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The constructions of general connections
on the fibred product of g copies
of the first jet prolongation

ABSTRACT. We describe all natural operators A transforming general con-
nections I' on fibred manifolds Y — M and torsion-free classical linear con-
nections A on M into general connections A(I', A) on the fibred product
J<?Y — M of ¢ copies of the first jet prolongation J'Y — M.

1. Introduction. All manifolds are smooth, Hausdorff, finite dimensional
and without boundaries. Maps are assumed to be smooth, i.e. of class C*°.

The concept of r-th order connections for arbitrary fibred manifolds was
introduced by I. Kolaf in [3].

Let us recall that an r-th order connection on a fibred manifold p: ¥ —
M is a section ©: Y — J"Y of the r-jet prolongation g: J'Y — Y of
p:Y — M. A general connection on p: Y — M is a first order connection
I': Y — JYY or (equivalently) a lifting map

'Y xyTM —TY.

By Con(Y — M) we denote the set of all general connections on a fibred
manifold p: Y — M.
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If p: Y — M is a vector bundle and an r-th order connection ©: Y —
J"Y is a vector bundle morphism, then © is called an r-th order linear
connection on p: Y — M.

An r-th order linear connection on M is an r-th order linear connection
A:TM — J"TM on the tangent bundle mp;: TM — M of M. By Q"(M)
we denote the set of all r-th order linear connections on M.

A classical linear connection on M is a first order linear connection
V:TM — J'TM on M, which can be also (equivalently) considered as
its corresponding covariant derivative V: X(M) x X(M) — X(M).

A classical linear connection V on M is called torsion-free if its torsion
tensor T'(X,Y) = VxY — Vy X — [X,Y] is equal to zero. By Q-(M) we
denote the set of all torsion-free classical linear connections on M.

Let FM denote the category of fibred manifolds and their fibred maps
and let FM,,,, C FM be the (sub)category of fibred manifolds with m-
dimensional bases and n-dimensional fibres and their local fibred diffeomor-
phisms. Let Mf,, denote the category of m-dimensional manifolds and
their local diffeomorphisms.

Let F': FMy,, — FM be a bundle functor on FM,,,, of order r in
the sense of [4]. Let I':' Y xj3f TM — TY be the lifting map of a gen-
eral connection on an FM,, ,-object p: Y — M. Let A: TM — J'TM
be an r-th order linear connection on M. The flow operator F of F
transforming projectable vector fields 7 on p: Y — M into vector fields
Fn = %HZOF(FZ,?) on FY is of order r. In other words, the value Fn(u)
at every u € IY, y € Y depends only on jyn. Therefore, we have the cor-

responding flow morphism F: FY xy J'TY — TFY, which is linear with
respect to J"TY. Moreover, ]:'(u,j;n) = Fn(u), where u € F,)Y, y € Y.
Let XU be the T-lift of a vector field X on M to Y, ie. X' is a pro-
jectable vector field on p: Y — M defined by X' (y) = I'(y, X ()), y € Yz,
x = p(y) € M. Then the connection I" can be extended to a morphism
[':Y xp J'TM — J'TY by the following formula I'(y, j5X) = jr(X").
By applying F, we obtain a map .F(f‘): FY xp J'TM — TFY defined by

F()(u,jrX) = }“(u,j;(XF)) = FX'(u). Further, the composition
F(@,A) = FT)o(idpy x A): FY x3; TM — TFY

is the lifting map of a general connection on F'Y — M. The connection
F(T,A) is called F-prolongation of I" with respect to A and was discovered
by I. Kolar [2].

In particular, if F': FM,,, — FM is a bundle functor on FM,,,, of
order r = 1 and I' is a general connection on an FM,, ,-object p: Y — M
and V is a torsion-free classical linear connection on M, then one can obtain
the general connection F(I', V) as in [2].
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In the paper [1] authors introduced some interesting constructions on
connections using other methods.

2. Natural operators. The canonical character of construction of this
connection can be described by means of the concept of natural operators.
The general concept of natural operators can be found in the fundamental
monograph [4]. In particular, we have the following definitions.

Definition 1. Let F': FM,,,, — FM be a bundle functor of order r =1
on the category FM,,,, and B: FM,, , — Mf, be a base functor. An
F M n-natural operator D: J! x Q.(B) ~ J'(F — B) transforming gen-
eral connections I' on fibred manifolds ¥ — M and torsion-free classical
linear connections V on M into general connections D(I', V): FY — J'FY
on F'Y — M is a system of regular operators Dy : Con(Y — M)xQ.(M) —
Con(FY — M), (p: Y — M) € Obj(FMy,,) satisfying the FM,, -
invariance condition.

