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An existence and approximation theorem for
solutions of degenerate nonlinear elliptic equations

Abstract. The main result establishes that a weak solution of degenerate
nonlinear elliptic equations can be approximated by a sequence of solutions
for non-degenerate nonlinear elliptic equations.

1. Introduction. Let L be a degenerate elliptic operator in divergence
form

(1.1) Lu(x) = −
n∑

i,j=1

Dj(aij(x)Diu(x)), Dj =
∂

∂xj
,

where the coefficients aij are measurable, real-valued functions whose co-
efficient matrix A(x) = (aij(x)) is symmetric and satisfies the degenerate
ellipticity condition

(1.2) λ|ξ|2ω(x) ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2ω(x),

for all ξ ∈ Rn and almost everywhere x ∈ Ω ⊂ Rn a bounded open set, ω is
a weight function, λ and Λ are positive constants.
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The main purpose of this paper (see Theorem 1.2) is to establish that a
weak solution u ∈W 1,2

0 (Ω, ω) for the nonlinear Dirichlet problem

(P )

 Lu(x) + g(u(x))ω(x) = f0(x)−
n∑
j=1

Djfj(x) in Ω,

u(x) = 0 on ∂Ω,

can be approximated by a sequence of solutions of non-degenerate nonlinear
elliptic equations.

By a weight, we shall mean a locally integrable function ω on Rn such
that ω(x) > 0 for a.e. x ∈ Rn. Every weight ω gives rise to a measure on
the measurable subsets on Rn through integration. This measure will be
denoted by µ. Thus, µ(E) =

∫
E ω(x) dx for measurable sets E ⊂ Rn.

In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces
of solutions for elliptic and parabolic partial differential equations. For
degenerate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces (see [1]–[5], [8] and [10]).

A class of weights, which is particularly well understood, is the class of
Ap-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt
(see [7]). These classes have found many useful applications in harmonic
analysis (see [9]). Another reason for studying Ap-weights is the fact that
powers of the distance to submanifolds of Rn often belong to Ap (see [6]).
There are, in fact, many interesting examples of weights (see [5] for p-
admissible weights).

The following lemma can be proved in exactly the same way as Lemma 2.1
in [3] (see also, Lemma 3.1 and Lemma 4.13 in [1]). Our lemma provides
a general approximation theorem for Ap weights (1 ≤ p < ∞) by means
of weights which are bounded away from 0 and infinity and whose Ap-
constants depend only on the Ap-constant of ω. Lemma 1.1 is the key point
for Theorem 1.2, and the crucial point consists of showing that a weak limit
of a sequence of solutions of approximate problems is in fact a solution of
the original problem.

Lemma 1.1. Let α, β > 1 be given and let ω ∈ Ap (1 ≤ p < ∞), with
Ap-constant C(ω, p) and let aij = aji be measurable, real-valued functions
satisfying

(1.3) λω(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λω(x)|ξ|2,

for all ξ ∈ Rn and a.e. x ∈ Ω. Then there exist weights ωαβ ≥ 0 a.e. and
measurable real-valued functions aαβij such that the following conditions are
met.

(i) c1(1/β) ≤ ωαβ ≤ c2α in Ω, where c1 and c2 depend only on ω and Ω.
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(ii) There exist weights ω̃1 and ω̃2 such that ω̃1 ≤ ωαβ ≤ ω̃2, where
ω̃i ∈ Ap and C(ω̃i, p) depends only on C(ω, p) (i = 1, 2).

(iii) ωαβ ∈ Ap, with constant C(ωαβ, p) depending only on C(ω, p) uni-
formly on α and β.

(iv) There exists a closed set Fαβ such that ωαβ ≡ ω in Fαβ and ωαβ ∼
ω̃1 ∼ ω̃2 in Fαβ with equivalence constants depending on α and β (i.e.,
there are positive constants cαβ and Cαβ such that cαβω̃i ≤ ωαβ ≤ Cαβω̃i,
i = 1, 2). Moreover, Fαβ ⊂ Fα′β′ if α ≤ α′, β ≤ β′, and the complement of⋃
α,β≥1 Fαβ has zero measure.
(v) ωαβ → ω a.e. in Rn as α, β →∞.
(vi) λωαβ(x)|ξ|2 ≤

∑n
i,j=1 a

αβ
ij (x)ξiξj ≤ Λωαβ(x)|ξ|2, for every ξ ∈ R and

a.e. x ∈ Ω, and aαβij (x) = aαβji (x).

