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Generalized trend constants
of Lipschitz mappings

Abstract. In 2015, Goebel and Bolibok defined the initial trend coefficient
of a mapping and the class of initially nonexpansive mappings. They proved
that the fixed point property for nonexpansive mappings implies the fixed
point property for initially nonexpansive mappings. We generalize the above
concepts and prove an analogous fixed point theorem. We also study the
initial trend coefficient more deeply.

1. Introduction. Let X be a Banach space, C be a nonempty subset of
X, and T be a mapping from C into itself. The mapping T is known as
k-Lipschitz (k ≥ 0) if

‖Tx− Ty‖ ≤ k ‖x− y‖
for every x, y ∈ C. The minimal k, for which the above condition holds,
is called the Lipschitz constant of T and is denoted by k (T ). If k (T ) < 1
(resp. k (T ) ≤ 1), then T is said to be a contraction (resp. a nonexpansive
mapping). By LC (k) (or L (k) in short) we denote the set of all k-Lipschitz
mappings from C into itself. The mapping T is Lipschitz if it is k-Lipschitz
for some k.

Given vectors u, v ∈ X and x, y ∈ C such that x 6= y, we define functions
Eu, v : R→ X, Gu, v : R→ [0,∞), ϕx, y : R→ [0,∞) and ψx, y : R→ [0,∞)
by the formulas

Eu, v (t) = (1− t)u+ tv,
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Gu, v (t) = ‖Eu, v (t)‖ = ‖(1− t)u+ tv‖ ,
ϕx, y (t) = Gx−y, Tx−Ty (t) = ‖(1− t) (x− y) + t (Tx− Ty)‖ ,

and

ψx, y (t) =
ϕx, y (t)

‖x− y‖
=
‖(1− t) (x− y) + t (Tx− Ty)‖

‖x− y‖
.

In [1] (see also [3]) the following coefficients were defined

(1.1) ι (T ) = sup {∂+ψx, y (0) : x, y ∈ C, x 6= y} ,
and

(1.2) τ (T ) = sup {∂−ψx, y (1) : x, y ∈ C, x 6= y} ,
where ∂+ and ∂− denote one-sided derivatives. The expression ∂+ψx, y (0)
can be seen as the directional right derivative of the norm at the point x−y
along the vector Tx − Ty − (x− y). The coefficients ι (T ) and τ (T ) are
known as the initial and the final trend constants of T , respectively. The
mapping T is said to be an initial contraction if ι (T ) < 0, and initially
nonexpansive if ι (T ) ≤ 0.

We extend the above notion in the following way. The trend constant
(more precisely the right trend constant) of the mapping T at a point α ∈ R
is given by the formula

ια (T ) = sup {∂+ψx, y (α) : x, y ∈ C, x 6= y} .
We say that T : C → C is a pre-initial contraction (resp. pre-initially
nonexpansive) if it is a k-Lipschitz mapping, where k > 1, and there exists
α ∈

( −1
k−1 , 0

]
such that ια (T ) < 0 (resp. ια (T ) ≤ 0). Note that the initial

trend coefficient of T is equal to ι0 (T ).
The mapping T is said to be firmly nonexpansive if for all x, y ∈ C the

function ϕx, y (t) is nonincreasing on the interval [0, 1]. The mapping T is
firmly nonexpansive if and only if τ (T ) ≤ 0.

The fixed point set for T is defined as

FixT = {x ∈ C : Tx = x} .

2. General trend of mappings. In this section, we generalize results
obtained in [1]. Let u, v ∈ X. The function t 7→ Gu, v (t) is convex, so it is
a semi-differentiable function at every real number t. Assume that α < β.
The following inequalities are obvious

∂−Gu, v (α) ≤ ∂−Gu, v (β) ,
∂+Gu, v (α) ≤ ∂+Gu, v (β) ,
∂−Gu, v (α) ≤ ∂+Gu, v (α) .

