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commutative pseudo-BCH algebras

Abstract. Basic properties of branches of pseudo-BCH algebras are de-
scribed. Next, the concept of a branchwise commutative pseudo-BCH algebra
is introduced. Some conditions equivalent to branchwise commutativity are
given. It is proved that every branchwise commutative pseudo-BCH algebra
is a pseudo-BCI algebra.

1. Introduction. In 1966, Imai and Iséki ([9, 13]) introduced BCK and
BCI algebras. In 1983, Hu and Li ([8]) defined BCH algebras. It is known
that BCK and BCI algebras are contained in the class of BCH algebras. In
[11, 12], Iorgulescu introduced many interesting generalizations of BCI and
BCK algebras (see also [10]).

In 2001, Georgescu and Iorgulescu ([7]) defined pseudo-BCK algebras as
an extension of BCK algebras. In 2008, Dudek and Jun ([1]) introduced
pseudo-BCI algebras as a natural generalization of BCI algebras and of
pseudo-BCK algebras. These algebras have also connections with other
algebras of logic such as pseudo-MV algebras and pseudo-BL algebras de-
fined by Georgescu and Iorgulescu in [5] and [6], respectively. Recently,
Walendziak ([14]) introduced pseudo-BCH algebras as an extension of BCH
algebras. In [15, 16], he studied ideals in such algebras.
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In this paper we consider branches of pseudo-BCH algebras and intro-
duce the concept of a branchwise commutative pseudo-BCH algebra. We
show that every such algebra is a pseudo-BCI algebra. We also give some
conditions equivalent to branchwise commutativity. Finally, we obtain a
system of identities defining the class of branchwise commutative pseudo-
BCH algebras.

2. Preliminaries. We recall that an algebra X = (X; ∗, 0) of type (2, 0) is
called a BCH algebra if it satisfies the following axioms:

(BCH-1) x ∗ x = 0;
(BCH-2) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(BCH-3) x ∗ y = y ∗ x = 0 =⇒ x = y.

A BCH algebra X is said to be a BCI algebra if it satisfies the identity

(BCI) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.

A BCK algebra is a BCI algebra X satisfying the law 0 ∗ x = 0.

Definition 2.1 ([1]). A pseudo-BCI algebra is a structure X=(X;6, ∗, �, 0),
where “6” is a binary relation on the set X, “∗” and “�” are binary opera-
tions on X and “0” is an element of X, satisfying the axioms:

(pBCI-1) (x ∗ y) � (x ∗ z) 6 z ∗ y, (x � y) ∗ (x � z) 6 z � y;
(pBCI-2) x ∗ (x � y) 6 y, x � (x ∗ y) 6 y;
(pBCI-3) x 6 x;
(pBCI-4) x 6 y, y 6 x =⇒ x = y;
(pBCI-5) x 6 y ⇐⇒ x ∗ y = 0⇐⇒ x � y = 0.

A pseudo-BCI algebra X is called a pseudo-BCK algebra if it satisfies the
identities

(pBCK) 0 ∗ x = 0 � x = 0.

Definition 2.2 ([14]). A pseudo-BCH algebra is an algebra X = (X; ∗, �, 0)
of type (2, 2, 0) satisfying the axioms:

(pBCH-1) x ∗ x = x � x = 0;
(pBCH-2) (x ∗ y) � z = (x � z) ∗ y;
(pBCH-3) x ∗ y = y � x = 0 =⇒ x = y;
(pBCH-4) x ∗ y = 0⇐⇒ x � y = 0.

We define a binary relation 6 on X by

x 6 y ⇐⇒ x ∗ y = 0⇐⇒ x � y = 0.