Proof. See [1], Lemma 3.1 or Lemma 4.13. �

The following theorem will be proved in Section 3.

Theorem 1.2. Suppose that
(H1) The function g : R → R is Lipschitz continuous (i.e., there exists a
constant Cg > 0 such that |g(t1)− g(t2)| ≤ Cg|t1− t2| for all t1, t2 ∈ R) and
g(0) = 0;
(H2) ω ∈ A2;
(H3) fj/ω ∈ L2(Ω, ω), j = 0, 1, . . . , n;
(H4) The constant γ = λ− Cg(C2

Ω + 1) > 0 (with CΩ as in Theorem 2.2).
Then the problem (P ) has a unique solution u ∈W 1,2

0 (Ω, ω) and there exists
a constant C > 0 such that

(1.4) ‖u‖
W 1,2

0 (Ω,ω)
≤ C

( n∑
j=0

∥∥∥∥fjω
∥∥∥∥
L2(Ω,ω)

)
.

Moreover, u is the weak limit in W 1,2
0 (Ω, ω̃1) of a sequence of solutions

um ∈W 1,2
0 (Ω, ωm) of the problems

(Pm)

 Lmum(x) + g(um(x))ωm(x) = f0m(x) +
n∑
j=1

Djfjm(x) in Ω,

um(x) = 0 on ∂Ω,

with Lmum = −
∑n

i,j=1Dj(a
mm
ij (x)Dium(x)), fjm = fj(ωm/ω)1/2 and ωm =

ωmm (where ωmm, ammij and ω̃1 are as Lemma 1.1).

2. Definitions and basic results. Let ω be a locally integrable nonneg-
ative function in Rn and assume that 0 < ω(x) < ∞ almost everywhere.
We say that ω belongs to the Muckenhoupt class Ap, 1 < p <∞, or that ω
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is an Ap-weight, if there is a constant C = C(p, ω) such that(
1

|B|

∫
B
ω(x)dx

)(
1

|B|

∫
B
ω1/(1−p)(x)dx

)p−1

≤ C,

for all balls B ⊂ Rn, where |.| denotes the n-dimensional Lebesgue measure
in Rn. If 1 < q ≤ p, then Aq ⊂ Ap (see [4], [5] or [10] for more information
about Ap-weights). The weight ω satisfies the doubling condition if there
exists a positive constant C such that µ(B(x; 2r)) ≤ Cµ(B(x; r)) for every
ball B = B(x; r) ⊂ Rn, where µ(B) =

∫
B ω(x) dx. If ω ∈ Ap, then µ is

doubling (see Corollary 15.7 in [5]).
As an example of Ap-weight, the function ω(x) = |x|α, x ∈ Rn, is in Ap

if and only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [9]).

If ω ∈ Ap, then
(
|E|
|B|

)p
≤ C µ(E)

µ(B) whenever B is a ball in Rn and E is a

measurable subset of B (see 15.5 strong doubling property in [5]). Therefore,
µ(E) = 0 if and only if |E| = 0; so there is no need to specify the measure
when using the ubiquitous expression almost everywhere and almost every,
both abbreviated a.e.

Definition 2.1. Let ω be a weight, and let Ω ⊂ Rn be open. For 0 < p <∞
we define Lp(Ω, ω) as the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =

(∫
Ω
|f(x)|pω(x) dx

)1/p

<∞.

If ω ∈ Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω) ⊂ L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [10]). It thus
makes sense to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 2.2. Let Ω ⊂ Rn be open, and ω ∈ A2. We define the weighted
Sobolev space W 1,2(Ω, ω) as the set of functions u ∈ L2(Ω, ω) with weak
derivatives Dju ∈ L2(Ω, ω) for j = 1, 2, . . . , n. The norm of u in W 1,2(Ω, ω)
is defined by

(2.1) ‖u‖W 1,2(Ω,ω) =

(∫
Ω
|u(x)|2ω(x) dx+

∫
Ω
|∇u(x)|2ω(x) dx

)1/2

.

We also define W 1,2
0 (Ω, ω) as the closure of C∞0 (Ω) with respect to the norm

(2.1).
If ω ∈ A2, then W 1,2(Ω, ω) is the closure of C∞(Ω) with respect to

the norm (2.1) (see Theorem 2.1.4 in [10]). The spaces W 1,2(Ω, ω) and
W 1,2

0 (Ω, ω) are Banach spaces.
It is evident that the weight function ω which satisfies 0 < c1 ≤ ω(x) ≤ c2

for x ∈ Ω (c1 and c2 positive constants), gives nothing new (the space
W1,2

0 (Ω, ω) is then identical with the classical Sobolev space W1,2
0 (Ω)). Con-

sequently, we shall be interested above in all such weight functions ω which
either vanish somewhere in Ω ∪ ∂Ω or increase to infinity (or both).