Claim 2.1. Let u, v ∈ X, a, b, t1 ∈ R, where a < b, and t2 = (1− t1) a+t1b.
We have

(2.1) ∂−G(1−a)u+av, (1−b)u+bv (t1) = (b− a) ∂−Gu, v (t2) .
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Proof. Putting w (s) = (1− s)u+ sv, where s ∈ R, we obtain

∂−G(1−a)u+av, (1−b)u+bv (t1) = ∂−Gw(a), w(b) (t1)

= lim
h→0−

‖(1− t1 − h)w (a) + (t1 + h)w (b)‖ − ‖(1− t1)w (a) + t1w (b)‖
h

= (b− a) lim
h→0−

‖(1− t2 − h(b− a))u+ (t2 + h(b− a))v‖−‖(1− t2)u+ t2v‖
h (b− a)

= (b− a) ∂−Gu, v (t2) .
�

Let C be a nonempty closed convex and bounded subset of X. Assume
that T : C → C is k-Lipschitz for k > 1. Let α ∈

( −1
k−1 , 0

]
. Choose A > k

such that −1
A−1 < α. Given x ∈ C, consider the equation

(2.2) y =

(
1− 1

A

)
x+

1

A
Ty.

Since the right hand side is a k
A -Lipschitz mapping and k

A < 1, this equation
has a unique solution. Denoting this solution by Fx, we obtain the function
F : C → C such that

(2.3) Fx =

(
1− 1

A

)
x+

1

A
TFx.

Rearranging the above equality, we obtain

(2.4) x =
A

A− 1
Fx+

−1
A− 1

TFx,

and

(2.5) TFx = AFx− (A− 1)x.

Since

‖Fx− Fy‖ ≤
(
1− 1

A

)
‖x− y‖+ 1

A
‖TFx− TFy‖

≤
(
1− 1

A

)
‖x− y‖+ k

A
‖Fx− Fy‖ ,

F is a A−1
A−k -Lipschitz mapping. For every x ∈ C we define

(2.6) Fαx = (1− α)Fx+ αTFx.

Observe that Fαx belongs to the line segment [x, Fx], which is a subset of
C, so Fα is a mapping from C into itself.

Let x0 ∈ C. If Fx0 = x0, then from (2.3) we obtain Tx0 = x0. Con-
versely, if Tx0 = x0, then

x0 =

(
1− 1

A

)
x0 +

1

A
Tx0.
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This is an equality of the (2.2) form. We know that the equality (2.2) has
a unique solution, so Fx0 = x0.

Assume that Fαx0 = x0. It is equivalent to

(1− α)Fx0 + αTFx0 = x0.

Applying the equality TFx0 = AFx0 − (A− 1)x0, we obtain

(1− α)Fx0 + α (AFx0 − (A− 1)x0) = x0,

which is equivalent to Fx0 = x0. We have proved that FixFα = FixF =
FixT .

Given distinct x, y ∈ C, we have

x =
A

A− 1
Fx+

−1
A− 1

TFx,

and

y =
A

A− 1
Fy +

−1
A− 1

TFy.

Observe that Fx 6= Fy. Putting a = −1
A−1 , b = α, t1 = 1, t2 = α,

u = Fx− Fy, and v = TFx− TFy in the equality (2.1), we obtain

∂−Gx−y, Fαx−Fαy (1)

‖x− y‖

=
∂−G(1−a)(Fx−Fy)+a(TFx−TFy), (1−b)(Fx−Fy)+b(TFx−TFy) (1)

‖x− y‖

=

(
α+

1

A− 1

)
∂−GFx−Fy, TFx−TFy (α)

‖x− y‖

=

(
α+

1

A− 1

)
‖Fx− Fy‖
‖x− y‖

·
∂−GFx−Fy, TFx−TFy (α)

‖Fx− Fy‖

≤
(
α+

1

A− 1

)
A− 1

A− k
sup

{
∂−ϕx, y (α)

‖x− y‖
: x, y ∈ C, x 6= y

}
≤
(
α+

1

A− 1

)
A− 1

A− k
sup

{
∂+ϕx, y (α)

‖x− y‖
: x, y ∈ C, x 6= y

}
.

