PAWEE SOBOLEWSKI

Products of Toeplitz and Hankel operators on the Bergman space in the polydisk

Abstract

In this paper we obtain a condition for analytic square integrable functions f, g which guarantees the boundedness of products of the Toeplitz operators $T_{f} T_{\bar{g}}$ densely defined on the Bergman space in the polydisk. An analogous condition for the products of the Hankel operators $H_{f} H_{g}^{*}$ is also given.

1. Introduction. Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C}. For a fixed positive integer $n \geq 2$, the unit polydisk \mathbb{D}^{n} is the Cartesian product of n copies of \mathbb{D}. By $d A$ we will denote the Lebesgue volume measure on \mathbb{D}^{n}, normalized so that $A\left(\mathbb{D}^{n}\right)=1$.
The Bergman space $A^{2}=A^{2}\left(\mathbb{D}^{n}\right)$ is the space of all analytic functions on \mathbb{D}^{n} such that

$$
\|f\|^{2}=\int_{\mathbb{D}^{n}}|f(z)|^{2} d A(z)<\infty
$$

For $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathbb{D}^{n}$ the reproducing kernel in A^{2} is the function K_{w} given by

$$
K_{w}(z)=\prod_{j=1}^{n} \frac{1}{\left(1-\bar{w}_{j} z_{j}\right)^{2}}, \quad z \in \mathbb{D}^{n} .
$$

If $\langle\cdot, \cdot\rangle$ is the inner product in $L^{2}\left(\mathbb{D}^{n}\right)$, then for every function $f \in A^{2}$ we have

$$
\left\langle f, K_{w}\right\rangle=f(w), \quad w \in \mathbb{D}^{n} .
$$

2010 Mathematics Subject Classification. 30H05, 32A36.
Key words and phrases. Toeplitz operator, Bergman space.

In the special case when $f=K_{w}$, we obtain

$$
\left\|K_{w}\right\|^{2}=\left\langle K_{w}, K_{w}\right\rangle=K_{w}(w)=\prod_{j=1}^{n} \frac{1}{\left(1-\left|w_{j}\right|^{2}\right)^{2}}, \quad w \in \mathbb{D}^{n}
$$

So, the normalized reproducing kernel for A^{2} is

$$
k_{w}(z)=\prod_{j=1}^{n} \frac{1-\left|w_{j}\right|^{2}}{\left(1-\bar{w}_{j} z_{j}\right)^{2}}, \quad z \in \mathbb{D}^{n}
$$

Now we quote the definition of the Toeplitz operator. The orthogonal projection P from $L^{2}\left(\mathbb{D}^{n}\right)$ onto A^{2} is defined by

$$
P(f)(w)=\left\langle f, K_{w}\right\rangle=\int_{\mathbb{D}^{n}} f(z) \prod_{j=1}^{n} \frac{1}{\left(1-\bar{z}_{j} w\right)^{2}} d A(z), \quad f \in L^{2}\left(\mathbb{D}^{n}\right), w \in \mathbb{D}^{n}
$$

For a function $f \in L^{\infty}$ and $h \in A^{2}$ the Toeplitz operator T_{f} is given by

$$
T_{f} h(w)=P(f h)(w), \quad w \in \mathbb{D}^{n}
$$

Similarly, the Hankel operator H_{f} acting on A^{2} is defined as

$$
H_{f} h=f h-P(f h), \quad h \in A^{2}
$$

and P is the projection mentioned above. It is clear that $H_{f} h \in A^{2 \perp}$. Both operators T_{f} and H_{f} can be defined when the symbol f belongs to the space $L^{2}\left(\mathbb{D}^{n}\right)$. In that case the Toeplitz and Hankel operators are densely defined on the Bergman space A^{2}, that is on H^{∞}.

Let $w_{i}, i=1,2, \ldots, n$, belong to the unit disk \mathbb{D}. For each w_{i} we define an automorphism $\varphi_{w_{i}}$ of \mathbb{D} by

$$
\varphi_{w_{i}}\left(z_{i}\right)=\frac{w_{i}-z_{i}}{1-\bar{w}_{i} z_{i}}, \quad z_{i} \in \mathbb{D}, i=1,2, \ldots, n
$$

Then the map

$$
\varphi_{w}(z)=\left(\varphi_{w_{1}}\left(z_{1}\right), \varphi_{w_{2}}\left(z_{2}\right), \ldots, \varphi_{w_{n}}\left(z_{n}\right)\right), \quad z, w \in \mathbb{D}^{n}
$$

is an automorphism of the polydisk \mathbb{D}^{n}, in fact, $\varphi_{w}^{-1}=\varphi_{w}$. The real Jacobian of φ_{w} is equal to

$$
\left|k_{w}\right|^{2}=\prod_{j=1}^{n} \frac{\left(1-\left|w_{j}\right|^{2}\right)^{2}}{\left|1-\bar{w}_{j} z_{j}\right|^{4}}
$$