Throughout this paper X will denote a pseudo-BCH algebra.
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Example 2.3 ([14], Example 4.12). Let X = {0, a, b, c, d}. Define binary
operations ∗ and � on X by the following tables:

∗ 0 a b c d
0 0 0 0 0 d
a a 0 a 0 d
b b b 0 0 d
c c b c 0 d
d d d d d 0

� 0 a b c d
0 0 0 0 0 d
a a 0 a 0 d
b b b 0 0 d
c c c a 0 d
d d d d d 0

Then X = (X; ∗, �, 0) is a pseudo-BCH algebra.

Let X = (X; ∗, �, 0) be a pseudo-BCH algebra satisfying (pBCK), and let
(G; ·, 1) be a group. Denote Y = G − {1} and suppose that X ∩ Y = ∅.
Define the binary operations ∗ and � on X ∪ Y by

(1) x ∗ y =


x ∗ y if x, y ∈ X
xy−1 if x, y ∈ Y and x 6= y
0 if x, y ∈ Y and x = y
y−1 if x ∈ X, y ∈ Y
x if x ∈ Y , y ∈ X

and

(2) x � y =


x � y if x, y ∈ X
y−1x if x, y ∈ Y and x 6= y
0 if x, y ∈ Y and x = y
y−1 if x ∈ X, y ∈ Y
x if x ∈ Y , y ∈ X.

Then (X ∪ Y ; ∗, �, 0) is a pseudo-BCH algebra (see [15]).

Example 2.4. Consider the set X = {0, a, b, c} with the operation ∗ defined
by the following table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b a 0 a
c c a a 0

By simple calculation we can get that X = (X; ∗, 0) is a BCH algebra. Let G
be the group of all permutations of {1, 2, 3}. We have G = {ı, d, e, f, g, h},
where ı = (1), d = (12), e = (13), f = (23), g = (123), and h = (132).
Applying (1) and (2), we obtain the following tables:
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∗ 0 a b c d e f g h
0 0 0 0 0 d e f h g
a a 0 0 0 d e f h g
b b a 0 a d e f h g
c c a a 0 d e f h g
d d d d d 0 h g e f
e e e e e g 0 h f d
f f f f f h g 0 d e
g g g g g e f d 0 h
h h h h h f d e g 0

and
� 0 a b c d e f g h
0 0 0 0 0 d e f h g
a a 0 0 0 d e f h g
b b a 0 a d e f h g
c c a a 0 d e f h g
d d d d d 0 g h f e
e e e e e h 0 g d f
f f f f f g h 0 e d
g g g g g f d e 0 h
h h h h h e f d g 0

Then ({0, a, b, c, d, e, f, g, h}; ∗, �, 0) is a pseudo-BCH algebra.

From [14] it follows that in any pseudo-BCH algebra X, for all x, y ∈ X,
we have:
(P1) x 6 x,
(P2) x 6 y, y 6 x =⇒ x = y,
(P3) x ∗ (x � y) 6 y and x � (x ∗ y) 6 y,
(P4) x 6 0 =⇒ x = 0,
(P5) x ∗ 0 = x � 0 = x,
(P6) 0 ∗ x = 0 � x,
(P7) x 6 y =⇒ 0 ∗ x = 0 � y,
(P8) 0 ∗ (x ∗ y) = (0 ∗ x) � (0 ∗ y),
(P9) 0 ∗ (x � y) = (0 ∗ x) ∗ (0 ∗ y).

Remark. By Theorem 3.4 of [14], a pseudo-BCH algebra is a pseudo-BCI
algebra if and only if it satisfies the following implication:

(*) x 6 y =⇒ (x ∗ z 6 y ∗ z, x � z 6 y � z).

Proposition 2.5. For a pseudo-BCH algebra X the following conditions
are equivalent:
(a) X is a pseudo-BCI algebra,
(b) X satisfies axiom (pBCI-1),
(c) X satisfies condition (*).
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Proof. The equivalence of (a) and (c) follows from the above remark.
(a) =⇒ (b) is obvious.
(b) =⇒ (a): By assumption, X satisfies (pBCI-1) and (pBCI-5). The

axioms (pBCI-2)–(pBCI-4) follow from the properties (P1)–(P3). �

3. Atoms and branches. An element a of X is called an atom if x 6 a
implies x = a for all x ∈ X, that is, a is a minimal element of (X;6). Let
us denote by A(X) the set of all atoms of X. By (P4), 0 ∈ A(X).