Therefore

τ (Fα) = sup

{
∂−Gx−y, Fαx−Fαy (1)

‖x− y‖
: x, y ∈ C, x 6= y

}
≤
(
α+

1

A− 1

)
A− 1

A− k
sup

{
∂+ϕx, y (α)

‖x− y‖
: x, y ∈ C, x 6= y

}
=

(
α+

1

A− 1

)
A− 1

A− k
ια (T ) .
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As a special case, if α = 0, we obtain

τ (F ) = sup

{
∂−Gx−y, F0x−F0y (1)

‖x− y‖
: x, y ∈ C, x 6= y

}
≤ 1

A− k
sup

{
∂+ϕx, y (0)

‖x− y‖
: x, y ∈ C, x 6= y

}
=

1

A− k
ι (T ) ,

and if A = k + 1, then τ (F ) ≤ ι (T ). From the above consideration, we
obtain the following corollaries.

Corollary 2.2. If T : C → C is pre-initially nonexpansive, then there
exists α ∈

( −1
k−1 , 0

]
such that the mapping Fα given by (2.6) is firmly non-

expansive.

We say that a subset C ⊂ X has the fixed point property for nonexpansive
mappings if every nonexpansive mapping T : C → C has a fixed point.
The space X has the fixed point property for nonexpansive mappings if
all nonempty closed convex and bounded subsets of X have this property.
Similarly we define the fixed point properties for pre-initially nonexpansive
mappings.

Corollary 2.3. If a nonempty closed convex and bounded set C ⊂ X has
the fixed point property for nonexpansive mappings, then it has the fixed
point property for pre-initially nonexpansive mappings.

3. Formulas for trend constants. In this section, we provide a few for-
mulas for trend constants of a mapping T : C → C, where C is a nonempty
subset of a Banach space X. Let us recall some basic facts about the sub-
differential of the norm. Let x, y ∈ X. The function R 3 t 7→ ‖x+ ty‖ is
convex, so the following limits exist

∂+ ‖x‖ (y) = lim
t→0+

‖x+ ty‖ − ‖x‖
t

,

∂− ‖x‖ (y) = lim
t→0−

‖x+ ty‖ − ‖x‖
t

.

The subdifferential of the norm is defined by

∂ ‖x‖ = {x∗ ∈ X∗ : ∀y∈X ∂− ‖x‖ (y) ≤ x∗ (y) ≤ ∂+ ‖x‖ (y)} .

We have also the following formulas

∂ ‖x‖ = {x∗ ∈ X∗ : x∗ (x) = ‖x‖ , ‖x∗‖ = 1} if x 6= 0,

∂+ ‖x‖ (y) = max {x∗ (y) : x∗ ∈ ∂ ‖x‖} ,
∂− ‖x‖ (y) = min {x∗ (y) : x∗ ∈ ∂ ‖x‖} .

Claim 3.1. Let u : [a, b]→ X be a differentiable function at t0 ∈ [a, b]. Then
the function γ (t) = ‖u (t)‖, t ∈ [a, b] is differentiable on the left at t0 ∈ (a, b]
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and on the right at t0 ∈ [a, b). Moreover, we have the following chain rules

∂+γ(t0) = ∂+ ‖u(t0)‖ (u′(t0)) = max{x∗
(
u′(t0)

)
: x∗ ∈ ∂ ‖u(t0)‖},(3.1)

∂−γ(t0) = ∂− ‖u(t0)‖ (u′(t0)) = min
{
x∗
(
u′ (t0)

)
: x∗ ∈ ∂ ‖u (t0)‖

}
.(3.2)

For further details about subdifferentials of norms, see for example [2].
Let u (t) = (1− t) (x− y) + t (Tx− Ty) and α ∈ R. Then, by (3.1),

∂+ϕx, y (α) = max
{
x∗
(
u′ (α)

)
: x∗ ∈ ∂ ‖u (α)‖

}
= max {x∗ (Tx− Ty − (x− y)) : x∗ ∈ ∂ ‖u (α)‖}

for every α ∈ R. As a consequence, we obtain a new formula for the trend
constant of T at α.