thus we have change-of-variable formula

$$
\int_{\mathbb{D}^{n}}\left(h \circ \varphi_{w}\right)(z) d A(z)=\int_{\mathbb{D}^{n}} h(z)\left|k_{w}(z)\right|^{2} d A(z)
$$

whenever such integrals make sense.
2. Problem and results. As we mentioned, the Toeplitz operator may be considered when the index f belongs to the space $L^{2}\left(\mathbb{D}^{n}\right)$. If $f \in A^{2}$, then by the definition of the Toeplitz operator, we have

$$
T_{\bar{f}} h(w)=P(\bar{f} h)(w)=\int_{\mathbb{D}^{n}} \overline{f(z)} h(z) \prod_{j=1}^{n} \frac{1}{\left(1-\bar{z}_{j} w\right)^{2}} d A(z), \quad w \in \mathbb{D}^{n}
$$

The main problem in this note is what conditions must be satisfied by functions $f, g \in A^{2}$ to guarantee that the product of the Toeplitz operators $T_{f} T_{\bar{g}}$ is bounded on the Bergman space A^{2} in the polydisk \mathbb{D}^{n}. We provide a sufficient condition for boundedness of such products. Similarly, we give a sufficient condition to ensure that the product of the Hankel operators $H_{f} H_{g}^{*}$ is bounded on the space $\left(A^{2}\right)^{\perp}$, where H^{*} is the adjoint of H.

For $u \in L^{2}\left(\mathbb{D}^{n}\right)$ we denote

$$
\tilde{u}(w)=B[u](w)=\int_{\mathbb{D}^{n}}\left(u \circ \varphi_{w}\right)(z) d A(z), \quad w \in \mathbb{D}^{n}
$$

In [9] Stroethoff and Zheng established the following necessary condition for boundedness of the products $T_{f} T_{\bar{g}}$ on the unit disk \mathbb{D}.
Theorem 1. Let f and g be in A^{2}. If $T_{f} T_{\bar{g}}$ is bounded, then

$$
\sup _{w \in \mathbb{D}} \widetilde{|f|^{2}}(w) \widetilde{|g|^{2}}(w)<\infty
$$

In the same paper the authors also gave a little stronger sufficient condition.

Theorem 2. Let f and g be in A^{2}. If there is a positive constant ε such that

$$
\sup _{w \in \mathbb{D}} \widetilde{|f|^{2+\varepsilon}}(w) \widetilde{|g|^{2+\varepsilon}}(w)<\infty
$$

then $T_{f} T_{\bar{g}}$ is bounded.
There is a conjecture that the necessary condition is also a sufficient condition for boundedness. But in view of a counter-example of Nazarov [6] for Toeplitz products on the Hardy space, it may not be possible to prove that this necessary condition is also sufficient.

Stroethoff and Zheng [12] showed the analogous results on the Bergman spaces of the polydisk [11], weighted Bergman space of the unit disk [13] and the unit ball [12]. Next, Miao in [4] gave an interesting way to transfer Theorem 1 and Theorem 2 to the space $A_{\alpha}^{p}, 1<p<\infty, \alpha>-1$, of the unit ball. Recently, Michalska and Sobolewski [5] improved a sufficient condition on boundedness of $T_{f} T_{\bar{g}}$ on A_{α}^{p}.

A similar problem concerns the products of the Hankel operators $H_{f} H_{g}^{*}$. Such operators are densely defined on space $\left(A^{2}\right)^{\perp}$. The following condition for the Hankel products on the unit disk was established by Stroethoff and Zheng in [9].

Theorem 3. Let f and g be in $L^{2}(\mathbb{D}, d A)$. If $H_{f} H_{g}^{*}$ is bounded on $\left(A^{2}\right)^{\perp}$, then

$$
\sup _{w \in \mathbb{D}}\left\|f \circ \varphi_{w}-P\left(f \circ \varphi_{w}\right)\right\|_{L^{2}}\left\|g \circ \varphi_{w}-P\left(g \circ \varphi_{w}\right)\right\|_{L^{2}}<\infty .
$$

The same authors showed that this necessary condition is, like for $T_{f} T_{\bar{g}}$, very close to being sufficient.

Theorem 4. Let f and g be in $L^{2}(\mathbb{D}, d A)$. If there is a positive constant ε such that

$$
\sup _{w \in \mathbb{D}}\left\|f \circ \varphi_{w}-P\left(f \circ \varphi_{w}\right)\right\|_{L^{2+\varepsilon}}\left\|g \circ \varphi_{w}-P\left(g \circ \varphi_{w}\right)\right\|_{L^{2+\varepsilon}}<\infty
$$

then the product $H_{f} H_{g}^{*}$ is bounded on $\left(A^{2}\right)^{\perp}$.
Their theorems were extended to the weighted Bergman spaces of the unit ball by Lu and Liu [2] and for the Bergman space of the polydisk by Lu and Shang [3].

In this paper we provide a sufficient condition for the boundedness of the operators $T_{f} T_{\bar{g}}$ and $H_{f} H_{g}^{*}$.