Proposition 3.1 ([14], Propositions 4.1 and 4.2). Let X be a pseudo-BCH-
algebra and let a ∈ X. Then the following conditions are equivalent:

(i) a is an atom,
(ii) x � (x ∗ a) = a for all x ∈ X,
(iii) 0 � (0 ∗ a) = a,
(iv) x ∗ (x � a) = a for all x ∈ X,
(v) 0 ∗ (0 � a) = a.

Proposition 3.2 ([14], Proposition 4.3). Let X be a pseudo-BCH algebra
and let a ∈ X. Then a is an atom if and only if there is an element x ∈ X
such that a = 0 ∗ x.

As a consequence of Proposition 3.2, we obtain

Corollary 3.3. For every x ∈ X, we have 0 ∗ x ∈ A(X).

For x ∈ X, set
x = 0 � (0 ∗ x).

By (P6), x = 0 ∗ (0 ∗ x) = 0 � (0 � x) = 0 ∗ (0 � x). Note that the map
ϕ(x) = 0∗ (0∗x) was introduced in [17] for BZ algebras (such algebras are a
generalization of BCI algebras). Different properties of this map were used
in many papers (for example, [18], [2] and [3]).

Proposition 3.4 ([14], Proposition 4.4). Let X be a pseudo-BCH algebra.
For any x, y ∈ X we have:

(i) x ∗ y = x ∗ y,
(ii) x � y = x � y,
(iii) x = x.

For BZ algebras, (iii) was proved in [17]. In [14], the set {x ∈ X : x = x}
is called the centre of X and it is denoted by CenX. We conclude from
Proposition 3.1 that CenX = A(X). Then A(X) = {x : x ∈ X}. By
Proposition 3.4, A(X) is a subalgebra of X.

For any pseudo-BCH algebra X, we set

K(X) = {x ∈ X : 0 6 x}.

From Corollary 4.19 of [14] it follows that K(X) is a subalgebra of X.
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Observe that
A(X) ∩K(X) = {0}.

Indeed, 0 ∈ A(X) ∩ K(X) and if x ∈ A(X) ∩ K(X), then x = 0 ∗ (0 ∗ x) =
0 ∗ 0 = 0.

Lemma 3.5. Let x, y ∈ X. If x ∗ y ∈ K(X), then y ∗ x, x � y, y � x ∈ K(X).

Proof. Let x ∗ y ∈ K(X). Then 0 ∗ (x ∗ y) = 0. We deduce from (P8) that
(0 ∗ x) � (0 ∗ y) = 0, and hence 0 ∗ x 6 0 ∗ y. Since 0 ∗ x, 0 ∗ y ∈ A(X) (see
Corollary 3.3), we have 0 ∗ x = 0 ∗ y. Consequently,

0 ∗ (y ∗ x) = (0 ∗ y) � (0 ∗ x) = (0 ∗ y) � (0 ∗ y) = 0,

that is, 0 ∗ (y ∗ x) = 0. Applying (P9), we also deduce that 0 ∗ (x � y) = 0
and 0 ∗ (y � x) = 0. Therefore, y ∗ x, x � y, y � x ∈ K(X). �

For any element a of a pseudo-BCH-algebra X, we define a subset V(a)
of X as

V(a) = {x ∈ X : a ≤ x}.
Note that V(a) 6= ∅, because a ≤ a gives a ∈ V(a). Furthermore, V(0) =
K(X). If a ∈ A(X), then the set V(a) is called a branch of X determined by
element a.

