $x * y, y * x$, $x \diamond y, y \diamond x \in \mathrm{~K}(\mathfrak{X})$.

Proof. From Propositions 3.10 and 3.9 we see that $x * y \in \mathrm{~K}(\mathfrak{X})$ and hence $y * x, x \diamond y, y \diamond x \in \mathrm{~K}(\mathfrak{X})$ by Lemma 3.5.
4. Branchwise commutativity. A pseudo- BCH algebra \mathfrak{X} is said to be commutative if for all $x, y \in X$, it satisfies the following identities:

$$
\begin{align*}
& x *(x \diamond y)=y *(y \diamond x), \tag{3}\\
& x \diamond(x * y)=y \diamond(y * x) . \tag{4}
\end{align*}
$$

Proposition 4.1. Every commutative pseudo- $B C H$ algebra is a pseudo$B C K$ algebra.

Proof. Let \mathfrak{X} be a commutative pseudo- BCH algebra. First observe that \mathfrak{X} satisfies (pBCK). Let $x \in X$. Applying (pBCH-1), (P5) and (P3), we obtain

$$
0=x * x=x *(x \diamond 0)=0 *(0 \diamond x) \leqslant x
$$

Then $0 * x=0 \diamond x=0$, that is, (pBCK) holds.
Now we show that \mathfrak{X} satisfies (pBCI-1). Let $x, y \in X$. We have

$$
\begin{aligned}
((x * y) \diamond(x * z)) *(z * y) & =((x \diamond(x * z)) * y) *(z * y) & & {[\mathrm{by}(\mathrm{pBCH}-2)] } \\
& =((z \diamond(z * x)) * y) *(z * y) & & {[\mathrm{by}(4)] } \\
& =((z * y) *(z * y)) \diamond(z * x) & & {[\mathrm{by}(\mathrm{pBCH}-2)] } \\
& =0 \diamond(z * x) & & {[\mathrm{by}(\mathrm{pBCH}-1)] } \\
& =0 & & {[\mathrm{by}(\mathrm{pBCK})] }
\end{aligned}
$$

and hence $(x * y) \diamond(x * z) \leqslant(z * y)$. Similarly, $(x \diamond y) *(x \diamond z) \leqslant z \diamond y$. Thus (pBCI-1) holds in \mathfrak{X}. We conclude from Proposition 2.5 that \mathfrak{X} is a pseudo-BCI algebra, and finally that it is a pseudo-BCK algebra.

Corollary 4.2. Commutative pseudo-BCH algebras coincide with commutative pseudo-BCK algebras.

In [4], G. Dymek introduced the notion of branchwise commutative pseu-do-BCI algebras. Following [4], we say that a pseudo-BCH algebra \mathfrak{X} is branchwise commutative if identities (3) and (4) hold for x and y belonging to the same branch. Clearly, any commutative pseudo-BCH algebra is branchwise commutative.

Remark. Note that the pseudo-BCH algebra from Example 2.4 is branchwise commutative but it is not commutative, since $d \diamond(d * a)=0 \neq d=$ $a \diamond(a * d)$.

The algebra given in Example 2.3 is not branchwise commutative. Indeed, $a *(a \diamond c)=a$ but $c *(c \diamond a)=0$.

Proposition 4.3 ([4], Theorem 3.2). A pseudo-BCI algebra ($X ; \leqslant, *, \diamond, 0$) is branchwise commutative if and only if for all $x, y \in X$, satisfies the following condition:
(BC)

$$
x \leqslant y \Longrightarrow x=y \diamond(y * x)=y *(y \diamond x) .
$$

Lemma 4.4. If \mathfrak{X} satisfies (BC), then \mathfrak{X} is a pseudo-BCI algebra.
Proof. Let $x, y \in X$ and $x \leqslant y$. We have

$$
\begin{aligned}
(x * z) \diamond(y * z) & =((y \diamond(y * x)) * z) *(y * z) & & {[\text { since } x=y \diamond(y * x)] } \\
& =((y * z) \diamond(y * x)) *(y * z) & & {[\text { by (pBCH-2)] }} \\
& =((y * z) *(y * z)) \diamond(y * x) & & {[\text { by (pBCH-2)] }} \\
& =0 \diamond(y * x) & & {[\text { by (pBCH-1)]. }}
\end{aligned}
$$

Since elements x and y are comparable, by Proposition 3.11, $y * x \in \mathrm{~K}(\mathfrak{X})$. Therefore, $0 \diamond(y * x)=0$, and hence $(x * z) \diamond(y * z)=0$. Consequently, $x * z \leqslant y * z$. Similarly, $x \diamond z \leqslant y \diamond z$. From Proposition 2.5 it follows that \mathfrak{X} is a pseudo-BCI algebra.