Corollary 3.2. For every α ∈ R,

ια (T ) = sup

{
x∗ (Tx− Ty − (x− y))

‖x− y‖

}
,

where the supremum is taken over all distinct vectors x, y ∈ C and func-
tionals x∗ ∈ ∂ ‖(1− α) (x− y) + α (Tx− Ty)‖. In case of the initial trend
coefficient, this formula takes the following form

(3.3) ι (T ) = sup

{
x∗ (Tx− Ty)
‖x− y‖

− 1 : x, y ∈ C, x 6= y, x∗ ∈ ∂ ‖x− y‖
}
.

Theorem 3.3. Let x, y ∈ C be distinct vectors, and α ∈ R. If

E∗t ∈ ∂ ‖Ex−y, Tx−Ty (t)‖
for every t > α, then

(3.4) ∂+ϕx, y (α) = lim
t→α+

E∗t (Tx− Ty − (x− y)) .

Proof. Let t0 > t1 > t2 = α, and let E (t) = Ex−y, Tx−Ty (t) for t ≥ α. We
obtain

(3.5)

‖E (t1)‖ − ‖E (t2)‖
t1 − t2

≤
‖E (t1)‖ −

∥∥E∗t1∥∥ ‖E (t2)‖
t1 − t2

≤
E∗t1 (E (t1))− E∗t1 (E (t2))

t1 − t2
≤ E∗t1

(
E (t1)− E (t2)

t1 − t2

)
= E∗t1 (Tx− Ty − (x− y))

and

(3.6)

E∗t1 (Tx− Ty − (x− y)) = E∗t1

(
E (t0)− E (t1)

t0 − t1

)
=
E∗t1 (E (t0))− E∗t1 (E (t1))

t0 − t1

≤ ‖E (t0)‖ − ‖E (t1)‖
t0 − t1

.
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The equality (3.4) follows from the above inequalities and the following
equalities

lim
t1→α+

‖E (t1)‖ − ‖E (t2)‖
t1 − t2

= lim
t0→α+

lim
t1→α+

‖E (t0)‖ − ‖E (t1)‖
t0 − t1

= ∂+ϕx, y (α) .

�

From the above theorem we obtain another formula for the trend constant
of the mapping T at α.

Corollary 3.4. If E∗t ∈ ∂ ‖Ex−y, Tx−Ty (t)‖ for t > α, then

ια (T ) = sup

{
limt→α+ E∗t (Tx− Ty − (x− y))

‖x− y‖
: x, y ∈ C, x 6= y

}
.

In [1] the formula for the initial trend coefficient for Hilbert spaces is
given. Using the equality (3.3), we can calculate formulas for this coefficient
in some spaces. Here we will deal with the space C [a, b]. In order to
prove such a result, we can use the characterization of the subdifferential of
the norm in C [a, b] given in [2]. Note that in the literature, one can find
similar characterizations for some other spaces (see for example [2] and [4]).
Another approach is to apply a formula for the directional right derivative
of the norm. Such a formula for C [a, b] is given in [5]. Using one of the
above methods, we obtain the following claim.

Claim 3.5. Let C be a nonempty subset of the space C [a, b], and letM0 (z) =
{t ∈ [a, b] : |z (t)| = ‖z‖}, z ∈ C [a, b]. Given a mapping T : C → C,

(3.7) ι (T ) = sup

{
((Tx) (s)− (Ty) (s)) sgn (x (s)− y (s))

‖x− y‖
− 1

}
,

where the supremum is taken over all distinct vectors x, y ∈ C and all s in
M0 (x− y).

Example 3.6. In the two-dimensional Euclidean plane R2 we consider the
k-Lipschitz mapping

Tk,β (x, y) = k (x cosβ − y sinβ, x sinβ + y cosβ) ,

where k > 1, β ∈ R. One can easily compute the initial trend constant of
Tk,β and the trend constant at α > −1

k−1 :

ι (Tk,β (x, y)) = k cosβ − 1,

ια (Tk,β (x, y)) =
α− 1 + (1− 2α) k cosβ + αk2√

(1− α)2 + 2 (1− α)αk cosβ + α2k2
.