An existence and approximation theorem... 33

The dual space of W 1,2
0 (Ω, ω) is the space

[W 1,2
0 (Ω, ω)]∗ = W−1,2(Ω, ω)

=
{
T = f0 − divF : F = (f1, . . . , fn),

fj
ω
∈ L2(Ω, ω), j = 0, . . . , n

}
,

and ‖.‖∗ denotes the norm in [W 1,2
0 (Ω, ω)]∗.

Definition 2.3. We say that an element u ∈ W 1,2
0 (Ω, ω) is weak solution

of problem (P ) if
n∑

i,j=1

∫
Ω
aij(x)Diu(x)Djϕ(x) dx+

∫
Ω
g(u(x))ω(x)ϕ(x) dx

=

∫
Ω
f0(x)ϕ(x) dx+

n∑
j=1

∫
Ω
fj(x)Djϕ(x) dx,

for every ϕ ∈W 1,2
0 (Ω, ω).

Remark 2.1. (a) If A(x) = (aij(x)), we will use the notation
n∑

i,j=1

aij(x)Diu(x)Djϕ(x) = (A(x)∇u(x)) · ∇ϕ(x),

where the dot denotes the Euclidean scalar product in Rn.
(b) Since the matrix A(x) = (aij(x)) is symmetric, we have

|(A(x)∇u(x)) ·∇ϕ(x)| ≤ [(A(x)∇u(x)) ·∇u(x)]1/2[(A(x)∇ϕ(x)) ·∇ϕ(x)]1/2.

Theorem 2.2 (The weighted Sobolev inequality). Let Ω be an open bounded
set in Rn and ω ∈ A2. There exist positive constants CΩ and δ such that
for all u ∈W 1,2

0 (Ω, ω) and all θ satisfying 1 ≤ θ ≤ n/(n− 1) + δ,

(2.2) ‖u‖L2θ(Ω,ω) ≤ CΩ‖∇u‖L2(Ω,ω).

Proof. It suffices to prove the inequality for functions u ∈ C∞0 (Ω)
(see Theorem 1.3 in [2]). To extend the estimate (2.2) to arbitrary u ∈
W 1,2

0 (Ω, ω), we let {um} be a sequence of C∞0 (Ω) functions tending to u in
W 1,2

0 (Ω, ω). Applying the estimates (2.2) to differences um1 − um2 , we see
that {um} will be a Cauchy sequence in L2(Ω, ω). Consequently, the limit
function u will lie in the desired spaces and satisfy (2.2). �

Remark 2.3. By Theorem 2.2 (with θ = 1), we have

(2.3)
‖∇u‖L2(Ω,ω) ≤ ‖u‖W 1,2

0 (Ω,ω)
=

(∫
Ω
|u|2ω dx+

∫
Ω
|∇u|2ω dx

)1/2

≤
(

(C2
Ω + 1)

∫
Ω
|∇u|2ω dx

)1/2

= C1‖∇u‖L2(Ω,ω),
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where C1 =
√
C2

Ω + 1.

3. Proof of Theorem 1.2. Part 1. Existence and uniqueness of solution.
The basic idea is to reduce the problem (P ) to an operator equation

Au = T and apply the theorem below.

Theorem 3.1. Let A : X → X∗ be a monotone, coercive and hemicontin-
uous operator on the real, separable, reflexive Banach spaces X. Then the
following assertions hold:
(a) for each T ∈ X∗ the equation Au = T has a solution u ∈ X;
(b) if the operator A is strictly monotone, then equation Au = T is uniquely
solvable in X.

Proof. See Theorem 26.A in [11]. �

To prove Theorem 1.2, we define B : W 1,2
0 (Ω, ω) ×W 1,2

0 (Ω, ω) → R and
T : W 1,2

0 (Ω, ω)→ R by

B(u, ϕ) =
n∑

i,j=1

∫
Ω
aij(x)Diu(x)Djϕ(x) dx+

∫
Ω
g(u(x))ϕ(x)ω(x) dx

=

∫
Ω

(A(x)∇u(x)) · ∇ϕ(x) dx+

∫
Ω
g(u(x))ϕ(x)ω(x) dx

T (ϕ) =

∫
Ω
f0(x)ϕ(x) dx+

n∑
j=1

∫
Ω
fj(x)Djϕ(x) dx.