As a consequence of the above lemma and Proposition 4.3, we obtain:
Proposition 4.5. If a pseudo-BCH algebra satisfies (BC), then it is branchwise commutative.

Theorem 4.6. Any branchwise commutative pseudo-BCH algebra is a pseu-do-BCI algebra.
Proof. Let \mathfrak{X} be a brachwise commutative pseudo-BCH algebra. Let $x, y \in$ X and $x \leqslant y$. Then $x * y=0$. By Proposition 3.10, elements x and y are in the same branch. Since \mathfrak{X} is brachwise commutative, we obtain

$$
y \diamond(y * x)=x \diamond(x * y)=x \diamond 0=x .
$$

Similarly, we prove that $x=y *(y \diamond x)$. Thus condition (BC) holds in \mathfrak{X}. From Lemma 4.4 we conclude that \mathfrak{X} is a pseudo-BCI algebra.
Corollary 4.7. Branchwise commutative pseudo-BCH algebras coincide with branchwise commutative pseudo-BCI algebras.

As a consequence of Corollary 4.7, all results holding for branchwise commutative pseudo-BCI algebras also hold for brachwise commutative pseudoBCH algebras. We recall some of these results:

Proposition 4.8 ([4]). Let \mathfrak{X} be a branchwise commutative pseudo- $B C H /$ BCI algebra. Then:
(i) for all $x, y \in X$, we have

$$
\begin{align*}
& x \diamond(x * y)=y \diamond(y *(x \diamond(x * y))), \tag{5}\\
& x *(x \diamond y)=y *(y \diamond(x *(x \diamond y))) .
\end{align*}
$$

(ii) for all x and y belonging to the same branch,

$$
\begin{align*}
& x * y=x *(y \diamond(y * x)), \tag{7}\\
& x \diamond y=x \diamond(y *(y \diamond x)) .
\end{align*}
$$

(iii) each branch of \mathfrak{X} is a semilattice with respect to the operation \wedge defined by $x \wedge y=y \diamond(y * x)=y *(y \diamond x)$.

Theorem 4.9. Let \mathfrak{X} be a pseudo- $B C H$ algebra. The following are equivalent:
(a) \mathfrak{X} is branchwise commutative,
(b) \mathfrak{X} satisfies (BC),
(c) \mathfrak{X} satisfies (5) and (6),
(d) the identities (7) and (8) hold for all x and y belonging to the same branch of \mathfrak{X},
(e) each branch of \mathfrak{X} is a semilattice with respect to the operation \wedge defined by $x \wedge y=y \diamond(y * x)=y *(y \diamond x)$.

Proof. Let \mathfrak{X} be a branchwise commutative pseudo-BCH algebra. Then, by Theorem 4.6, \mathfrak{X} is a branchwise commutative pseudo-BCI algebra. From Propositions 4.3 and 4.8 we deduce that (a) implies (b), (c), (d) and (e).
$(\mathrm{c}) \Longrightarrow(\mathrm{b}):$ Let $x, y \in X$ and $x \leqslant y$. Then $x * y=0$. From (5) we see that $x=y \diamond(y * x)$. Similarly, from (6) we get $x=y *(y \diamond x)$. Therefore, (BC) holds in \mathfrak{X}.
$(\mathrm{d}) \Longrightarrow(\mathrm{b})$: Suppose that $x \leqslant y$. By Proposition 3.10, elements x and y are in the same branch. Putting $x * y=0$ in (7) and $x \diamond y=0$ in (8), we get $0=x *(y \diamond(y * x))=x \diamond(y *(y \diamond x))$. Hence $x \leqslant y \diamond(y * x)$ and $x \leqslant y *(y \diamond x)$. Applying (P3), we have $y \diamond(y * x) \leqslant x$ and $y *(y \diamond x) \leqslant x$. Thus $x=y \diamond(y * x)=y *(y \diamond x)$. Consequently, \mathfrak{X} satisfies (BC).
$(\mathrm{e}) \Longrightarrow(\mathrm{b})$: If $x \leqslant y$, then x, y are in the same branch and, by (e), $x=x \wedge y=y \diamond(y * x)=y *(y \diamond x)$. Therefore, we obtain (b).
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$ follows from Proposition 4.5.
In [4], Dymek obtained an axiomatization of branchwise commutative pseudo-BCI algebras. We give an alternative axiomatization of such algebras.