Example 3.6. Let X = ({0, a, b, c, d}; ∗, �, 0) be the pseudo-BCH algebra
given in Example 2.3. It is easily seen that A(X) = {0, d} and X has two
branches V(0) = {0, a, b, c} and V(d) = {d}.
Example 3.7. Let X = ({0, a, b, c, d, e, f, g, h}; ∗, �, 0) be the pseudo-BCH
algebra from Example 2.4. Obviously, A(X) = {0, d, e, f, g, h}. The algebra
X has the following branches: V(0) = {0, a, b, c}, V(d) = {d}, V(e) = {e},
V(f) = {f}, V(g) = {g}, V(h) = {h}.
Proposition 3.8 ([14], Proposition 4.23). Let X be a pseudo-BCH algebra.
Then:

(i) X =
⋃
{V(a) : a ∈ A(X)}.

(ii) if a, b ∈ A(X) and a 6= b, then V(a) ∩V(b) = ∅.
Proposition 3.9. Two elements x, y are in the same branch of X if and
only if x ∗ y ∈ K(X) (or equivalently, x � y ∈ K(X)).

Proof. If x and y are in the same branch V(a), then a 6 x and a 6 y. By
(P6) and (P7), 0 ∗ x = 0 ∗ a = 0 ∗ y. Applying (P8), we obtain 0 ∗ (x ∗ y) =
(0 ∗ x) � (0 ∗ y) = 0. Thus 0 6 x ∗ y, that is, x ∗ y ∈ K(X).

Conversely, suppose that x ∗ y ∈ K(X) and x ∈ V(a), y ∈ V(b) for some
a, b ∈ A(X). Hence a 6 x and b 6 y. Using (P6) and (P7), we get 0∗a = 0∗x
and 0 ∗ b = 0 ∗ y. Therefore, a = x and b = y. From Proposition 3.4 we
have x ∗ y = x ∗ y = a ∗ b and y � x = b � a. Since x ∗ y ∈ K(X) and also
y�x ∈ K(X) (see Lemma 3.5) we conclude that x ∗ y = y � x = 0. Therefore,
a ∗ b = b � a = 0 which gives a = b. So x and y are in the same branch. �
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Proposition 3.10. Comparable elements of X are in the same branch.

Proof. Let x, y ∈ X and let x 6 y. Then x ∗ y = 0 ∈ K(X). By Proposi-
tion 3.9, x and y are in the same branch. �

Proposition 3.11. If elements x and y are comparable, then x ∗ y, y ∗ x,
x � y, y � x ∈ K(X).

Proof. From Propositions 3.10 and 3.9 we see that x ∗ y ∈ K(X) and hence
y ∗ x, x � y, y � x ∈ K(X) by Lemma 3.5. �

4. Branchwise commutativity. A pseudo-BCH algebra X is said to be
commutative if for all x, y ∈ X, it satisfies the following identities:

x ∗ (x � y) = y ∗ (y � x),(3)

x � (x ∗ y) = y � (y ∗ x).(4)

Proposition 4.1. Every commutative pseudo-BCH algebra is a pseudo-
BCK algebra.

Proof. Let X be a commutative pseudo-BCH algebra. First observe that
X satisfies (pBCK). Let x ∈ X. Applying (pBCH-1), (P5) and (P3), we
obtain

0 = x ∗ x = x ∗ (x � 0) = 0 ∗ (0 � x) 6 x.

Then 0 ∗ x = 0 � x = 0, that is, (pBCK) holds.
Now we show that X satisfies (pBCI-1). Let x, y ∈ X. We have

((x ∗ y) � (x ∗ z)) ∗ (z ∗ y) = ((x � (x ∗ z)) ∗ y) ∗ (z ∗ y) [by (pBCH-2)]

= ((z � (z ∗ x)) ∗ y) ∗ (z ∗ y) [by (4)]

= ((z ∗ y) ∗ (z ∗ y)) � (z ∗ x) [by (pBCH-2)]

= 0 � (z ∗ x) [by (pBCH-1)]

= 0 [by (pBCK)]

and hence (x ∗ y) � (x ∗ z) 6 (z ∗ y). Similarly, (x � y) ∗ (x � z) 6 z � y.
Thus (pBCI-1) holds in X. We conclude from Proposition 2.5 that X is a
pseudo-BCI algebra, and finally that it is a pseudo-BCK algebra. �

Corollary 4.2. Commutative pseudo-BCH algebras coincide with commu-
tative pseudo-BCK algebras.