For $u \in L^{1}, \varepsilon>0$ and $w \in \mathbb{D}^{n}$ we define

$$
B_{\varepsilon}[u](w)=\int_{\mathbb{D}^{n}}\left(u \circ \varphi_{w}\right)(z) \prod_{i=1}^{n} \log ^{1+\varepsilon} \frac{1}{1-\left|z_{i}\right|} d A(z)
$$

where φ_{w} is the automorphism of \mathbb{D}^{n} and $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. The following theorems are the main results in this paper.

Theorem 5. Let $f, g \in A^{2}$. If there is a positive constant $\varepsilon>0$ such that

$$
\sup _{w \in \mathbb{D}^{n}} B_{\varepsilon}\left[|f|^{2}\right](w) B_{\varepsilon}\left[|g|^{2}\right](w)<\infty
$$

then the operator $T_{f} T_{\bar{g}}$ is bounded on A^{2}.
Theorem 6. Let $f, g \in L^{2}\left(\mathbb{D}^{n}\right)$. If there is a positive constant $\varepsilon>0$ such that

$$
\begin{aligned}
\sup _{w \in \mathbb{D}^{n}} & \left\|\left(f \circ \varphi_{w}-P\left(f \circ \varphi_{w}\right)\right) \prod_{j=1}^{n} \log ^{(1+\varepsilon) / 2} \frac{1}{1-\left|z_{j}\right|}\right\|_{L^{2}} \\
& \times\left\|\left(g \circ \varphi_{w}-P\left(g \circ \varphi_{w}\right)\right) \prod_{j=1}^{n} \log ^{(1+\varepsilon) / 2} \frac{1}{1-\left|z_{j}\right|}\right\|_{L^{2}}<\infty
\end{aligned}
$$

then the operator $H_{f} H_{g}^{*}$ is bounded on $\left(A^{2}\right)^{\perp}$.
After sending this paper for publication we found that Theorem 5 is contained in a result obtained in [1].
3. Proofs. A very important role in our considerations is played by the formula for the inner product in A^{2} introduced in [11]. Let $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ be a nonempty subset of $\{1,2, \ldots, n\}$ with $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}$. We define the measure on \mathbb{D}^{n} by

$$
\begin{aligned}
d \mu_{\alpha}(z)=\frac{3^{n-m}}{6^{m}} & \left(1-\left|z_{1}\right|^{2}\right)^{2}\left(1-\left|z_{2}\right|^{2}\right)^{2} \ldots\left(1-\left|z_{n}\right|^{2}\right)^{2} \\
& \times \prod_{j \in \alpha}\left(5-2\left|z_{j}\right|\right)^{2} d A\left(z_{1}\right) d A\left(z_{2}\right) \ldots d A\left(z_{n}\right)
\end{aligned}
$$

and

$$
d \mu_{\emptyset}(z)=3^{n}\left(1-\left|z_{1}\right|^{2}\right)^{2}\left(1-\left|z_{2}\right|^{2}\right)^{2} \ldots\left(1-\left|z_{n}\right|^{2}\right)^{2} d A\left(z_{1}\right) d A\left(z_{2}\right) \ldots d A\left(z_{n}\right),
$$

where m is the cardinality of α. Let us set $D_{j} h=\partial h / \partial z_{j}$ and

$$
D^{\alpha} h=D_{\alpha_{1}} D_{\alpha_{2}} \ldots D_{\alpha_{m}} h, \quad D^{\emptyset} h=h .
$$

For $f, g \in A^{2}$ we have

$$
\begin{equation*}
\int_{\mathbb{D}^{n}} f(z) \overline{g(z)} d A(z)=\sum_{\alpha} \int_{\mathbb{D}^{n}} D^{\alpha} f(z) \overline{D^{\alpha} g(z)} d \mu_{\alpha}(z) \tag{1}
\end{equation*}
$$

where α runs over all subsets of $\{1,2, \ldots, n\}$.
We start with some lemmas which we will apply to prove the main theorems.

Lemma 1. Let $f \in A^{2}, h \in H^{\infty}$ and $\varepsilon>0$. If $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a subset of $\{1,2, \ldots, n\}$, then

$$
\begin{aligned}
& \left|D^{\alpha} T_{f}^{\alpha} h(w)\right| \leq C \prod_{i=1}^{n} \frac{1}{\left(1-\left|w_{i}\right|^{2}\right)}\left(B_{\varepsilon}\left[|f|^{2}\right](w)\right)^{\frac{1}{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|h(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}}
\end{aligned}
$$

for all $w \in \mathbb{D}^{n}$.