Theorem 4.10. An algebra $\mathfrak{X}=(X ; *, \diamond, 0)$ of type $(2,2,0)$ is a branchwise commutative pseudo- $B C H$ algebra if and only if it satisfies the following identities:

```
(A1) \(\quad x * 0=x=x \diamond 0\),
(A2) \(\quad(x * y) \diamond z=(x \diamond z) * y\),
(A3) \((x \diamond(x * y)) \diamond y=0=(x *(x \diamond y)) * y\),
(A4) \(x \diamond(x * y)=y \diamond(y *(x \diamond(x * y)))\),
(A5) \(\quad x *(x \diamond y)=y *(y \diamond(x *(x \diamond y)))\).
```

Proof. If \mathfrak{X} is a branchwise commutative pseudo- BCH algebra, then, obviously, the identities (A1)-(A5) hold for all $x, y \in X$. Conversely, suppose that \mathfrak{X} satisfies (A1)-(A5). Putting $y=0$ in (A3) and applying (A1), we obtain ($\mathrm{pBCH}-1$). To prove $(\mathrm{pBCH}-3)$, let $x * y=y * x=0$. Using (A1) and (A4), we get

$$
x=x \diamond 0=x \diamond(x * y)=y \diamond(y *(x \diamond(x * y)))=y \diamond(y * x)=y \diamond 0=y
$$

that is, $(\mathrm{pBCH}-3)$ holds in \mathfrak{X}. We now prove that

$$
x * y=0 \Longleftrightarrow x \diamond y=0
$$

If $x * y=0$, then $(x \diamond 0) \diamond y=0$ by (A3), and hence $x \diamond y=0$. Thus $x * y=0$ implies $x \diamond y=0$, and analogously, $x \diamond y=0$ entails $x * y=0$. Therefore \mathfrak{X} satisfies ($\mathrm{pBCH}-4$), and finally, it is a pseudo- BCH algebra. Moreover, \mathfrak{X} is branchwise commutative by Theorem 4.9.

Remark. From Theorem 3.11 of [4] we see that the variety of all branchwise commutative pseudo- $\mathrm{BCH} / \mathrm{BCI}$ algebras is weakly regular.

References

[1] Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187-190.
[2] Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387-404.
[3] Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCCalgebras, Algebra Colloquium 18 (Special) (2011), 899-914.
[4] Dymek, G., On two classes of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl. 31 (2011), 217-230.
[5] Georgescu, G., Iorgulescu, A., Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May 1999, 961-968.
[6] Georgescu, G., Iorgulescu, A., Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
[7] Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
[8] Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[9] Imai, Y., Iséki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22.
[10] Iorgulescu A., Algebras of Logic as BCK-Algebras, Bucharest 2008.
[11] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part I, J. Mult.-Valued Logic Soft Comput. 27 (2016), 353-406.
[12] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407-456.
[13] Iséki, K., An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29.
[14] Walendziak, A., Pseudo-BCH-algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), 1-15.
[15] Walendziak, A., On ideals of pseudo-BCH-algebras, Ann. Univ. Mariae CurieSkłodowska Sect. A 70 (2016), 81-91.
[16] Walendziak, A., Strong ideals and horizontal ideals in pseudo-BCH-algebras, Ann. Univ. Paedagog. Crac. Stud. Math. 15 (2016), 15-25.
[17] Zhang, X., Ye, R., BZ-algebra and group, J. of Mathematical and Physical Sciences 29 (1995), 223-233.
[18] Zhang, X., Wang, Y., Dudek, W. A., T-ideals in BZ-algebras and T-type BZ-algebras, Indian J. Pure Appl. Math. 34 (2003), 1559-1570.

Andrzej Walendziak
Institute of Mathematics and Physics
Faculty of Science
Siedlce University of Natural Sciences and Humanities
3 Maja 54, PL-08110 Siedlce
Poland
e-mail: walent@interia.pl
Received December 1, 2016

[^0]: 2010 Mathematics Subject Classification. 03G25, 06F35.
 Key words and phrases. (Pseudo-)BCK/BCI/BCH-algebra, atom, branch, branchwise commutativity.