Step 1. By (H1) we have |g(t)| ≤ Cg|t|. Using (1.2) and Remark 2.1 (b),
we obtain

(3.1)

|B(u, ϕ)| ≤
∫

Ω
|(A∇u) · ∇ϕ| dx+

∫
Ω
|g(u)||ϕ|ω dx

≤
∫

Ω
((A∇u) · ∇u)1/2((A∇ϕ) · ∇ϕ)1/2 dx+ Cg

∫
Ω
|u||ϕ|ω dx

≤
(∫

Ω
(A∇u) · ∇u dx

)1/2(∫
Ω

(A∇ϕ) · ∇ϕdx
)1/2

dx

+ Cg

(∫
Ω
u2ω dx

)1/2(∫
Ω
ϕ2ω dx

)1/2

≤
(

Λ

∫
Ω
|∇u|2ω dx

)1/2(
Λ

∫
Ω
|∇ϕ|2ω dx

)1/2

+ Cg‖u‖W 1,2
0 (Ω,ω)

‖ϕ‖
W 1,2

0 (Ω,ω)

≤ (Λ + Cg)‖u‖W 1,2
0 (Ω,ω)

‖ϕ‖
W 1,2

0 (Ω,ω)
,
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and by (H3)

(3.2)

|T (ϕ)| ≤
∫

Ω

|f0|
ω
|ϕ|ω dx+

n∑
j=1

∫
Ω

|fj |
ω
|Djϕ|ω dx

≤
( n∑
j=0

‖fj/ω‖L2(Ω,ω)

)
‖ϕ‖

W 1,2
0 (Ω,ω)

.

Since B(u, .) is linear, for each u ∈W 1,2
0 (Ω, ω), there is a linear continuous

functional on W 1,2
0 (Ω, ω) denoted by Au such that 〈Au, ϕ〉 = B(u, ϕ) for all

ϕ ∈ W 1,2
0 (Ω, ω) (where 〈f, x〉 denotes the value of the functional f at the

point x). Moreover, by (3.1), we have

‖Au‖∗ ≤ (Λ + Cg)‖u‖W 1,2
0 (Ω,ω)

.

Hence, we obtain the operator

A : W 1,2
0 (Ω, ω)→ [W 1,2

0 (Ω, ω)]∗

u 7→ Au.

Consequently, problem (P ) is equivalent to the operator equation

u ∈W 1,2
0 (Ω, ω) : Au = T.

Step 2. The operator A is strictly monotone and coercive. In fact, if u1,
u2 ∈W 1,2

0 (Ω, ω) we have, by (1.2) and Remark 2.3,

〈Au1 −Au2, u1 − u2〉 = B(u1, u1 − u2)−B(u2, u1 − u2)

=

∫
Ω

(A∇(u1 − u2)) · ∇(u1 − u2) dx

+

∫
Ω

(g(u1)− g(u2))(u1 − u2)ω dx

≥ λ
∫

Ω
|∇(u1 − u2)|2ω dx− Cg

∫
Ω
|u1 − u2|2ω dx

≥ λ

C2
1

‖u1 − u2‖2W 1,2
0 (Ω,ω)

− Cg‖u1 − u2‖2W 1,2
0 (Ω,ω)

= β‖u1 − u2‖2W 1,2
0 (Ω,ω)

,

where β = λ
C2

1
− Cg > 0. Therefore, the operator A is strongly monotone,

and this implies that A is strictly monotone. Moreover, if u ∈ W 1,2
0 (Ω, ω),

we have

〈Au, u〉 = B(u, u) =

∫
Ω

(A∇u) · ∇u dx+

∫
Ω
g(u)uω dx

≥ λ
∫

Ω
|∇u|2ω dx− Cg

∫
Ω
|u|2ω dx
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≥ λ

C2
1

‖u‖2
W 1,2

0 (Ω,ω)
− Cg‖u‖2W 1,2

0 (Ω,ω)

≥ β‖u‖2
W 1,2

0 (Ω,ω)
.

Hence, 〈Au,u〉
‖u‖

W
1,2
0 (Ω,ω)

→∞, as ‖u‖
W 1,2

0 (Ω,ω)
→∞, that is, A is coercive.