Taking k = 5, β = arccos 4
5 , and α = −1

6 , we obtain ι (Tk,β) = 3, and
ια (Tk,β) = 0. Therefore, in this case Tk,β (x, y) is pre-initially nonexpansive
but isn’t initially nonexpansive.
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4. Remarks about the initial trend coefficient. We say that the norm
‖·‖ of a Banach space X is Gâteaux differentiable at a point x ∈ X if for
every h ∈ X the limit

lim
t→0

‖x+ th‖ − ‖x‖
t

exists. If, moreover, this limit is uniform for x, h ∈ SX , then we say that the
norm is uniformly Fréchet differentiable. We say that the norm is Gâteaux
differentiable if it is Gâteaux differentiable at every point x ∈ SX .

Theorem 4.1. Let X be a Banach space whose norm is uniformly Fréchet
differentiable and C be a nonempty and convex subset of X. If T : C → C
is a Lipschitz mapping such that ι (T ) < 0, then there exists δ ∈ (0, 1) such
that the mapping (1− t0) I + t0T is a contraction, where I is the identity
on C and t0 ∈ (0, δ).

Proof. Assume that T ∈ L (k). Let ε = |ι(T )|
2(k+1) . Since the norm of X is

uniformly Fréchet differentiable, there exists τ > 0 such that

(4.1)
‖z + th‖ − ‖z‖

t
< ε+ z∗ (h)

for every t ∈ (0, τ) and z, h ∈ SX , where z∗ ∈ ∂ ‖z‖. Note that ∂ ‖z‖ is
a one-element set, because the norm of X is Gâteaux differentiable. We
choose t0 ∈

(
0, τ

1+k

)
, and define the mapping Tt0 : C → C by the formula

Tt0x = (1− t0)x+ t0Tx.
Given distinct elements x, y ∈ C, we have x− y 6= Tx− Ty. Otherwise,

ψx, y (t) = 1 for t ∈ [0, 1], and ι (T ) ≥ ∂+ψx, y (0) = 0, which contradicts our
assumption. Put u = x− y, and v = Tx− Ty. Note that

t0 ‖v − u‖
‖u‖

≤ t0 (‖Tx− Ty‖+ ‖x− y‖)
‖x− y‖

≤ t0 (1 + k) < τ.

Using this inequality and putting z = u
‖u‖ , h = v−u

‖v−u‖ , t =
t0‖v−u‖
‖u‖ in (4.1),

we obtain

‖Tt0x− Tt0y‖ = ‖u+ t0 (v − u)‖

= t0 ‖v − u‖

∥∥∥ u
‖u‖ +

t0‖v−u‖
‖u‖ · v−u

‖v−u‖

∥∥∥− ∥∥∥ u
‖u‖

∥∥∥
t0‖v−u‖
‖u‖

+ ‖u‖

< t0 ‖v − u‖
(
ε+ z∗

(
v − u
‖v − u‖

))
+ ‖u‖

≤
(
t0

(
|ι (T )|

2
+ z∗

(
v − u
‖u‖

))
+ 1
)
‖u‖

=

(
t0

(
|ι (T )|

2
+ z∗

(
Tx− Ty − (x− y)

‖x− y‖

))
+ 1
)
‖x− y‖ ,
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where z∗ ∈ ∂
∥∥∥ u
‖u‖

∥∥∥. Since ∂
∥∥∥ u
‖u‖

∥∥∥ = ∂ ‖x− y‖, applying Corollary 3.2, we
get

‖Tt0x− Tt0y‖ <
(
t0

(
|ι (T )|

2
+ ι (T )

)
+ 1

)
‖x− y‖

=

(
1 +

ι (T ) t0
2

)
‖x− y‖ .

