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On almost polynomial structures
from classical linear connections

Abstract. Let Mfm be the category of m-dimensional manifolds and lo-
cal diffeomorphisms and let T be the tangent functor on Mfm. Let V be
the category of real vector spaces and linear maps and let Vm be the cate-
gory of m-dimensional real vector spaces and linear isomorphisms. Let w be
a polynomial in one variable with real coefficients. We describe all regular
covariant functors F : Vm → V admitting Mfm-natural operators P̃ trans-
forming classical linear connections ∇ on m-dimensional manifolds M into
almost polynomial w-structures P̃ (∇) on F (T )M =

⋃
x∈M F (TxM).

1. Introduction. All manifolds considered in the paper are assumed to
be Hausdorff, finite dimensional, second countable, without boundaries and
smooth (i.e. of class C∞). Maps between manifolds are assumed to be of
class C∞.

The category of m-dimensional manifolds and local diffeomorphisms is
denoted byMfm. The category of vector bundles and vector bundle homo-
morphisms between them is denoted by VB. The category of m-dimensional
real vector spaces and linear isomorphisms is denoted by Vm. The category
of finite dimensional real vector spaces and linear maps is denoted by V.

Let w be a polynomial in one variable. A tensor field P of type (1, 1) on
a manifold N is called an almost polynomial w-structure on N if w(P ) = 0
(i.e. w(P|x) = 0 for any x ∈ N).
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In the present paper we solve the following problem.

Problem 1. Let w be a polynomial in one variable with real coefficients.
We characterize all covariant regular functors F : Vm → V admittingMfm-
natural operators P̃ transforming classical linear connections ∇ on m-mani-
folds M into almost polynomial w-structures P̃ (∇) on
F (T )M =

⋃
x∈M F (TxM), where T :Mfm → VB denotes the tangent func-

tor on the category Mfm.

If w(t) = t2 + 1, then we reobtain the result from [5] on the character-
ization of covariant regular functors F : Vm → V admitting Mfm-natural
operators J̃ transforming classical linear connections ∇ on m-manifolds M
into almost complex structures J̃(∇) on F (T )M .

If w(t) = t2−1, then we characterize covariant regular functors F : Vm →
V admittingMfm-natural operators J̃ transforming classical linear connec-
tions ∇ on m-manifolds M into almost para-complex structures J̃(∇) on
F (T )M .

2. Basic definitions. The concept of natural bundles and natural opera-
tors can be found in the fundamental monograph [3].

Let F : Vm → V be a covariant regular functor. The regularity of the func-
tor F means that F transforms smoothly parametrized families of isomor-
phisms into smoothly parametrized families of linear maps. Let T :Mfm →
VB be the tangent functor sending any m-dimensional manifold M into the
tangent bundle TM of M and anyMfm-map ϕ : M1 →M2 into the tangent
map Tϕ : TM1 → TM2. Applying F to fibers TxM of TM , one can define
a natural vector bundle F (T ) of order 1 over m-manifolds by

F (T )M =
⋃
x∈M

F (TxM) and F (T )ϕ =
⋃
x∈M

F (Txϕ) : F (T )M1 → F (T )M2

for any m-manifold M and any Mfm-map ϕ : M1 → M2 between m-
manifolds M1 and M2. In particular, if F is the identity functor, then
F (T ) = T .

A classical linear connection on an m-manifold M is an R-bilinear map
∇ : X(M)× X(M)→ X(M) such that:

(1) ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y
(2) ∇X(Y1 + Y2) = ∇XY1 +∇XY2
(3) ∇X(fY ) = Xf · Y + f · ∇XY ,

where X, X1, X2, Y , Y1, Y2 ∈ X(M) are any vector fields on M and
f, f1, f2 : M → R are any smooth functions on M . Equivalently, a classical
linear connection on M is a right invariant decomposition TLM = H∇ ⊕
V LM of the tangent bundle TLM of LM , where LM is the principal bundle
with the structural group GL(m) of linear frames over M and V LM is the
vertical bundle of LM , see [2].
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Let w(t) = tm + am−1t
m−1 + · · · + a1t + a0 be the polynomial in one