Proof. First we show the inequality for $\alpha=\emptyset$.

$$
\begin{aligned}
& \left|T_{\bar{f}} h(w)\right| \leq 2^{n} \int_{\mathbb{D}^{n}}|f(z)| \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} \\
& \quad \times|h(z)| \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|} \prod_{i=1}^{n} \log ^{-\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z) \\
& \leq C\left(\int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left(1-\left|w_{i}\right|^{2}\right)^{2}}|f(z)|^{2} \prod_{i=1}^{n} \frac{\left(1-\left|w_{i}\right|^{2}\right)^{2}}{\left|1-\bar{w}_{i} z_{i}\right|^{4}} \prod_{i=1}^{n} \log ^{1+\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|}\right)^{\frac{1}{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|h(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-(1+\varepsilon)} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}} \\
& \left.\leq C \prod_{i=1}^{n} \frac{1}{\left(1-\left|w_{i}\right|^{2}\right)}\left\{\left.B_{\varepsilon}| | f\right|^{2}\right](w)\right\}^{\frac{1}{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|h(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-(1+\varepsilon)} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}}
\end{aligned}
$$

In the case $\alpha=\{1,2, \ldots, n\}$, we have

$$
\begin{aligned}
\left|D^{\alpha} T_{\bar{f}} h(w)\right| \leq & 2^{n} \int_{\mathbb{D}^{n}}|f(z)||h(z)| \prod_{i=1}^{n} \frac{\left|z_{i}\right|}{\left|1-\bar{w}_{i} z_{i}\right|^{3}} d A(z) \\
\leq & \int_{\mathbb{D}^{n}}|f(z)| \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} \\
& \times|h(z)| \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|} \prod_{i=1}^{n} \log ^{-\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z) .
\end{aligned}
$$

Following the previous calculations, we obtain the desired inequality. It remains to consider the case when α is a proper subset of $\{1,2, \ldots, n\}$. Then

$$
\begin{aligned}
\left|D^{\alpha} T_{\bar{f}} h(w)\right| \leq & \int_{\mathbb{D}^{n}}|f(z)||h(z)| \prod_{i \in \alpha} \frac{2\left|z_{i}\right|}{\left|1-\bar{w}_{i} z_{i}\right|^{3}} \prod_{i \notin \alpha} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} d A(z) \\
\leq & C \int_{\mathbb{D}^{n}}|f(z)| \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} \\
& \times|h(z)| \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|} \prod_{i=1}^{n} \log ^{-\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z),
\end{aligned}
$$

where the last inequality follows from

$$
\left|\prod_{j \in \alpha} \frac{2 z_{j}}{\left(1-\bar{w}_{j} z_{j}\right)^{3}} \prod_{j \notin \alpha} \frac{1}{\left(1-\bar{w}_{j} z_{j}\right)^{2}}\right| \leq C \prod_{j=1}^{n} \frac{1}{\left|1-\bar{w}_{j} z_{j}\right|^{3}}
$$

Lemma 2. Let $\varepsilon>0, u \in\left(A^{2}\right)^{\perp}, f \in L^{2}\left(\mathbb{D}^{n}\right), \alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\} \subset$ $\{1,2, \ldots, n\}, \alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}$. Then

$$
\begin{aligned}
& \left|D^{\alpha} H_{f}^{*} u(w)\right| \leq C \prod_{j=1}^{n} \frac{1}{1-\left|w_{j}\right|^{2}}\left\|\left(f \circ \varphi_{w}-P\left(f \circ \varphi_{w}\right)\right) \prod_{j=1}^{n} \log ^{(1+\varepsilon) / 2} \frac{1}{1-\left|z_{j}\right|}\right\| \\
& \quad \times\left\{\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{j=1}^{n} \frac{1}{\left|1-\bar{z}_{j} w_{j}\right|^{2}} \prod_{j=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}}
\end{aligned}
$$

Proof. The proof will proceed in three steps as above. Suppose first that $\alpha=\emptyset$. Then

$$
\left\langle H_{f}^{*} u, K_{w}\right\rangle=\prod_{j=1}^{n} \frac{1}{1-\left|w_{j}\right|^{2}}\left\langle H_{f}^{*} u, k_{w}\right\rangle=\prod_{j=1}^{n} \frac{1}{1-\left|w_{j}\right|^{2}}\left\langle u, H_{f} k_{w}\right\rangle
$$

In view of $[8$, Proposition 1] we may write

$$
H_{f} k_{w}=\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right) k_{w}
$$

and

$$
\left\langle H_{f}^{*} u, K_{w}\right\rangle=\prod_{j=1}^{n} \frac{1}{1-\left|w_{j}\right|^{2}}\left\langle u,\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right) k_{w}\right\rangle
$$

Thus, by Hölder's inequality, we obtain

$$
\begin{aligned}
& \left|\left\langle u,\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right) k_{w}(z)\right\rangle\right| \\
& =\left\lvert\, \int_{\mathbb{D}^{n}} u(z) \prod_{j=1}^{n} \log ^{-\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} \overline{\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right)(z) k_{w}(z)}\right. \\
& \left.\quad \times \prod_{j=1}^{n} \log ^{\frac{1+\varepsilon}{2}} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z) \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\{\int_{\mathbb{D}^{n}}\left|\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right)(z)\right|^{2}\left|k_{w}(z)\right|^{2} \prod_{j=1}^{n} \log ^{1+\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}} \\
& \times\left\{\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{j=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}}
\end{aligned}
$$