Since 1 + ι(T )t0
2 < 1, the mapping Tt0 is a contraction. �

Let C be a nonempty subset of a Banach space X. Consider a Lipschitz
mapping T : C → C. Let µ (t) = sup {ψx, y (t) : x, y ∈ C, x 6= y}, t ∈ R.
The function µ is convex. We define the coefficient

κ (T ) = ∂+µ (0) ,

which is similar to the initial trend coefficient (1.1), but the derivative and
the supremum are swapped. This coefficient is greater than or equal to
the initial trend coefficient of T . Indeed, given ε > 0, there exist distinct
elements x, y ∈ C such that

ι (T ) ≤ lim
t→0+

ψx, y (t)− 1

t
+ ε,

and therefore

ι (T ) ≤ lim
t→0+

sup {ψx, y (t) : x, y ∈ C, x 6= y} − 1

t
+ ε

= lim
t→0+

µ (t)− µ (0)
t

+ ε

= κ (T ) + ε.

Since ε > 0 is arbitrary, ι (T ) ≤ κ (T ). In the linear case we have the
equality.

Theorem 4.2. For any linear bounded mapping T : X → X, ι (T ) = κ (T ).

Proof. Observe that, by the assumptions of the theorem,

µ (t) = sup {‖(1− t)x+ tTx‖ : x ∈ SX} ,
and according to Corollary 3.2,

ι (T ) = sup {x∗ (Tx)− 1 : x ∈ SX , x∗ ∈ ∂ ‖x‖} .
In case of T = 0, we have ι (T ) = κ (T ) = −1. Now we can assume that

T 6= 0. Let ε > 0 and t0 ∈
(
0, min

{
ε

4‖T‖(1+‖T‖) ,
1

1+‖T‖

})
. There exists an

element x0 ∈ SX such that

(4.2) κ (T ) ≤ µ (t0)− µ (0)
t0

≤
‖(1− t0)x0 + t0Tx0‖+ εt0

2 − 1

t0
.
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Let u = (1− t0)x0 + t0Tx0 and u∗ ∈ ∂ ‖u‖. Then

‖u‖ ≥ ‖(1− t0)x0‖ − ‖t0Tx0‖ ≥ 1− t0 (1 + ‖T‖) > 0.

We obtain

κ (T ) ≤ u∗ ((1− t0)x0 + t0Tx0)− 1

t0
+
ε

2

=
(1− t0)u∗ (x0) + t0u

∗ (Tx0)− 1

t0
+
ε

2

≤ u∗ (Tx0)− 1 +
ε

2

= u∗
(
Tu

‖u‖

)
− 1 + u∗

(
Tu− Tu

‖u‖

)
+ u∗ (Tx0 − Tu) +

ε

2

≤ u∗
(
T

(
u

‖u‖

))
− 1 + ‖T‖

∥∥∥∥u− u

‖u‖

∥∥∥∥+ ‖T‖ ‖t0 (x0 − Tx0)‖+ ε

2

≤ ι (T ) + ‖T‖ |‖u‖ − 1|+ t0 ‖T‖ (1 + ‖T‖) +
ε

2

≤ ι (T ) + ‖T‖ ‖u− x0‖+ t0 ‖T‖ (1 + ‖T‖) +
ε

2

≤ ι (T ) + 2t0 ‖T‖ (1 + ‖T‖) +
ε

2
≤ ι (T ) + ε.

Since ε is an arbitrary positive number, κ (T ) ≤ ι (T ). �

The next claim gives us the characterization of mappings such that κ (T ) <
0. Since for a linear bounded self-mappings T we have ι (T ) = κ (T ), this
claim also applies to the linear initial contractions.

Claim 4.3. Let T : C → C be such that κ (T ) < 0. Then there exist a
contraction R : C → C and δ > 0 such that Tx = 1

δRx+
(
1− 1

δ

)
x for every

x ∈ C.

Proof. There exists δ > 0 such that∣∣∣∣µ (t)− 1

t
− κ (T )

∣∣∣∣ ≤ |κ (T )|2

for t ∈ (0, δ]. Therefore,
µ (t)− 1

t
≤ κ (T )

2
.