Step 3. We need to show that the operator A is continuous. Let um → u
in W 1,2

0 (Ω, ω). Then,

|B(um, ϕ)−B(u, ϕ)| ≤
∫

Ω
|(A∇(um − u))·∇ϕ|dx+

∫
Ω
|g(um)− g(u)||ϕ|ωdx

≤ Λ

(∫
Ω
|∇(um − u)|2ω dx

)1/2(∫
Ω
|∇ϕ|2ω dx

)1/2

+ Cg

∫
Ω
|um − u||ϕ|ω dx

≤ (Λ + Cg)‖um − u‖W 1,2
0 (Ω,ω)

‖ϕ‖
W 1,2

0 (Ω,ω)
,

for all ϕ ∈W 1,2
0 (Ω, ω). Then we obtain

‖Aum −Au‖∗ ≤ (Λ + Cg)‖um − u‖W 1,2
0 (Ω,ω)

.

Therefore, ‖Aum −Au‖∗ → 0 as m→∞. Hence, A is continuous and this
implies that A is hemicontinuous.

By Theorem 3.1, the operator equation Au = T has unique solution
u ∈W 1,2

0 (Ω, ω) and it is the unique solution for problem (P ).
Part 2. Estimate for ‖u‖

W 1,2
0 (Ω,ω)

.
In particular, for ϕ = u in Definition 2.3, we have

(3.3)

n∑
i,j=1

∫
Ω
aij(x)Diu(x)Dju(x) dx+

∫
Ω
g(u(x))u(x)ω(x) dx

=

∫
Ω
f0(x)u(x) dx+

n∑
j=1

∫
Ω
fj(x)Dju(x) dx.

(i) By (1.2) and Remark 2.3, we have
n∑

i,j=1

∫
Ω
aij(x)Diu(x)Dju(x) dx ≥ λ

∫
Ω
|∇u|2ω dx ≥ λ

C2
1

‖u‖2
W 1,2

0 (Ω,ω)
,

and by (H3) and Theorem 2.2 (with θ = 1),∣∣∣∣ ∫
Ω
f0u dx

∣∣∣∣ ≤ ∫
Ω

|f0|
ω
|u|ω dx

≤ ‖f0/ω‖L2(Ω,ω)‖u‖L2(Ω,ω)

≤ ‖f0/ω‖L2(Ω,ω)‖u‖W 1,2
0 (Ω,ω)

,
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and analogously, for j = 1, 2, . . . , n,∣∣∣∣ ∫
Ω
fjDju dx

∣∣∣∣ ≤ ‖fj/ω‖L2(Ω,ω)‖u‖W 1,2
0 (Ω,ω)

.

(ii) By (H1), since g(0) = 0, then |g(t)| ≤ Cg|t| for all t ∈ R. By
Theorem 2.2 (with θ = 1), we obtain∣∣∣∣ ∫

Ω
g(u)uω dx

∣∣∣∣ ≤ ∫
Ω
|g(u)||u|ω dx

≤ Cg
∫

Ω
|u|2ω dx

≤ Cg‖u‖2W 1,2
0 (Ω,ω)

.

Hence, in (3.3), we obtain

λ

C2
1

‖u‖2
W 1,2

0 (Ω,ω)
− Cg‖u‖2W 1,2

0 (Ω,ω)

≤
( n∑
j=0

‖fj/ω‖L2(Ω,ω)

)
‖u‖

W 1,2
0 (Ω,ω)

.

Therefore,

(3.4) ‖u‖
W 1,2

0 (Ω,ω)
≤ C

( n∑
j=0

‖fj/ω‖L2(Ω,ω)

)
,

where C = C2
1/(λ− Cg C2

1 ) > 0.

Part 3. Approximation of solution.

Step 1. First, if fjm = fj(ω/ωm)−1/2 (j = 0, 1, . . . , n), we note that∥∥∥∥fjmωm
∥∥∥∥
L2(Ω,ωm)

=

∥∥∥∥fjω
∥∥∥∥
L2(Ω,ω)

.

Then, if um ∈W 1,2
0 (Ω, ωm) is a solution of problem (Pm), we have (by (3.4))

‖um‖W 1,2
0 (Ω,ωm)

≤ C
( n∑
j=0

‖fjm/ωm‖L2(Ω,ωm)

)

= C

( n∑
j=0

‖fj/ω‖L2(Ω,ω)

)
= C3.