By the change-of-variable formula $z \mapsto \varphi_{w}(z)$ and using that $\left|1-\bar{z}_{j} w_{j}\right| \leq 2$, we have

$$
\begin{aligned}
&\left|\left\langle u,\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right) k_{w}(z)\right\rangle\right| \\
& \leq C \|\left(f \circ \varphi_{w}-P\left(f \circ \varphi_{w}\right)\right) \prod_{j=1}^{n} \log ^{(1+\varepsilon) / 2} \frac{1}{1-\left|z_{j}\right|} \| \\
& \times\left\{\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{j=1}^{n} \frac{1}{\left|1-\bar{z}_{j} w_{j}\right|^{2}} \prod_{j=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}} .
\end{aligned}
$$

This proves the first case. Now, let $\alpha=\{1,2, \ldots, n\}$. Then

$$
H_{f}^{*} u(w)=P(\bar{f} u)(w)=\int_{\mathbb{D}^{n}} \overline{f(z)} u(z) \prod_{j=1}^{n} \frac{1}{\left(1-w_{j} \bar{z}_{j}\right)^{2}} d A(z)
$$

Hence

$$
D^{\alpha} H_{f}^{*} u(w)=\int_{\mathbb{D}^{n}} \overline{f(z)} u(z) \prod_{j=1}^{n} \frac{2 \bar{z}_{j}}{\left(1-w_{j} \bar{z}_{j}\right)^{3}} d A(z)
$$

Let

$$
F_{w}(z)=P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}(z) \prod_{j=1}^{n} \frac{2 z_{j}}{\left(1-\bar{w}_{j} z_{j}\right)^{3}}
$$

The function F_{w} belongs to $\in A^{2}$, thus

$$
\left\langle u, F_{w}\right\rangle=\int_{\mathbb{D}^{n}} u(z) \overline{P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}(z) \prod_{j=1}^{n} \frac{2 z_{j}}{\left(1-\bar{w}_{j} z_{j}\right)^{3}}} d A(z) \equiv 0
$$

So,

$$
\begin{aligned}
D^{\alpha} H_{f}^{*} u(w) & =D^{\alpha} H_{f}^{*} u(w)-\left\langle u, F_{w}\right\rangle \\
& =\int_{\mathbb{D}^{n}} u(z)\left(f(z)-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}(z)\right) \prod_{j=1}^{n} \frac{2 z_{j}}{\left(1-\bar{w}_{j} z_{j}\right)^{3}} d A(z)
\end{aligned}
$$

Using Hölder's inequality, we get

$$
\begin{aligned}
& \left|D^{\alpha} H_{f}^{*} u(w)\right| \\
& \leq C\left\{\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{j=1}^{n} \frac{1}{\left|1-\bar{z}_{j} w_{j}\right|^{2}} \prod_{j=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}} \\
& \times \prod_{j=1}^{n} \frac{1}{1-\left|w_{j}\right|^{2}} \\
& \times\left\{\int_{\mathbb{D}^{n}}\left|\left(f-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}\right)(z)\right|^{2}\left|k_{w}(z)\right|^{2} \prod_{j=1}^{n} \log ^{1+\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}} \\
& =C \prod_{j=1}^{n} \frac{1}{1-\left|w_{j}\right|^{2}} \\
& \times\left\{\int_{\mathbb{D}^{n}}^{\left.|u(z)|^{2} \prod_{j=1}^{n} \frac{1}{\left|1-\bar{z}_{j} w_{j}\right|^{2}} \prod_{j=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{j}}\left(z_{j}\right)\right|} d A(z)\right\}^{\frac{1}{2}}}\right. \\
& \times\left\|\left(f \circ \varphi_{w}-P\left(f \circ \varphi_{w}\right)\right) \prod_{j=1}^{n} \log ^{(1+\varepsilon) / 2} \frac{1}{1-\left|z_{j}\right|}\right\|_{L^{2}}
\end{aligned}
$$

Suppose now that $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a nonempty subset of $\{1,2, \ldots, n\}$. Then

$$
D^{\alpha} H_{f}^{*} u(w)=\int_{\mathbb{D}^{n}} \overline{f(z)} u(z) \prod_{j \in \beta} \frac{2 \bar{z}_{j}}{\left(1-w_{j} \bar{z}_{j}\right)^{3}} \prod_{j \notin \beta} \frac{1}{\left(1-w_{j} \bar{z}_{j}\right)^{2}} d A(z)
$$