The FM,, n-invariance means that for any connections I' € Con(Y —
M), Ty € Con(Y1 — M), V € Q-(M) and V; € Q-(M1) such that if
I' is f-related to I't by an FM,, ,-map f:Y — Y; covering f: M —
M (ie. Jif o' = Ty o f) and V is f-related to Vi (ie. JITfoV =
V10T f), then Dy (T, V) is F f-related to Dy, (I'1, V1) (i.e. J'F fo Dy (T, V)
== .Dy1 (Fl, Vl) o Ff)

Equivalently the FM,, ,-invariance means that for any I' € Con(Y —
M), Ty € Con(Y1 — M1), Ve Q (M) and V; € Q,(M;) if diagrams

1 JITf
sy 1Ly, JTM 25 T
T
f ¢
% Y, ™ TM,

commute for an FM,, ,-map f:Y — Y; covering f: M — M, then the
diagram

1
Jry 2 npy,
Dy(F,V)T TDYI(Fl,vl)
ry — .y,

commutes.
We say that the operator Dy is regular if it transforms smoothly parame-
trized families of connections into smoothly parametrized ones.

Thus the construction F(I', V) can be considered as an F.M,, ,-natural
operator F: J!' x Q-(B) ~ JYF — B).
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3. Quasi-normal fibred coordinates. According to [6], let
@, JoTHT'R™ @ R™) — J§(R™, R™)g

be the usual symmetrization

r—1 r—1
P STrR™ @ TER™ @ R" — @ ST TER™ @ R”
q=0 q=0

modulo the following G L(m)-invariant identifications:

r—1
JTHTR™ @ R") = @ S"THR™ @ TR™ @ R,
q=0
r—1
JE(R™R™)o = @ ST TER™ @ R™.
q=0

In other words, ®,: Jj H(T*R™ ® R™) — JJ(R™,R")y is the linear map
such that

. S 1 . o
O, jo7H (2™ .. atadad)ey) ) = Jo(a" ... xtadey)
g+1
for any i1,...,ig,5 =1,...,m, ¢=0,...,r—land k =1,...,n, where (ey)
is the usual canonical basis in R and (z!, ..., 2™) are the usual coordinates

on R™. Then it holds
. (j5 ' (do)) = G5 (o)
for any o: R™ — R™ with ¢(0) = 0. In addition, ®, is GL(m)-invariant
and linear.
Let I': Y — J'Y be a general connection on a fibred manifold p: Y — M,
where dim(M) = m, dim(Y) = m+n. Let A be a torsion-free classical linear
connection on M. Let yg € Y be a point such that z¢g = p(yo) € M.

We present a concept of (I', A, yo, r)-quasi-normal fibred coordinate sys-
tem on Y, which was introduced by W. Mikulski, [6], [7].

Definition 2. A fibred chart ¢ on Y with ¢ (yg) = (0,0) € R"™" covering a
A-normal coordinate system ¢ on M with centre xg is called a (I, A, yo, 7)-
quasi-normal fibred coordinate system on Y, if the condition

m n
w(i (Y LS rrwea)) =0
laf+[B|<r—1 j=1 k=1
holds for any multiindex 5 € (NU{0})" such that |5| < r — 1, where

S — % i 0 m.on N ' o
Jo 1(;dm ® py + Z ZZF%B:U yﬂdw]@w)

loo|+[8]<r—1j=1 k=1
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m ,,1

is the expression of an element j&;ol) (¢, I') and (z!,..., 2™, y', ... y") are

the usual coordinates on the product R™ x R”.
In [6], W. Mikulski proved the following theorem.

Theorem 1. Let T:' Y — J'Y be a general connection on an FMpn-
object p:' Y — M such that dim(M) = m, dim(Y) = m +n and let A be a
torsion-free classical linear connection on M and let yg € Y be a point such
that zo = p(yo) € M. Then:

(i) There exists a (I', A, yo, r)-quasi-normal fibred coordinate system 1 on'Y .
(ii) If ¥ is another (T, A,yo,7)-quasi-normal fibred coordinate system on
Y, then

Jyy ' = gy (B x H) o ¢))

for a map B € GL(m) and a diffeomorphism H: R™ — R™ preserving
0 € R".