Using Lemma 1.1 and the inequality ω̃1 ≤ ωm, we obtain

(3.5) ‖um‖W 1,2
0 (Ω,ω̃1)

≤ ‖um‖W 1,2
0 (Ω,ωm)

≤ C3.
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Consequently, {um} is a bounded sequence in W 1,2
0 (Ω, ω̃1). Therefore, there

is a subsequence, again denoted by {um}, and ũ ∈W 1,2
0 (Ω, ω̃1) such that

um ⇀ ũ in L2(Ω, ω̃1),(3.6)

|∇um|⇀ |∇ũ| in L2(Ω, ω̃1),(3.7)

um → ũ a.e. in Ω,(3.8)

where the symbol “⇀” denotes weak convergence (see Theorem 1.31 in [5]).

Step 2. We have ũ ∈ W 1,2
0 (Ω, ω). In fact, for Fk fixed, by (3.6) and (3.7),

for all ϕ ∈W 1,2
0 (Ω, ω̃1), we obtain∫

Ω
umϕω̃1 dx→

∫
Ω
ũϕω̃1 dx,∫

Ω
DiumDiϕω̃1 dx→

∫
Ω
DiũDiϕω̃1 dx.

If ψ ∈ W 1,2
0 (Ω, ω), then ϕ = ψχFk ∈ W

1,2
0 (Ω, ω̃1) (since ω ∼ ω̃1 in Fk, i.e.,

there is a constant c > 0 such that ω̃1 ≤ cω in Fk, and χE denotes the
characteristic function of a measurable set E ⊂ Rn) and∫

Ω
ϕ2ω̃1 dx =

∫
Fk

ψ2ω̃1 dx ≤ c
∫
Fk

ψ2ω dx ≤ c
∫

Ω
ψ2ω dx <∞,∫

Ω
(Diϕ)2ω̃1 dx =

∫
Fk

(Diψ)2ω̃1 dx ≤ c
∫
Fk

(Diψ)2ω dx ≤ c
∫

Ω
(Diψ)2ω dx <∞.

Consequently, ∫
Ω
umψχFk ω̃1 dx→

∫
Ω
ũψχFk ω̃1 dx,∫

Ω
DiumDiψχFk ω̃1 dx→

∫
Ω
DiũDiψχFk ω̃1 dx,

for all ψ ∈ W 1,2
0 (Ω, ω), that is, the sequence {umχFk} is weakly convergent

in W 1,2
0 (Ω, ω). Therefore, we have

‖∇ũ‖2L2(Fk,ω) =

∫
Fk

|∇ũ|2ω dx ≤ lim sup
m→∞

∫
Fk

|∇um|2ω dx,

and for m ≥ k, we have ω = ωm in Fk. Hence, by (3.5), we obtain

‖∇ũ‖2L2(Fk,ω) ≤ lim sup
m→∞

∫
Fk

|∇um|2ω dx = lim sup
m→∞

∫
Fk

|∇um|2ωm dx

≤ lim sup
m→∞

∫
Ω
|∇um|2ωm dx ≤ C2

3 .

By the Monotone Convergence Theorem, we obtain ‖∇ũ‖L2(Ω,ω) ≤ C3.
Therefore, we have ũ ∈W 1,2

0 (Ω, ω).
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Step 3. We need to show that ũ is a solution of problem (P ), i.e, for every
ϕ ∈W 1,2

0 (Ω, ω) we have
n∑

i,j=1

∫
Ω
aij(x)Diũ(x)Djϕ(x) dx+

∫
Ω
g(ũ(x))ϕ(x)ω(x) dx

=

∫
Ω
f0(x)ϕ(x) dx+

n∑
j=1

∫
Ω
fj(x)Djϕ(x) dx.

Using the fact that um is a solution of (Pm), we have
n∑

i,j=1

∫
Ω
ammij (x)Dium(x)Djϕ(x) dx+

∫
Ω
g(um(x))ϕ(x)ωm(x)dx

=

∫
Ω
fm(x)ϕ(x) dx+

n∑
j=1

∫
Ω
fjm(x)Djϕ(x) dx,

for every ϕ ∈ W 1,2
0 (Ω, ωm). Moreover, over Fk (for m ≥ k) we have the

following properties:
(i) ω = ωm;
(ii) fjm = fj , j = 0, 1, 2 . . . , n;
(iii) ammij (x) = aij(x).