In [4], G. Dymek introduced the notion of branchwise commutative pseu-
do-BCI algebras. Following [4], we say that a pseudo-BCH algebra X is
branchwise commutative if identities (3) and (4) hold for x and y belong-
ing to the same branch. Clearly, any commutative pseudo-BCH algebra is
branchwise commutative.
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Remark. Note that the pseudo-BCH algebra from Example 2.4 is branch-
wise commutative but it is not commutative, since d � (d ∗ a) = 0 6= d =
a � (a ∗ d).

The algebra given in Example 2.3 is not branchwise commutative. Indeed,
a ∗ (a � c) = a but c ∗ (c � a) = 0.

Proposition 4.3 ([4], Theorem 3.2). A pseudo-BCI algebra (X;6, ∗, �, 0) is
branchwise commutative if and only if for all x, y ∈ X, satisfies the following
condition:
(BC) x 6 y =⇒ x = y � (y ∗ x) = y ∗ (y � x).

Lemma 4.4. If X satisfies (BC), then X is a pseudo-BCI algebra.

Proof. Let x, y ∈ X and x 6 y. We have

(x ∗ z) � (y ∗ z) = ((y � (y ∗ x)) ∗ z) ∗ (y ∗ z) [since x = y � (y ∗ x)]
= ((y ∗ z) � (y ∗ x)) ∗ (y ∗ z) [by (pBCH-2)]

= ((y ∗ z) ∗ (y ∗ z)) � (y ∗ x) [by (pBCH-2)]

= 0 � (y ∗ x) [by (pBCH-1)].

Since elements x and y are comparable, by Proposition 3.11, y ∗ x ∈ K(X).
Therefore, 0 � (y ∗ x) = 0, and hence (x ∗ z) � (y ∗ z) = 0. Consequently,
x ∗ z 6 y ∗ z. Similarly, x � z 6 y � z. From Proposition 2.5 it follows that
X is a pseudo-BCI algebra. �

As a consequence of the above lemma and Proposition 4.3, we obtain:

Proposition 4.5. If a pseudo-BCH algebra satisfies (BC), then it is branch-
wise commutative.

Theorem 4.6. Any branchwise commutative pseudo-BCH algebra is a pseu-
do-BCI algebra.

Proof. Let X be a brachwise commutative pseudo-BCH algebra. Let x, y ∈
X and x 6 y. Then x ∗ y = 0. By Proposition 3.10, elements x and y are
in the same branch. Since X is brachwise commutative, we obtain

y � (y ∗ x) = x � (x ∗ y) = x � 0 = x.

Similarly, we prove that x = y ∗ (y � x). Thus condition (BC) holds in X.
From Lemma 4.4 we conclude that X is a pseudo-BCI algebra. �

Corollary 4.7. Branchwise commutative pseudo-BCH algebras coincide
with branchwise commutative pseudo-BCI algebras.

As a consequence of Corollary 4.7, all results holding for branchwise com-
mutative pseudo-BCI algebras also hold for brachwise commutative pseudo-
BCH algebras.We recall some of these results:
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Proposition 4.8 ([4]). Let X be a branchwise commutative pseudo-BCH/
BCI algebra. Then:

(i) for all x, y ∈ X, we have

(5) x � (x ∗ y) = y � (y ∗ (x � (x ∗ y))),

(6) x ∗ (x � y) = y ∗ (y � (x ∗ (x � y))).

(ii) for all x and y belonging to the same branch,

(7) x ∗ y = x ∗ (y � (y ∗ x)),

(8) x � y = x � (y ∗ (y � x)).