From the proof of this theorem it follows that (B x H)ow is a (I', A, yo, 7)-
quasi-normal fibred coordinate system on Y for any B € GL(m) and any
diffeomorphism H: R™ — R™ preserving 0 € R". In other words, the
F My, n-maps of the form B x H for B € GL(m) and diffeomorphisms
H:R"™ — R" preserving 0 € R” transform (T, A, yo, r)-quasi-normal fibred
coordinate systems on Y into (T, A, o, r)-quasi-normal fibred coordinate
Systems.

The generalization of this theorem in the case r = 2 for fibred-fibred
manifolds was proved by J. Kurek and W. Mikulski in [5].

4. The fibred product of g copies of the first jet prolongation.
In [4], the authors described all FM,, ,-natural operators D: J! x Q, (B)
~ JYF — B) for a bundle functor F = J': FM,,, — FM. They
constructed an additional FM,, ,-natural operator P and proved that all
F M p-natural operators D: J! x Q. (B) ~ JY(J' — B) form the one
parameter family tP + (1 —¢) 7!, t € R.

In other words, they showed that any F.M,, ,-natural operator

C:J' x Q. (B) ~ J'(J' = B)

transforming pairs (I', A) consisting of general connections I': Y — J'Y
on F M, n-objects p: Y — M and torsion-free classical linear connections
A: TM — J'TM on M into general connections Cy (I, A): J'Y — JLJY
on J'Y — M is of the form

(1) C=t-P+(1—-1t)-J' teR,

where P and J! are natural operators constructed in the monograph [4].
In [8], we generalized this result to the case F' = J2. In other words, we
classified all FM,y, ,-natural operators D: J! x Q.(B) ~ J'(J? — B).
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A pair (I, A) consisting of a general connection I': Y — J'Y on a fibred
manifold p: Y — M and a torsion-free classical linear connection A: TM —
JYTM on M is called an admissible pair on p: Y — M.

We can consider the first jet prolongation functor J' as an affine bundle
functor on the category F M,, . The corresponding vector bundle functor is
T*BV, where V is a vertical tangent functor. For this reason, for any fibred
manifold p: Y — M, the first jet prolongation J'Y — Y is the affine bundle
with the corresponding vector bundle 7* M ®VY . Therefore, J'J'Y — JY
is the affine bundle with corresponding vector bundle 7*M @ VJ'Y. Thus
the set of all F M, ,,-natural operators

C: J' % Q-(B) ~ JY(J' = B)
transforming admissible pairs (I', A) on fibred manifolds p: ¥ — M into
general connections Cy (I',A): J'Y — J'J'Y on J'Y — M possesses the

affine space structure.

Let

A=J"—P: J'x Q. (B) ~ (JL, T*Bo VJ')

be an FM,, ,-natural operator transforming admissible pairs (I',A) on
p:Y — M into fibred maps AY(F,A): JY — T*M @ VJ'Y covering the
identity idjiy: JIY — JYY, where VJ'Y = V(J'Y — M) is the vertical
bundle of J'Y — M.

By theorems presented in the monograph [4] it follows that the F M, -
natural operator A: J! x Q(B) ~ (J*, T*B® V.J') is of finite order.

Then the equality (1) can be written in the following form

(2) J'—C=t-(J' - P).

If we denote E = J! — C, then we can interpret the equality (2) in the
following way.
Any FM,, n-natural operator

E:J'x Q. (B)~ (JL, T*"BaVJ")
transforming admissible pairs (I';/A) on p: Y — M into fibred maps
Ey(T,A): JYY — T*M ® VJ'Y covering the identity id iy : J'Y — J'Y
is of the form
E=t-A.
Let
TS = T g, Xpp, It F M — FM

g-times
be the bundle functor transforming FM,, ,-objects Y — M into fibred
products
J<PY = JY xp - xy JUY
N——

g-times



The constructions of general connections... 83

of ¢ copies of J'Y — M and F M, p-maps f: Y — Y] covering f: M — M
into the induced fibred maps
JSCf =T X x g JUfL TSY 5 JSPY

t 2

g-times
5. The classification of constructions of general connections on the
fibred product of g copies of the first jet prolongation. We want to
describe all FM,, ,-natural operators

A: TV % Qr(B) ~ JYT<P = B)

transforming admissible pairs (I', A) on p: Y — M into general connections
Ay(T,A): J<Y — JYJ<Y) on J<PY — M.

An example of such A is the FM,, ,-natural operator J <% of finite
order constructed by I. Kolar.

By theorems presented in the monograph [4] it follows that FM,, -
natural operators A: J! x Q,(B) ~ JY(J<% — B) are of finite order.