For ϕ ∈W 1,2
0 (Ω, ω) and k > 0 (fixed), we defineG1, G2 : W 1,2

0 (Ω, ω̃1)→ R
by

G1(u) =
n∑

i,j=1

∫
Ω
aij(x)Diu(x)Djϕ(x)χFk(x) dx,

G2(u) =

∫
Ω
g(u(x))ϕ(x)ω(x)χFk(x) dx.

(a) We see that the functional G1 is linear and continuous. In fact, we have
(by Lemma 1.1 (iv)) ω ∼ ω̃1 in Fk (ω ≤ cω̃1). By (2), we obtain

|G1(u)| ≤
∫
Fk

|(A∇u) · ∇ϕ| dx ≤
∫
Fk

((A∇u) · ∇u)1/2((A∇ϕ) · ∇ϕ)1/2 dx

≤
(∫

Fk

(A∇u) · ∇u dx
)1/2(∫

Fk

(A∇ϕ) · ∇ϕ)1/2 dx

)1/2

≤ Λ

(∫
Fk

|∇u|2ω dx
)1/2(∫

Fk

|∇ϕ|2ω dx
)1/2

≤ Λ

(∫
Fk

c|∇u|2ω̃1 dx

)1/2(∫
Ω
|∇ϕ|2ω dx

)1/2

≤ Λc1/2‖ϕ‖
W 1,2

0 (Ω,ω)
‖u‖

W 1,2
0 (Ω,ω̃1)

.
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(b) We see thatG2 is a continuous functional. In fact, if u1, u2 ∈W 1,2
0 (Ω, ω̃1),

we obtain by (H1)

|G2(u2)−G2(u1)| ≤
∫
Fk

|g(u2)− g(u1)||ϕ|ω dx

≤
∫
Fk

Cg|u1 − u2||ϕ|ω dx

≤ Cg
(∫

Fk

|ϕ|2ω dx
)1/2(∫

Fk

|u1 − u2|2ω dx
)1/2

≤ Cg
(∫

Ω
|ϕ|2ω dx

)1/2(∫
Fk

c|u1 − u2|2ω̃1 dx

)1/2

≤ c1/2Cg‖ϕ‖W 1,2
0 (Ω,ω)

‖u1 − u2‖W 1,2
0 (Ω,ω̃1)

.

Using (a), (b), properties (i), (ii) and (iii), and basing on the fact that
um is the solution of (Pm), we obtain
n∑

i,j=1

∫
Fk

aij(x)Diũ(x)Djϕ(x) dx+

∫
Fk

g(ũ(x))ϕ(x)ω(x) dx

= lim
m→∞

[G1(um) +G2(um)]

= lim
m→∞

( n∑
i,j=1

∫
Fk

ammij (x)Dium(x)Djϕ(x) dx+

∫
Fk

g(um(x))ϕ(x)ωm(x) dx

)

= lim
m→∞

( n∑
i,j=1

∫
Ω
ammij (x)Dium(x)Djϕ(x) dx+

∫
Ω
g(um(x))ϕ(x)ωm(x) dx

−
n∑

i,j=1

∫
Ω∩F ck

ammij (x)Dium(x)Djϕ(x) dx−
∫

Ω∩F ck
g(um(x))ϕ(x)ωm(x)dx

)

= lim
m→∞

(∫
Ω
f0m(x)ϕ(x) dx+

n∑
j=1

∫
Ω
fjm(x)Djϕ(x) dx

−
n∑

i,j=1

∫
Ω∩F ck

ammij (x)Dium(x)Djϕ(x) dx−
∫

Ω∩F ck
g(um(x))ϕ(x)ωm(x)dx

)
,

where Ec denotes the complement of a set E ⊂ Rn.
(I) By the Lebesgue Dominated Convergence Theorem and ω̃2 ∈ A2, we
obtain (as m→∞)∫

Ω
fmϕdx→

∫
Ω
fϕ dx,∫

Ω
fjmDjϕdx→

∫
Ω
fjDjϕdx, (j = 1, . . . , n).
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(II) Since the matrix Am(x) = (ammij )(x) is symmetric, we have

|(Am∇um) · ∇ϕ| ≤ [(Am∇um) · ∇um]1/2[(Am∇ϕ) · ∇ϕ]1/2.