(iii) each branch of X is a semilattice with respect to the operation ∧
defined by x ∧ y = y � (y ∗ x) = y ∗ (y � x).

Theorem 4.9. Let X be a pseudo-BCH algebra. The following are equiva-
lent:

(a) X is branchwise commutative,
(b) X satisfies (BC),
(c) X satisfies (5) and (6),
(d) the identities (7) and (8) hold for all x and y belonging to the same

branch of X,
(e) each branch of X is a semilattice with respect to the operation ∧ defined

by x ∧ y = y � (y ∗ x) = y ∗ (y � x).

Proof. Let X be a branchwise commutative pseudo-BCH algebra. Then,
by Theorem 4.6, X is a branchwise commutative pseudo-BCI algebra. From
Propositions 4.3 and 4.8 we deduce that (a) implies (b), (c), (d) and (e).

(c) =⇒ (b): Let x, y ∈ X and x 6 y. Then x ∗ y = 0. From (5) we see
that x = y � (y ∗ x). Similarly, from (6) we get x = y ∗ (y � x). Therefore,
(BC) holds in X.

(d) =⇒ (b): Suppose that x 6 y. By Proposition 3.10, elements x and
y are in the same branch. Putting x ∗ y = 0 in (7) and x � y = 0 in (8),
we get 0 = x ∗ (y � (y ∗ x)) = x � (y ∗ (y � x)). Hence x 6 y � (y ∗ x) and
x 6 y ∗ (y � x). Applying (P3), we have y � (y ∗ x) 6 x and y ∗ (y � x) 6 x.
Thus x = y � (y ∗ x) = y ∗ (y � x). Consequently, X satisfies (BC).

(e) =⇒ (b): If x 6 y, then x, y are in the same branch and, by (e),
x = x ∧ y = y � (y ∗ x) = y ∗ (y � x). Therefore, we obtain (b).

(b) =⇒ (a) follows from Proposition 4.5. �

In [4], Dymek obtained an axiomatization of branchwise commutative
pseudo-BCI algebras. We give an alternative axiomatization of such alge-
bras.
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Theorem 4.10. An algebra X = (X; ∗, �, 0) of type (2, 2, 0) is a branchwise
commutative pseudo-BCH algebra if and only if it satisfies the following
identities:
(A1) x ∗ 0 = x = x � 0,
(A2) (x ∗ y) � z = (x � z) ∗ y,
(A3) (x � (x ∗ y)) � y = 0 = (x ∗ (x � y)) ∗ y,
(A4) x � (x ∗ y) = y � (y ∗ (x � (x ∗ y))),
(A5) x ∗ (x � y) = y ∗ (y � (x ∗ (x � y))).

Proof. If X is a branchwise commutative pseudo-BCH algebra, then, obvi-
ously, the identities (A1)–(A5) hold for all x, y ∈ X. Conversely, suppose
that X satisfies (A1)–(A5). Putting y = 0 in (A3) and applying (A1), we
obtain (pBCH-1). To prove (pBCH-3), let x ∗ y = y ∗ x = 0. Using (A1)
and (A4), we get

x = x � 0 = x � (x ∗ y) = y � (y ∗ (x � (x ∗ y))) = y � (y ∗ x) = y � 0 = y,

that is, (pBCH-3) holds in X. We now prove that

x ∗ y = 0⇐⇒ x � y = 0.

If x∗y = 0, then (x�0)�y = 0 by (A3), and hence x�y = 0. Thus x∗y = 0
implies x � y = 0, and analogously, x � y = 0 entails x ∗ y = 0. Therefore X
satisfies (pBCH-4), and finally, it is a pseudo-BCH algebra. Moreover, X is
branchwise commutative by Theorem 4.9. �

Remark. From Theorem 3.11 of [4] we see that the variety of all branchwise
commutative pseudo-BCH/BCI algebras is weakly regular.
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