Next, JY(J<Y) — J<9>Y is the affine bundle with corresponding vec-
tor bundle T*M ® V.J<9Y, where VJ<9?Y = V(J<Y — M) is the
vertical bundle of J<?%”Y — M. Therefore, we obtain the following FM,,, -
natural operator

A: TN X Qr(B) ~ (J<P T*B@ V.J<9)

of finite order transforming admissible pairs (I', A) on p: Y — M into fibred
maps Ay (I A): J<Y — T*M @ VJ<?7Y covering the identity map of
J<97Y given by

AY(FaA) = AY(Fv A) - j}fq>(ra A)

The natural operator A is completely described by the natural operator
A, because it holds

Ay (T,A) = Ay (T, A) + 5% (T, A)
for any admissible pair (I', A). In other words, it holds A = A + J<9~.
Therefore, in order to determine all FM,,,-natural operators
A JY % Qr(B) ~ JYJ<9> — B) it is sufficient to describe all FMp, -
natural operators A: J! x Q. (B) ~ (J< , T*B® VJ<%).
Using the following identifications
VISPY = VJY xpr-- - xa VJY,
S
g-times
T*M@VJIPTY = (T*"M @VJ'Y) xp - xy(T*M @ VJ'Y),
o
g-times

we find out that any fibred map
T JPY 5w T*M @ VJ<?Y
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is the system 7 = (74, ..., 7,) of fibred maps
7= (idpepyy @ Vpg)om: JSPY 5 T*M @ VJ'Y

covering the usual projection p;: J<¢>Y — J'Y onto an i-th factor
of the fibred product J<”Y = J'Y xp;---xp J'Y,i=1,....q.
H—/
g-times

So, the F My, ,-natural operators A: J! x Q(B) ~ JY(J<9 — B) are
in a bijective correspondence with systems (B!, ..., BY) of F M, p-natural
operators

B': J' x Qi (B) ~ (JS”, T*Ba VJ!)
transforming admissible pairs (I'A) on Y — M into fibred maps
BL(T,A): J<Y — T*M @ VJ'Y given by
Bg;(l—‘, A) = (idT*M X Vpi) o Ay(F, A)

covering p;: J<PPY — JY fori=1,...,q.

By theorems presented in the monograph [4] it follows that FM,, -
natural operators B*: J! x Q,(B) ~ (J<% ,T*B®V J!) are of finite order.

Therefore, in order to determine all FM,, ,-natural operators
A: JE x Qr(B) ~ JY(J<9> — B) it is sufficient to describe all F M, -
natural operators B': J! x Q,(B) ~ (J<% ,T*B ® VJ') of the same type
fori=1,...,q.

Therefore, in order to determine all FM,, ,-natural operators
A: JE x Qr(B) ~ JY(J<9> — B) it is sufficient to describe all FMp, -

natural operators
B: J' x Q. (B) ~ (J<9>, T*Bo VJ')
transforming admissible pairs (I';A) on p: Y — M into fibred maps
By(T,A): J<Y — T*M ® VJ'Y given by
By(r, A) = (ZdT*M X Vpl) o Ay(r, A)
covering idy: Y — Y.
By theorems presented in the monograph [4] it follows that FM,, -
natural operators B: J' x Q,(B) ~ (J<9,T*B® V.J') are of finite order.
Consider the map 6: J'Y — J'Y x -+ x 3 J'Y given by
%,—/
g-times
d(u) = (u,...,u)
for any element u € J1Y, where z € M. Then the F M, ,-natural operator
B defines an F M, ,-natural operator

Bod: J'x Q. (B) ~ (JL, T*BoVJ)

of finite order transforming admissible pairs (I', A) on p: Y — M into fibred
maps (Bo8)y(I,A): J'Y — T*M @ VJ'Y given by

(Bod)y(I',A) = By(I';A) 0§
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covering the identity id j1y . )
Hence we see that Bod =t - A for the real number ¢, i.e.

By (T, A)(u,...,u) =t Ay(T, A)(u)

for any admissible pair (I';A) on Y — M and for any element u € J!Y,
where x € M.

We have the projection Vwé: VJY — VY, where 77(%: JY — Y is the
jet projection. Then the FM,, ,-natural operator B defines an F.M,, ;-
natural operator

D = (idpas ® Vg) 0 B: J' X Qr(B) ~ (J5©, T*B@ V)

transforming admissible pairs (I';A) on p: Y — M into fibred maps
Dy (T,A): JSY — T*M @ VY given by

Dy (T, A) = (idr+y ® V7ig) o By (T, A)

covering the projection 7ré op1.