Then, by Lemma 1.1 (vi) and (3.5), we obtain

(3.9)

∣∣∣∣ n∑
i,j=1

∫
Ω∩F ck

ammij DiumDjϕdx

∣∣∣∣ ≤ ∫
Ω∩F ck

|(Am∇um) · ∇ϕ| dx

≤ Λ

(∫
Ω∩F ck

|∇um|2ωm dx
)1/2(∫

Ω∩F ck
|∇ϕ|2ωm dx

)1/2

≤ Λ‖um‖W 1,2
0 (Ω,ωm)

(∫
Ω∩F ck

|∇ϕ|2wm dx
)1/2

≤ ΛC3

(∫
Ω∩F ck

|∇ϕ|2wm dx
)1/2

.

(III) By (H1), |g(t)| ≤ Cg|t| (for all t ∈ R), and (3.5), we have

(3.10)

∣∣∣∣ ∫
Ω∩F ck

g(um)ϕωm dx

∣∣∣∣ ≤ ∫
Ω∩F ck

|g(um)||ϕ|ωm dx

≤ Cg
∫

Ω∩F ck
|um||ϕ|ωm dx

≤ Cg
(∫

Ω∩F ck
|um|2ωm dx

)1/2(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

≤ Cg‖um‖W 1,2
0 (Ω,ωm)

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

≤ CgC3

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

.

Using Lemma 1.1, we know that |Ω ∩ F ck | → 0 when k →∞. Then

lim
k→∞

(∫
Ω∩F ck

|ϕ|2ωm dx
)1/2

= lim
k→∞

(∫
Ω∩F ck

|∇ϕ|2ωm dx
)1/2

= 0

and we obtain in (3.9) and (3.10)

lim
k→∞

n∑
i,j=1

∫
Ω∩F ck

ammij (x)Dium(x)Djϕ(x) dx = 0,(3.11)

lim
k→∞

∫
Ω∩F ck

g(um)ϕωm dx = 0.(3.12)
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Therefore, by (3.7), (3.11) and (3.12) we conclude, when k → ∞ (and
m ≥ k),

n∑
i,j=1

∫
Ω
aijDiũDjϕdx+

∫
Ω
g(ũ)ϕω dx =

∫
Ω
f0ϕdx+

n∑
j=1

∫
Ω
fjDjϕdx,

for all ϕ ∈W 1,2
0 (Ω, ω), that is, ũ is a solution of the problem (P ). Therefore,

u = ũ (by the uniqueness).

Example 1. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1} and 0 < C2
Ω + 1 <

a < b. By Theorem 1.2, with g(t) = sin(t) (with Cg = 1), f0(x, y) = x|y|,
f1(x, y) = |x|y cos(xy), f2(x, y) = |x|y sin(xy), ω(x, y) = (x2 + y2)−1/2 and

A(x, y) =

(
a(x2 + y2)−1/2 0

0 b(x2 + y2)−1/2

)
,

the problem Lu(x, y) + g(u(x, y))ω(x, y)(x) = f0(x, y)− ∂f1

∂x
(x, y)− ∂f2

∂y
(x, y) in Ω,

u(x) = 0 on ∂Ω,

where

Lu(x) = − ∂

∂x

(
a(x2 + y2)−1/2∂u

∂x

)
− ∂y

∂x

(
b(x2 + y2)−1/2∂u

∂y

)
has a unique solution u ∈ W 1,2

0 (Ω, ω) and u can be approximated by a
sequence of solutions for non-degenerate nonlinear elliptic equations.

References

[1] Cavalheiro, A. C., An approximation theorem for solutions of degenerate elliptic equa-
tions, Proc. Edinb. Math. Soc. 45 (2002), 363–389.

[2] Fabes, E., Kenig, C., Serapioni, R., The local regularity of solutions of degenerate
elliptic equations, Comm. Partial Differential Equations 7 (1982), 77–116.

[3] Fernandes, J. C., Franchi, B., Existence and properties of the Green function for a
class of degenerate parabolic equations, Rev. Mat. Iberoam. 12 (1996), 491–525.
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[5] Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate
Elliptic Equations, Oxford University Press, Oxford, 1993.

[6] Kufner, A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985.
[7] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans.

Amer. Math. Soc. 165 (1972), 207–226.
[8] Murthy, M. K. V., Stampacchia, G., Boundary value problems for some degenerate

elliptic operators, Ann. Mat. Pura Appl. 80 (1) (1968), 1–122.
[9] Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San

Diego, 1986.
[10] Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-

Verlag, Berlin, 2000.



An existence and approximation theorem... 43

[11] Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-
Verlag, New York, 1990.

Albo Carlos Cavalheiro
Department of Mathematics
State University of Londrina
Londrina - PR - Brazil, 86057-970
e-mail: accava@gmail.com

Received June 27, 2017


