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On the existence of connections
with a prescribed skew-symmetric Ricci tensor

Abstract. We study the so-called inverse problem. Namely, given a pre-
scribed skew-symmetric Ricci tensor we find (locally) a respective linear con-
nection.

1. Introduction. All manifolds and maps between manifolds considered
in the paper are assumed to be smooth (i.e. of class C∞).

The concept of a linear connection ∇ on a manifold M and its Ricci
tensor S can be found in the fundamental monograph [4].

In the present paper, we study the so-called inverse problem.
More detailed, under some assumption on a tensor field r of type (0, 2)

on M , we prove the existence of a local solution of the equation

(1) S = r

with unknown linear connection ∇ on M .
In particular, we deduce that any 2-form ω on a manifold M with dim(M)

≥ 2 is locally the Ricci tensor S of some linear connection ∇ on M .
In the analytic situation, the inverse problem was studied in many papers,

e.g. [1, 2, 3, 5]. For example, in [5], using the Cauchy–Kowalevski theorem,
the authors found (locally) all analytic linear connections for a prescribed
analytic Ricci tensor. In the C∞ situation, we can not apply the Cauchy–
Kowalevski theorem.
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From now on, x1, . . . , xn denote the usual coordinates on Rn and ∂1, . . . , ∂n
denote the usual canonical vector fields on Rn. Given a map f : Rn → R
let (f)i := ∂i(f) = ∂f

∂xi
for i = 1, . . . , n.

2. The main result. The main result of the paper is the following

Theorem 1. Let M be a manifold such that dim(M) ≥ 2 and let xo ∈
M . Let r be a tensor field of type (0, 2) on M such that r(X,X) = 0
around xo for some vector field X ∈ X (M) with Xxo 6= 0. Then there is a
linear connection ∇ on M such that r is the Ricci tensor S of ∇ on some
neighborhood of xo.

Proof. We may assume that M = Rn, xo = 0 and X = ∂1.
Let r be the tensor field of type (0, 2) on Rn and denote rij = r(∂i, ∂j)

for i, j = 1, . . . , n. Then

(2) r11 = 0.

The Ricci tensor S of a linear connection ∇ has the following rather
well-known coordinate expression

(3) S(∂i, ∂j) =
n∑
k=1

[(Γkij)k − (Γkkj)i] +
n∑

k,l=1

[ΓlijΓ
k
kl − ΓlkjΓ

k
il], i, j = 1, . . . , n,

where Γijk are the Christoffel symbols of ∇, see [4].
It is sufficient to show that under assumption (2), equation (1) has a local

solution (defined on some neighborhood of 0) ∇ = (Γabc) such that

(4)

Γabc = 0 for a = 3, . . . , n, b, c = 1, . . . , n,

Γ2
bc = 0 for b, c = 2, . . . , n,

Γ2
b1 = 0 for b = 1, . . . , n,

Γ1
1b = 0 for b = 1, . . . , n.

In other words, we put Γabc = 0 for a, b, c = 1, . . . , n except for Γ2
1j with

j = 2, . . . , n and Γ1
ij with i = 2, . . . , n and j = 1, . . . , n.

Using (4) and the coordinate expression (3), we get

(5) S(∂i, ∂j) =

2∑
k=1

(Γkij)k−
∑

k,l∈{1,2}
k 6=1

ΓlkjΓ
k
il = (Γ1

ij)1+(Γ2
ij)2−Γ1

2jΓ
2
i1−Γ2

1jΓ
1
i2

as Γabc = 0 if a = 3, . . . , n and b, c = 1, . . . , n, and Γaac = 0 if a, c = 1, . . . , n.
Then using (5) and (4), we get

(6) S(∂1, ∂1) = 0,

(7) S(∂1, ∂j) = (Γ2
1j)2 for j = 2, . . . , n,
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(8) S(∂i, ∂1) = (Γ1
i1)1 for i = 2, . . . , n,

(9) S(∂i, ∂j) = (Γ1
ij)1 − Γ2

1jΓ
1
i2 for i, j = 2, . . . , n.

More precisely, to obtain (6) we use (5) with (i, j) = (1, 1) and the as-
sumed (in (4)) conditions Γ1

11 = Γ2
11 = 0. To obtain (7), we use (5) with

(i, j) = (1, j) and the assumed (in (4)) conditions Γ2
11 = Γ1

12 = Γ1
1j = 0. To

obtain (8), we use (5) with (i, j) = (i, 1) and the assumed (in (4)) condi-
tions Γ2

11 = Γ2
i1 = 0. To obtain (9), we use (5) with i, j = 2, . . . , n and the

assumed (in (4)) conditions Γ2
i1 = Γ2

ij = 0.
Then, by (2), (4) and (6)–(9), the equation (1) with unknown∇ satisfying

(4) is equivalent to the system of systems of differential equations

(10) (Γ2
1j)2 = r1j for j = 2, . . . , n,

(11) (Γ1
i1)1 = ri1 for i = 2, . . . , n,

(12) (Γ1
ij)1 = Γ2

1jΓ
1
i2 + rij for i, j = 2, . . . , n.

It remains to observe that the system (10)–(12) has a solution of class C∞.
We see that the solution of (10) is

Γ2
1j(x) =

∫ x2

0
r1j(x

1, t, x3, . . . , xn)dt + aj(x
1, x3, . . . , xn)

for j = 2, . . . , n, and that the solution of (11) is

Γ1
i1(x) =

∫ x1

0
ri1(t, x2, . . . , xn)dt + bi(x

2, . . . , xn)

for i = 2, . . . , n, where aj , bi are arbitrary maps in n− 1 variables.
Substituting the obtained Γ2

1j into (12), we get the system of ordinary
first order differential equations with parameters x2, . . . , xn.

Such obtained system (12) has a solution of class C∞ according to the
well-known theory of differential equations. We can even solve it explicitly
as follows.

Each of the equations

(Γ1
i2)1 = Γ2

12Γ1
i2 + ri2 for i = 2, . . . , n

(from the system (12)) is linear non-homogeneous with parameters. Solving
them separately (using the well-known method), we obtain

Γ1
i2(x1, . . . , xn)

=

(∫ x1

0
ri2(t, x2, . . . , xn)e−

∫ t
0 Γ2

12(τ,x2,...,xn)dτdt + ci2(x2, . . . , xn)

)
× e

∫ x1

0 Γ2
12(t,x2,...,xn)dt
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for i = 2, . . . , n, where ci2 are arbitrary maps in n − 1 variables. Then the
other equations of (12) (with Γ1

i2 as above) have solutions given by

Γ1
ij(x

1, . . . , xn)

=

∫ x1

0
(Γ2

1j(t, x
2, . . . , xn)Γ1

i2(t, x2, . . . , xn) + rij(t, x
2, . . . , xn))dt

+ dij(x
2, . . . , xn),

where dij are arbitrary maps in n− 1 variables.
The proof of Theorem 1 is now complete. �

We have the following interesting corollary of Theorem 1.

Corollary 1. Let M be a manifold such that dim(M) ≥ 2 and let xo ∈M .
Let ω be a 2-form on M . Then there is a linear connection ∇ on M such
that ω is the Ricci tensor S of ∇ on some neighborhood of xo.

Proof. For any vector field X (in particular with Xxo 6= 0) we have ω(X,X)
= 0. Then we apply Theorem 1 with ω playing the role of r. �
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