variable with real coefficients am−1, . . . , a0.
A polynomial w-structure on a real vector space W is a linear endomor-

phism P : W →W such that w(P ) = Pm+am−1P
m−1+· · ·+a1P+a0I = 0,

where P k denotes the composition P ◦ · · · ◦ P︸ ︷︷ ︸
k-times

and I denotes the identity

map on W .
An almost polynomial w-structure on manifold N is a tensor field

P̃ : TN → TN on N of type (1, 1) (affinor) such that Px : TxN → TxN
is a polynomial w-structure on TxN for any x ∈ N . In other words, an
almost polynomial w-structure is a tensor field P of type (1, 1) on manifold
N satisfying a polynomial equation Pm+am−1P

m−1+ · · ·+a1P +a0I = 0,
where am−1, . . . , a0 are real numbers, at every point of N .

The general concept of natural operators can be found in the fundamental
monograph [3]. In particular, we have the following definition.

Definition 1. Let F : Vm → V be a covariant regular functor. An Mfm-
natural operator transforming classical linear connections∇ on m-manifolds
M into almost polynomial w-structures P̃ (∇) : TF (T )M → TF (T )M on
F (T )M is an Mfm-invariant family P̃ : Q (AwS)F (T ) of operators

P̃ : Q(M)→ (AwS)(F (T )M)

for m-manifolds M , where Q(M) is the set of classical linear connections
on M and (AwS)(F (T )M) is the set of almost polynomial w-structures
on F (T )M . The invariance of P̃ means that if ∇1 ∈ Q(M1) and ∇2 ∈
Q(M2) are ϕ-related by an embedding ϕ : M1 → M2 (i.e. if ϕ is (∇,∇1)-
affine embedding), then P̃ (∇1) and P̃ (∇2) are F (T )ϕ-related (i.e. TF (T )ϕ◦
P̃ (∇1) = P̃ (∇2) ◦ TF (T )ϕ).

Let F : Vm → V be as above. A Vm-canonical polynomial w-structure on
V ⊕ FV is a Vm-invariant system P of polynomial w-structures

P : V ⊕ FV → V ⊕ FV

on vector spaces V ⊕ FV for m-dimensional real vector spaces V . The
invariance of P means that (ϕ ⊕ Fϕ) ◦ P = P ◦ (ϕ ⊕ Fϕ) for any linear
isomorphism ϕ : V1 → V2 between m-dimensional vector spaces.

3. The main result. The main result of the present note is the following
theorem.

Theorem 1. Let F : Vm → V be a covariant regular functor and w be a
polynomial in one variable with real coefficients. The following conditions
are equivalent:

(i) There exists an Mfm-natural operator P̃ : Q (AwS)F (T ).
(ii) There exists a Vm-canonical polynomial w-structure P on V ⊕ FV .
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Proof. (i) ⇒ (ii). Let P̃ : Q  (AwS)F (T ) be an Mfm-natural operator
in question. Let V be an m-dimensional vector space from the category
Vm and let ∇V be the Vm-canonical torsion free flat classical linear connec-
tion on V . Then the almost polynomial w-structure P̃ (∇V ) : TF (T )V →
TF (T )V on F (T )V restricts to the polynomial w-structure

P := P̃ (∇V )00V : T00V
F (T )V → T00V

F (T )V

on the tangent space T00V
F (T )V of F (T )(V ) at 00V ∈ F (T )V , where 0V

is the zero in V and 00V is the zero in F (T )0V V . Since TV = V ⊕ V , we
have F (T )V = V ⊕ FV . Therefore T00V

F (T )V = V ⊕ FV modulo above
identifications. So,

P : V ⊕ FV → V ⊕ FV

is the polynomial w-structure on V ⊕ FV for any Vm-object V . Because
of the canonical character of the construction of P , the structure P is Vm-
canonical.