By theorems presented in the monograph [4] it follows that the
F M n-natural operator D: J!' x Q.(B) ~ (J<%,T*B ® V) is of finite
order.

Because of the invariance of D with respect to fibred manifold charts,
the existence of (I, A, yo, 7)-quasi-normal fibred coordinate systems and the
non-linear Peetre theorem (see [4]), we deduce that D is determined by the
values

n m
Dy <r0 PSS Mhettdd e jyk

k=1 j=1 |a|+|8|<r—1

(T ) )

i2,43=1,...m

3)

1<]y|<s
from T/R™ ® Vg R™" for all @ = (uq,...,u,) such that uq,...,u, €
0 (0,0 q ) q
JIR™ , all natural numbers 7,5 = 1,2,..., all A’’. € R and all
(0,0) i2i3y

I‘;?a g €R satisfying the condition

(4) P, <j6_1< Z iznszaﬁmadxj ® ek)> =0

lo]<r—1 j=1 k=1

for any multiindex 8 € N™ such that |3] < r—1, where Iy = Y., d2' ® 8?&
is a trivial general connection on the fibred manifold R"".

Using the invariance of D with respect to the homotheties t - idgm.n for
t > 0 (they preserve uy,. .., uq) and next applying the homogeneous function
theorem (we can apply it because of the condition (4)) and putting ¢t — 0,
we see that every value (3) is equal to

Dy (T, A%)(u1,. .., ug) € TER™ @ Vi )R™",
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where AY is a flat torsion-free classical linear connection on R™.

Consider a tangent vector ¢ € ToR™ and elements u; = ji(idgm,p) €
(JlRm,n)(O,O% U2, ...,Uq € (JlRm,n)(O,O) for a map p = (ph R 7pn): R™ —
R™ such that ji(ps) #0 fora=1,...,n.

Write
By (To, A% (uy, .. ., uy)(€) = Zu_o(jg(z‘dﬁm, p+tv))
for some function v = (vy,...,v,): R™ — R™ and
va(0) = v

fora=1,...,n. Then

d

=— (0,t)).
dt\tzo(’v)

a

Dy (T, A%) (uq, ..., ug)(§)

The fibred map
jz' — :I,‘i, gk — yk + (yk)2
preserves: the trivial general connection I'g, the flat torsion-free classical
linear connection A, the F M, n-natural operator B, elements uq, ..., ugq,

the vector £ and sends %|t:0(j6(idRm’ p+tv)) into %|t:0 (ja(p+pi+2t(Zv+
pavd+ 2t(v9)?))). Then it holds vJ = 0 for a = 1,...,n. Hence we have the
equality

Dy (Lo, A% (u, ..., uq) (&) = 0.
Consequently,
D: J' % Q. (B) ~ (J<9”, T*BoV)

is the zero operator.
Consider the well-known exact sequence

(5) 0T MVY - VJY VY =0
over J'Y. Next we obtain the following exact sequence
0T MRIT*MVY > T"MeVJ'Y 5 T*"M VY =0

over J1Y.
Therefore, the FM,, ,-natural operator B can be interpreted as an
F My, n-natural operator

B: J' % Q. (B) ~ (J<”, T*"BQT*BRV)

of finite order transforming admissible pairs (I', A) on p: Y — M into fibred
maps By (I, A): J<®Y — T*M®T*M®VY covering the projection mop.
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Using the invariance of the FM,, ,-natural operator B with respect to
fibred manifold charts, the existence of (I", A, yo, r)-quasi-normal fibred coor-
dinate systems and non-linear Peetre theorem, we deduce that the F M., .-
natural operator B is determined by the values

WSS 5 v,

k=17=1|a|+|f|<r—1

(X A )”‘ )@

i9,i3=1,....m

(6)

1<y |<s
from TER™ @ TER™ @ V(g oyR™" for all elements @ = (uy, ..., u,) such that
ULy, Ug € (JlRm’")(o’o), all natural numbers r,s = 1,2, ..., all numbers

Aglw € R and all numbers F;?aﬁ € R satisfying the condition (4) for any

multiindex 5 € N" such that |5] <r — 1.
We use the following identifications

(JlRm’n)(O,O) o R ® Rn’
Using the invariance of the FM,, ,-natural operator B with respect to the
homotheties ¢ - idgm.» for ¢t > 0 (they preserve the elements uy,...,u,) and

next applying the homogeneous function theorem (we can apply it because
of the condition (4)), we observe that every value (6) is equal to

By<ro+ ZZF ydx]@)i

k,l= 1]1

(7)

0
+Z Z I‘k:c da? ®— AO)(ulj...,uq),
k=1147=1
where F;“l = F?(O)el € R and Fk = k ei(0) € R. Of course, F’?- = —F’?’-
Moreover, the value (7) is linear in Fk and Fkl with coefficients belng smooth
functions in (ug,...,uq).