For every x, y ∈ C, x 6= y we get
‖(1− δ) (x− y) + δ (Tx− Ty)‖

‖x− y‖
≤ 1 +

κ (T ) δ

2
.

Putting Rx = (1− δ)x+ δTx for x ∈ C, we obtain

‖Rx−Ry‖ ≤
(
1 +

κ (T ) δ

2

)
‖x− y‖ ,
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where 1 + κ(T )δ
2 < 1, so R is a contraction. �

Let C be a subset of the space X = C [0, 1]. We define the Hammerstein
operator T : C → X by the following formula

(Tu) (s) =

1∫
0

k (s, t) f (t, u (t)) dt, s ∈ [0, 1] ,

where k, f are continuous functions on [0, 1]2, t → f (t0, t) is a kf (t0)-
Lipschitz mapping on the interval [0, 1], and the function kf : [0, 1]→ [0,∞)
is Lebesgue integrable.

Claim 4.4. If C = BX or C = X, then for the above mapping T , ι (T ) =
k (T )− 1.

Proof. The inequality ι (T ) ≤ k (T )− 1 is true in general (see [1]), so it is
enough to prove the opposite inequality.

Let U > max {|k (s, t)| : s, t ∈ [0, 1]}. Given ε > 0, there exist distinct
elements x, y ∈ C such that

‖Tx− Ty‖
‖x− y‖

≥ k (T )− ε

2
.

For z ∈ X we put M0 (z) = {t ∈ [a, b] : |z (t)| = ‖z‖}. We choose an arbi-
trary s0 ∈ M0 (x− y) and s ∈ [0, 1]. By the absolute continuity of the
Lebesgue integral there exists δ > 0 such that

∫
A kf (t) dµ (t) ≤

ε
4U if

µ (A) ≤ 2δ. For each h ∈ C [0, 1] and v ∈ R we define Fh, v ∈ C [0, 1]
as follows

Fh, v (t) =


h (t) , t ∈ [0, 1] \ (s− δ, s+ δ) ,
v−h(s−δ)

δ (t− s) + v, t ∈ (s− δ, s] ∩ [0, 1] ,
h(s+δ)−v

δ (t− s) + v, t ∈ [s, s+ δ) ∩ [0, 1] .

For i ∈ {0, 1} we define functions xi, yi ∈ C [0, 1] by the formulas

x0 (t) = Fx, x(s0) (t) ,

y0 (t) = Fy, y(s0) (t) ,

x1 (t) = Fx, y(s0) (t) ,

y1 (t) = Fy, x(s0) (t) .
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Setting L = max {0, s− δ} and R = min {1, s+ δ}, we obtain

|((Txi − Tyi)− (Tx− Ty)) (s)|

=

∣∣∣∣∣∣
R∫
L

k (s, t) ((f (t, xi (t))− f (t, x (t)))− (f (t, yi (t))− f (t, y (t)))) dt

∣∣∣∣∣∣
≤

R∫
L

|k (s, t)| (|f (t, xi (t))− f (t, yi (t))|+ |f (t, x (t))− f (t, y (t))|) dt

≤
∫

[L,R]

Ukf (t) (|xi (t)− yi (t)|+ |x (t)− y (t)|) dµ (t)

≤
∫

[L,R]

Ukf (t) (‖xi − yi‖+ ‖x− y‖) dµ (t)

= 2 (‖x− y‖)U
∫

[L,R]

kf (t) dµ (t)

≤ ε ‖x− y‖
2

.

Since s ∈M0 (xi − yi) for i ∈ {0, 1}, by the equality (3.3),

ι (T ) ≥
(
(Txi) (s)− (Tyi) (s)

‖xi − yi‖

)
sgn (xi (s)− yi (s))− 1

=

(
(Txi) (s)− (Tyi) (s)

‖x− y‖

)
(−1)i sgn (x (s0)− y (s0))− 1

≥
(
(Tx) (s)− (Ty) (s)

‖x− y‖

)
(−1)i sgn (x (s0)− y (s0))−

ε

2
− 1.