Putting

$$
F_{w}(z)=P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}(z) \prod_{j \in \beta} \frac{2 z_{j}}{\left(1-\bar{w}_{j} z_{j}\right)^{3}} \prod_{j \notin \beta} \frac{1}{\left(1-\bar{w}_{j} z_{j}\right)^{2}}
$$

and using the fact that

$$
\left|\prod_{j \in \beta} \frac{2 z_{j}}{\left(1-\bar{w}_{j} z_{j}\right)^{3}} \prod_{j \notin \beta} \frac{1}{\left(1-\bar{w}_{j} z_{j}\right)^{2}}\right| \leq C \prod_{j=1}^{n} \frac{1}{\left|1-\bar{w}_{j} z_{j}\right|^{3}}
$$

we obtain

$$
\begin{aligned}
& \left|D^{\beta} H_{f}^{*} u(w)\right| \\
& \leq C \int_{\mathbb{D}^{n}}|u(z)| \prod_{j=1}^{n} \frac{1}{\left|1-\bar{w}_{j} z_{j}\right|}\left|f(z)-P\left(f \circ \varphi_{w}\right) \circ \varphi_{w}(z)\right| \prod_{j=1}^{n} \frac{1}{\left|1-\bar{w}_{j} z_{j}\right|^{2}} d A(z)
\end{aligned}
$$

Using the same arguments as in the proof of Lemma 1, the stated result follows.

Now, we give the proofs of the main theorems.

Proof of Theorem 5. Let $u, v \in H^{\infty}$. We show that

$$
\left|\left\langle T_{f} T_{\bar{g}} u, v\right\rangle\right| \leq C\|u\|\|v\|
$$

By (1), we get

$$
\begin{aligned}
\left\langle T_{f} T_{\bar{g}} u, v\right\rangle & =\left\langle T_{\bar{g}} u, T_{\bar{f}} v\right\rangle \\
& =\int_{\mathbb{D}^{n}} T_{\bar{g}} u(w) \overline{T_{\bar{f}} v(w)} d A(w) \\
& =\sum_{\alpha} \int_{\mathbb{D}^{n}} D^{\alpha} T_{\bar{g}} u(w) \overline{D^{\alpha} T_{\bar{f}} v(w)} d \mu_{\alpha}(w)
\end{aligned}
$$

Using Lemma 1, we obtain

$$
\begin{aligned}
& \left|\left\langle T_{f} T_{\bar{g}} u, v\right\rangle\right| \leq C \sum_{\alpha} \int_{\mathbb{D}^{n}}\left(\int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left(1-\left|w_{i}\right|^{2}\right)}\left(B_{\varepsilon}\left[|f|^{2}\right](w)\right)^{\frac{1}{2}}\right. \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}} \\
& \quad \times \int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left(1-\left|w_{i}\right|^{2}\right)}\left(B_{\varepsilon}\left[|g|^{2}\right](w)\right)^{\frac{1}{2}} \\
& \left.\quad \times\left(\int_{\mathbb{D}^{n}}|v(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}}\right) d \mu_{\alpha}(z) \\
& \quad \leq C \sup _{w \in D^{n}}\left\{B_{\varepsilon}\left[|f|^{2}\right](w) B_{\varepsilon}\left[|g|^{2}\right](w)\right\}^{\frac{1}{2}} \sum_{\alpha} \int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left(1-\left|w_{i}\right|^{2}\right)^{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|v(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}} d \mu_{\alpha}(w)
\end{aligned}
$$

Since

$$
\begin{aligned}
d \mu_{\alpha}(z) & =\frac{3^{n-m}}{6^{m}} \prod_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right)^{2} \prod_{j \in \alpha}\left(5-2\left|z_{j}\right|\right)^{2} d A\left(z_{1}\right) d A\left(z_{2}\right) \ldots d A\left(z_{n}\right) \\
& \leq 3^{n} \prod_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right)^{2} d A\left(z_{1}\right) d A\left(z_{2}\right) \ldots d A\left(z_{n}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
& \left|\left\langle T_{f} T_{\bar{g}} u, v\right\rangle\right| \leq C \sup _{w \in D^{n}}\left\{B_{\varepsilon}\left[|f|^{2}\right](w) B_{\varepsilon}\left[|g|^{2}\right](w)\right\}^{\frac{1}{2}} \\
& \quad \times \int_{\mathbb{D}^{n}}\left(\int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|v(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z)\right)^{\frac{1}{2}} d A(w) .
\end{aligned}
$$

Now, applying Hölder's inequality and Fubini's theorem, we have

$$
\begin{aligned}
&\left|\left\langle T_{f} T_{\bar{g}} u, v\right\rangle\right| \leq C \sup _{w \in D^{n}}\left\{B_{\varepsilon}\left[|f|^{2}\right](w) B_{\varepsilon}\left[|g|^{2}\right](w)\right\}^{\frac{1}{2}} \\
& \times\left(\int_{\mathbb{D}^{n}} \int_{\mathbb{D}^{n}}|u(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z) d A(w)\right)^{\frac{1}{2}} \\
& \times\left(\int_{\mathbb{D}^{n}} \int_{\mathbb{D}^{n}}|v(z)|^{2} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(z) d A(w)\right)^{\frac{1}{2}} \\
&=C \sup _{w \in D^{n}}\left\{B_{\varepsilon}\left[|f|^{2}\right](w) B_{\varepsilon}\left[|g|^{2}\right](w)\right\}^{\frac{1}{2}} \\
& \times\left(\int_{\mathbb{D}^{n}}|u(z)|^{2} \int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(w) d A(z)\right)^{\frac{1}{2}} \\
& \quad \times\left(\int_{\mathbb{D}^{n}}|v(z)|^{2} \int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(w) d A(z)\right)^{\frac{1}{2}} .
\end{aligned}
$$