In particular, it holds

oyk’
= By (To+da? @ Y, A% (uy, ..., u,)
for Y = (y' + ) . Since Yp = ay 0
H:R" - R"” such that an element ]éH =id and H,Y = W near 0.
The map idrm X H preserves elements ui,...,uq, the FM,, ,-natural

operator B and the connection A%, and sends I'y+dz?/ ®Y into T'g+da? @ %
and acts on TR™ @ TGR™ @ V(g 0)R™" as the identity map. Then using

- By <r0 +ylda? @ 0 A°> (ug,. .., uq)

# 0, there is a local diffeomorphism
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the invariance of the 7 M,, ,-natural operator B with respect to idrm x H,
we see that

By (To+dz? @ Y, A% (uy,...,u,) = By <r0 +da’ ® aCZk,AO) (Ut ..., uq).
From (8) we obtain
; 0
By <F0 +dr’ ® 8yk,A0> (ul, ce ,uq) = By(ro, AO)(ul, R ,uq) =0.
Therefore, it holds
; 0
By <F0 +ylda? ® a—yk, AO> (ui,...,uq) =0.

Consequently, the values (6) are equal to
> i, ug)T

for some smooth functions f,gl
Using the invariance of FM,, ,-natural operator B with respect to fibre
homotheties idgm X t - idgn for ¢ > 0, we get the homogeneous conditions

t : féz(tu:l? e 7tuq) - t : féz(ul, .. .,UQ).

Cancelling both sides by ¢ and putting t — 0, we see that functions f{' are
constants.
Thus the F M, ,-natural operator B is determined by the values
By (Fo + 2'dr’ ® o 2l dx’ ® 9 A0> 0 0)
By By Yooy

forl1 <i<j<mandk =1,...,n. In other words, we claim that the
F M, n-natural operator B is determined by the FM,, ,-natural operator
Bod, where the map 0: J'Y — J<¢Y is given by 6(u) = (u,...,u). As we
observed earlier, the equality Bod = ¢-A holds for some ¢t € R. It means that
F M, n-natural operators B o ¢ form 1-parameter family of operators. Of
course, any A o p; is an example of a such B for i = 1,...,¢. In particular,
B is proportional to A o p; and similarly B* is proportional to A o p; for
i1=1,...,q. Thus we proved the following classification theorem.

Theorem 2. The FM,, n-natural operators

A: TV % Qr(B) ~ JYT<P = B)
transforming admissible pairs (I';A) on FMy, n-objects p: Y — M into
general connections Ay (L, A): J<Y — JYJ<PY) on J<9>Y — M form
the g-parameter family
9) TP 4 (ti-Aop)ic1,. g

for real numbers t;.
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Remark 1. The ¢g-parameter family (9) can be written equivalently in the
following form:

(10) (T4t AT AL T 1, A

The curvature
2

Ry(M):Y - ANT"M o VY

can be treated as the fibred map

Ry(D): J'Y - T*"M @ T*M @ VY.
Moreover, by the exact sequence (5) the curvature can be treated as the
fibred map

Ry (D): JY — T*M @ VJ'Y.
Thus we obtain an FM,, ,-natural operator

(11) R:J' x Qr(B) ~ (JL,T*Bo VJY.

By theorems presented in the monograph [4] it follows that the
F M n-natural operator R: J! x Q,(B) ~ (JL, T*B ® VJ') is of finite
order. B

Clearly, we can use R instead of A in Theorem 2. Because of Theorem 2

for ¢ = 1 we conclude that R is proportional to A. Therefore, we can
reformulate Theorem 2 in the following way.

Theorem 3. The FM,, ,-natural operators
A J' % Qr(B) ~ JHJ<” = B)

transforming admissible pairs (I';A) on FMy, n-objects p: Y — M into
general connections Ay (I, A): J<Y — JYJ<PY) on J<9>Y — M form
the g-parameter family

TP+ (t; - Ropi)izt,..q

for real numbers t;, where R is the F My, »-natural operator from (11).
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