Because i ∈ {0, 1} is arbitrary, we obtain

ι (T ) ≥ |(Tx) (s)− (Ty) (s)|
‖x− y‖

− ε

2
− 1.

The number s ∈ [0, 1] is also arbitrary, thus

ι (T ) ≥ ‖Tx− Ty‖
‖x− y‖

− ε

2
− 1 ≥ k (T )− ε− 1,

and finally we apply the fact that ε > 0 is arbitrary, therefore ι (T ) ≥
k (T )− 1. �

At the end, we will study some examples from [1].
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Example 4.5. Let C = [a, b] and f : C → C, f ∈ L (k), k > 1. It is known
that

ι (f) = sup

{
f (x)− f (y)

x− y
: x, y ∈ [a, b] , x 6= y

}
− 1.

The Lipschitz constant of f is given by

k (f) = sup

{∣∣∣∣f (x)− f (y)x− y

∣∣∣∣ : x, y ∈ [a, b] , x 6= y

}
,

so the initial trend coefficient of f can be smaller than k (f) − 1. Let
α ∈ (0, 1), b ≥ x ≥ y ≥ a and g (t) = 2−α

k+1 f (t) +
k+α−1
k+1 t, t ∈ [a, b]. Note

that g : C → C. We have

g (x)− g (y) = 2− α
k + 1

(f (x)− f (y)) + k + α− 1

k + 1
(x− y)

≤ 2− α
k + 1

(ι (f) + 1) (x− y) + k + α− 1

k + 1
(x− y)

=

(
1 +

2− α
k + 1

ι (f)

)
(x− y)

and

g (x)− g (y) ≥ 2− α
k + 1

(−k) (x− y) + k + α− 1

k + 1
(x− y)

= (α− 1) (x− y) .

Therefore, g ∈ L
(
max

{
1 + 2−α

k+1 ι (f) , 1− α
})

. Thus f is the following affine
combination of g and the identity:

f (t) =
k + 1

2− α
g (t)− k + α− 1

2− α
t

and g is a nonexpansive mapping (resp. a contraction) provided that ι (f) ≤
0 (resp. ι (f) < 0).

Example 4.6. Let X = C [a, b], r > 0 and B (0, r) = {x ∈ X : ‖x‖ ≤ r}.
Assume that the function f : [−r, r]→ [−r, r] is of class L (k). It is known
that the composition operator F : B (0, r)→ B (0, r) defined by

Fx (t) = f (x (t))

has the initial trend coefficient given by

ι (F ) = sup

{
f (x)− f (y)

x− y
: x, y ∈ [a, b] , x 6= y

}
− 1.

We define α and g as in the previous example. Consider the composition
operator G : B (0, r)→ B (0, r) defined by

Gx (t) = g (x (t)) =
2− α
k + 1

f (x (t)) +
k + α− 1

k + 1
x (t) .
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Let x, y ∈ B (0, r), s ∈ [a, b]. By symmetry, we can assume that x (s) ≥ y (s).
We obtain

Gx (s)−Gy (s) = 2− α
k + 1

(f (x (s))− f (y (s))) + k + α− 1

k + 1
(x (s)− y (s))

≤ 2− α
k + 1

(ι(F ) + 1)(x(s)− y(s)) + k + α− 1

k + 1
(x(s)− y(s))

≤
(
1 +

2− α
k + 1

ι (f)

)
‖x− y‖

and

Gx (s)−Gy (s) ≥ 2− α
k + 1

(−k) (x (s)− y (s)) + k + α− 1

k + 1
(x (s)− y (s))

= (α− 1) (x (s)− y (s))
≥ (α− 1) ‖x− y‖ .

Thus, G ∈ L
(
max

{
1+ 2−α

k+1 ι (F ) , 1−α
})

and F is an affine combination of G
and the identity, where G is a nonexpansive mapping (resp. a contraction)
provided that ι (F ) ≤ 0 (resp. ι (F ) < 0).
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