It remains to prove that the integral

$$
I=\int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{1}{\left|1-\bar{w}_{i} z_{i}\right|^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} d A(w)
$$

is convergent independently of z. Indeed, the change-of-variable formula $\zeta=\varphi_{z}(w)$ and the fact that $\left|\varphi_{w_{i}}\left(z_{i}\right)\right|=\left|\varphi_{z_{i}}\left(w_{i}\right)\right|$ imply

$$
\begin{aligned}
I & =\int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{\left|1-\bar{z}_{i} w_{i}\right|^{2}}{\left(1-\left|z_{i}\right|^{2}\right)^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\varphi_{z_{i}}\left(w_{i}\right)\right|} \prod_{i=1}^{n} \frac{\left(1-\left|z_{i}\right|^{2}\right)^{2}}{\left|1-\bar{z}_{i} w_{i}\right|^{4}} d A(w) \\
& =\int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{\mid 1-\bar{z}_{i} \varphi_{z_{i}}\left(\left.\zeta_{i}\right|^{2}\right.}{\left(1-\left|z_{i}\right|^{2}\right)^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\zeta_{i}\right|} d A(\zeta) \\
& =\int_{\mathbb{D}^{n}} \prod_{i=1}^{n} \frac{\frac{\left(1-\left|z_{i}\right|^{2}\right)^{2}}{\left(1-\left.z_{i}\right|^{2}\right.}}{\left(1-\left|z_{i}\right|^{2}\right)^{2}} \prod_{i=1}^{n} \log ^{-1-\varepsilon} \frac{1}{1-\left|\zeta_{i}\right|} d A(\zeta) \\
& =\prod_{i=1}^{n} \int_{\mathbb{D}} \frac{1}{\left|1-\bar{z}_{i} \zeta_{i}\right|^{2}} \log ^{-1-\varepsilon} \frac{1}{1-\left|\zeta_{i}\right|} d A\left(\zeta_{i}\right) .
\end{aligned}
$$

We need only to show that

$$
I_{j}=\int_{\mathbb{D}} \frac{1}{\left|1-\bar{z}_{j} \zeta_{j}\right|^{2}} \log ^{-1-\varepsilon} \frac{1}{1-\left|\zeta_{j}\right|} d A\left(\zeta_{j}\right) \leq C
$$

for $j=1,2, \ldots, n$. Let $\zeta_{j}=r e^{i \theta}$.
According to Theorem 1.7 in [14], we have

$$
\int_{0}^{2 \pi} \frac{1}{\left|1-\bar{z}_{j} r e^{i \theta}\right|^{2}} d \theta \leq \frac{C}{1-|z| r} \leq \frac{C}{1-r}
$$

Therefore

$$
I_{j} \leq C \frac{1}{\pi} \int_{0}^{1} \frac{r}{1-r} \log ^{-1-\varepsilon} \frac{1}{1-r} d r
$$

By the change-of-variable formula,

$$
\begin{aligned}
I_{j} & \leq C \int_{0}^{+\infty} t^{-1-\varepsilon}\left(1-e^{-t}\right) d t \\
& =C \int_{0}^{1} t^{-1-\varepsilon}\left(1-e^{-t}\right) d t+\int_{1}^{+\infty} t^{-1-\varepsilon}\left(1-e^{-t}\right) d t \\
& \leq C \int_{0}^{1} t^{-\varepsilon} d t+\int_{1}^{+\infty} t^{-1-\varepsilon} d t .
\end{aligned}
$$

Clearly, for $\varepsilon \in(0,1)$ the integrals I_{i} are bounded by a constant which is independent of z. Finally, we conclude that

$$
\left|\left\langle T_{f} T_{\bar{g}} u, v\right\rangle\right| \leq C\|u\|\|v\|,
$$

which proves the theorem.
Proof of Theorem 6. To prove the theorem we need to use Lemma 2 and the method used in the proof of Theorem 5. The details are left to the reader.