(ii) ⇒ (i). Suppose P : V ⊕ FV → V ⊕ FV is a Vm-canonical poly-
nomial w-structure. Let ∇ ∈ Q(M) be a classical linear connection on
an m-manifold M . Let v ∈ F (T )xM , x ∈ M . Since F (T ) is of order
1, F (T )M = LM [F (T )0Rm] (the associated space). Then ∇-decomposition
TLM = H∇⊕V LM induces (in obvious way)∇-decomposition TF (T )M =

H̃∇ ⊕ V F (T )M . Then we have the identification

TvF (T )M = H̃∇v ⊕ VvF (T )M ∼= TxM ⊕ F (T )xM = TxM ⊕ F (TxM)

canonically depending on ∇, where the equality is the connection decom-
position, the identification ∼= is the usual one (namely, H̃∇v = TxM modulo
the tangent of the projection of F (T )M and VvF (T )M = Tv(F (T )xM) =
F (T )xM modulo the standard identification) and the second equality is by
the definition of F (T )M . We define P̃ (∇)|v : TvF (T )M → TvF (T )M by

P̃ (∇)|v := P : TxM ⊕ F (TxM)→ TxM ⊕ F (TxM)

modulo the above identification TvF (T )M ∼= TxM ⊕ F (TxM). Then
P̃ (∇) :TF (T )M→TF (T )M is an almost polynomial w-structure on F (T )M .
By the canonical character of P̃ (∇), the resulting family P̃ : Q (AwS)F (T )
is an Mfm-natural operator. �

4. An application to para-complex structures. Let w(t) = t2−1. Let
J be a polynomial w-structure on a vector space W . Then W = W+⊕W−,
where W± = {v ∈ W : J(v) = ±v}. If additionally dim(W+) = dim(W−),
then J is called a para-complex structure on W , see [6].

An almost para-complex structure on a manifold N is an affinor J : TN →
TN on N such that Jx : TxN → TxN is a para-complex structure on TxN for
any x ∈ N . In other words, an almost para-complex structure is a smooth
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(1, 1)-tensor field on the manifold N of even dimension m, if the following
conditions are satisfied:

(1) J2 = idTN

(2) for each point x ∈ N , the eigenspaces T+
x N and T−x N of Jx (the

value of J at x) are both m
2 -dimensional subspaces of the tangent

space TxN at x, [1], [7].

Corollary 1. Let F : Vm → V be a regular covariant functor. The following
conditions are equivalent:

(a) There is an Mfm-natural operator J̃ : Q (APC)F (T ) transform-
ing classical linear connections ∇ on m-manifolds M into almost
para-complex structures J̃(∇) on F (T )M .

(b) There exists a Vm-canonical para-complex structure J on V ⊕ FV .

Proof. This is a simple consequence of Theorem 1. �

Lemma 1. Let p be a positive integer. Let F : Vm → V be a covariant
regular functor given by FV = V × · · · × V ((p− 1) times of V ) and Fϕ =
ϕ × · · · × ϕ ((p − 1) times of ϕ). If p is even, there is a Vm-canonical
para-complex structure on V ⊕ FV .

Proof. If p is even, we have the Vm-canonical para-complex structure on
V × · · · × V (p times of V ) . Namely, we have the p

2 copies of the canonical
para-complex structure on V × V given by (v, w)→ (v,−w). �

A Weil algebra A is a finite dimensional, commutative, associative and
unital algebra of the form A = R×N , where N is the ideal of all nilpotent
elements of A.

Lemma 2 (Lemma 5.1 in [4]). Let A be a p-dimensional Weil algebra and let
TA be the corresponding Weil functor. For any classical linear connection
∇ on an m-manifold M , we have the base-preserving fibred diffeomorphism
IA∇ : T

AM → TM ⊗ Rp−1 canonically depending on ∇.

We see that TM⊗Rp−1 = TM×M · · ·×M TM ((p− 1) times of TM) =
F (T )M , where F : Vm → V, FV = V × · · · × V ((p − 1) times of V ),
Fϕ = ϕ× · · · × ϕ ((p− 1) times of ϕ). So, from Corollary 1, Lemma 1 and
Lemma 2 we obtain

Proposition 1. Let A be a Weil algebra. If A is even dimensional, there
exists an Mfm-natural operator J̃ : Q (APC)TA sending classical linear
connections ∇ on m-manifolds M into almost para-complex structures J̃(∇)
on TAM .
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