Now, we propose one additional theorem concerning products of Toeplitz and Hankel operators $T_{f} H_{g}^{*}$. The following result can be proved in much the same way as Theorem 5 and Theorem 6.
Theorem 7. Let $f \in A^{2}, g \in L^{2}\left(\mathbb{D}^{n}\right)$. If

$$
\sup _{\mathbb{D}^{n}} B_{\varepsilon}\left[|f|^{2}\right](w)\left\|\left(g \circ \varphi_{w}-P\left(g \circ \varphi_{w}\right)\right) \prod_{j=1}^{n} \log ^{(1+\varepsilon) / 2} \frac{1}{1-\left|z_{j}\right|}\right\|_{L^{2}}<\infty,
$$

then the operator $T_{f} H_{g}^{*}$ is bounded on $\left(A^{2}\right)^{\perp}$.
It is clear that the above condition also gives the boundedness of $H_{g} T_{\bar{f}}$. The next proposition reveals that Theorem 5 extends Theorem 2.
Proposition 1. Let $f, g \in A^{2}$ and $\varepsilon>0$. Then for all $w \in \mathbb{D}^{n}$,

$$
B_{\varepsilon}\left[|f|^{2}\right] B_{\varepsilon}\left[|g|^{2}\right] \leq C\left\{B\left[|f|^{2+\varepsilon}\right] B_{\varepsilon}\left[|g|^{2+\varepsilon}\right]\right\}^{2 /(2+\varepsilon)} .
$$

Proof. Let $w \in \mathbb{D}^{n}$. Then by the change-of-variable formula and Hölder's inequality we have

$$
\begin{aligned}
& B_{\varepsilon}\left[|f|^{2}\right](w)=\int_{\mathbb{D}^{n}}|f(z)|^{2} \prod_{i=1}^{n} \log ^{1+\varepsilon} \frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|} \prod_{j=1}^{n} \frac{\left(1-\left|w_{j}\right|^{2}\right)^{2}}{\left|1-\bar{w}_{j} z_{j}\right|^{4}} d A(z) \\
& \leq\left\{\int_{\mathbb{D}^{n}}|f(z)|^{2+\varepsilon}(z) \prod_{j=1}^{n} \frac{\left(1-\left|w_{j}\right|^{2}\right)^{2}}{\left|1-\bar{w}_{j} z_{j}\right|^{4}} d A(z)\right\}^{\frac{2}{2+\varepsilon}} \\
& \quad \times\left\{\int_{\mathbb{D}^{n}} \prod_{j=1}^{n} \log \frac{(1+\varepsilon)(2+\varepsilon)}{\varepsilon}\right. \\
& \left.\left.=\frac{1}{1-\left|\varphi_{w_{i}}\left(z_{i}\right)\right|}\right) \prod_{j=1}^{n} \frac{\left(1-\left|w_{j}\right|^{2}\right)^{2}}{\left|1-\bar{w}_{j} z_{j}\right|^{4}} d A(z)\right\}^{\frac{\varepsilon}{2+\varepsilon}} \\
& =\left\{B\left[|f|^{2+\varepsilon}\right](w)\right\}^{\frac{2}{2+\varepsilon}}\left\{\int_{\mathbb{D}^{n}} \prod_{j=1}^{n} \log ^{\frac{(1+\varepsilon)(2+\varepsilon)}{\varepsilon}}\left(\frac{1}{1-\left|z_{i}\right|}\right) d A(z)\right\}^{\frac{\varepsilon}{2+\varepsilon}} .
\end{aligned}
$$

Since the last integral is convergent, our claim follows.

References

[1] Gonessa, J., Sheba, B., Toeplitz products on the vector weighted Bergman spaces, Acta Sci. Math. (Szeged) 80 (3-4) (2014), 511-530.
[2] Lu, Y., Liu, C., Toeplitz and Hankel products on Bergman spaces of the unit ball, Chin. Ann. Math. Ser. B 30 (3) (2009), 293-310.
[3] Lu, Y., Shang, S., Bounded Hankel products on the Bergman space of the polydisk, Canad. J. Math. 61 (1) (2009), 190-204.
[4] Miao, J., Bounded Toeplitz products on the weighted Bergman spaces of the unit ball, J. Math. Anal. Appl. 346 (1) (2008), 305-313.
[5] Michalska, M., Sobolewski, P., Bounded Toeplitz and Hankel products on the weighted Bergman spaces of the unit ball, J. Aust. Math. Soc. 99 (2) (2015), 237-249.
[6] Nazarov, F., A counter-example to Sarason's conjecture, preprint. Available at http://www.math.msu.edu/~fedja/prepr.html.
[7] Pott, S., Strouse, E., Products of Toeplitz operators on the Bergman spaces A ${ }^{2}$, Algebra i Analiz 18 (1) (2006), 144-161 (English transl. in St. Petersburg Math. J. 18 (1) (2007), 105-118).
[8] Stroethoff, K., Zheng, D., Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (2) (1992), 773-794.
[9] Stroethoff, K., Zheng, D., Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1) (1999), 289-313.
[10] Stroethoff, K., Zheng, D., Invertible Toeplitz products, J. Funct. Anal. 195 (1) (2002), 48-70.
[11] Stroethoff, K., Zheng, D., Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278 (1) (2003), 125-135.
[12] Stroethoff, K., Zheng, D., Bounded Toeplitz products on Bergman spaces of the unit ball, J. Math. Anal. Appl. 325 (1) (2007), 114-129.
[13] Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J. Operator Theory 59 (2) (2008), 277-308.
[14] Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, SpringerVerlag, New York, 2000.

Paweł Sobolewski
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: pawel.sobolewski@umcs.eu
Received September 20, 2018

