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The role of MgO as a factor improving the resistance to coking 

of the alumina supported nickel catalysts in the steam reforming of 

hydrocarbons is discussed. A series of catalysts containing variable 

amounts of MgO, NiO and a constant amount of Al2O3 was 

prepared by the co-precipitation method. It was found that the 

specific activity of the catalysts exhibits a broad but not deep 

minimum for the MgO contents from 8.5 to 27.3 wt.%. At the same 

time these catalysts reveal a high resistance to coking either in the 

reaction with methane or with n-butane. The most promising 

composition, in terms of the activity and simultaneous resistance to 

the coke formation, was found to be 27.3 wt.% of MgO and 39.0 

wt.% of NiO. The analysis of various factors controlling the activity 

and resistance to coking leads to the conclusion that MgO reduces 

the catalysts acidity what, in consequence, reduces the rate of coke 

formation during the reforming reactions. Furthermore, The 

resistance to coking correlates well with the mean size of nickel 

crystallites, the same is observed for the specific catalyst activity.  
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1.  INTRODUCTION 

 

The problem of the carbon deposits formation on catalysts surfaces 

in processes involving the synthesis gas or hydrogen production (steam 

reforming of higher hydrocarbons, steam reforming of natural gas at low 

steam to methane ratio, or carbon dioxide reforming of hydrocarbons) has 

been attracting a considerable interest in the field of nickel catalysts with 

an improved resistance to coking.  

One of the methods of improving the catalyst quality is  

a modification of the carrier composition (typically �-Al2O3), leading to 

the systems exhibiting enhanced resistance either to coking or sintering 

[1–3]. The Ni/Al2O3 catalysts are often modified by the incorporation of 

MgO. It may be introduced into a catalyst by utilizing magnesium 

aluminum spinel as a carrier or by doping the Al2O3 structure with MgO 

using various preparation techniques and MgO contents. 

The composite catalysts comprising NiO, MgO and Al2O3 are 

interesting though, at the same time, they are difficult for systematic 

studies [4–7]. A complex influence of MgO on the catalyst properties is a 

result of the formation of NiO–MgO solid solutions [8, 9], changes of the 

NiO reduction degree and nickel dispersion [7, 10], changes of the surface 

acidity [11] as well as an interaction of the catalyst with components of 

the reaction mixture [12]. 

Recently, a highly resistant to coking of NiO–MgO catalysts, 

designed for carbon dioxide reforming of methane, have taken center 

stage [3, 13, 14]. However, these catalysts have got limited development 

perspectives in the case of the steam reforming of methane [12, 15].  

Furthermore, there has been also a considerable interest in the natural 

gas steam reforming carried out at low temperatures and, thus, providing 

significant financial and environmental advantages [16, 17]. 

The aim of this work is a comprehensive study of the influence of the 

catalysts composition (NiO and MgO content) on the properties of co-

precipitated NiO–MgO–Al2O3 systems. The results obtained should help 

to design a highly active, resistant to deactivation (coking, sintering) and, 

at the same time, cheap catalyst for the steam reforming of methane. 

These catalysts might be used in e.g. autothermal reformers (ATR) 

generating a various purpose synthesis gas with a variable H2:CO ratio. 

Previous studies revealed that thermally stable NiO–Al2O3 catalytic 

systems could be obtained for at least 30 wt.% content of Al2O3 in the 

catalysts. A subsequent modification of the initial catalyst composition 

was accomplished by altering the proportion of the other components 
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(NiO and MgO) leading finally to the composite systems with various 

proportions of NiO and MgO but the constant amount of Al2O3. The 

choice of that approach has been dictated by a well-known strong 

influence of MgO on the resistance to coking of the nickel catalysts  

[18–21]. 

 

 

2 MATERIALS AND METHODS 

 

2.1 Catalyst preparation and characterization 

The Ni-MgO-Al2O3 catalysts were prepared by the co-precipitation 

method from the solutions of corresponding nitrates with sodium 

carbonate. The precipitates were filtered, washed with distilled water, 

dried and calcined for 4 h at 400°C. The content of Al2O3 in the obtained 

catalysts was about 30 wt.%, while the amount of Ni expressed in terms 

of NiO varied from 70 to 20 wt.% (Table 1). The composition of the 

catalysts was determined by the X-ray fluorescence method (XRF) using 

a Philips X-Unique II spectrometer. The total surface area (SBET) of the 

catalysts after reduction performed at 800°C for 3 h was determined by 

the argon adsorption method at the LN2-temperature (LN2 – liquid 

nitrogen) in the static-volumetric apparatus. The active nickel surface area 

(SA) after reduction was determined in the same apparatus by the 

hydrogen chemisorption method at 20°C under 100 mmHg pressure, 

assuming the chemisorption stoichiometry H:Ni = 1:l, and that the surface 

area occupied by a single hydrogen atom was 0.065 nm
2
 [22]. The mean 

size of  nickel crystallites was determined using the following 

relationship: 

 �� �
� � ���

	
���
���� (1) 

where: �Ni – nickel density, SH – surface area of 1 g of the reduced nickel. 

X-ray diffraction studies of the reduced samples after passivation in 

technical grade nitrogen were carried out with a HZG-4 diffractometer 

using monochromatic Cu-K� radiation. The mean size of nickel 

crystallites (after reduction) was calculated from the width of X-ray 

diffraction lines fitting the Scherrer equation [23]. The phase composition 

identification of samples was carried out using XRAYAN software in the 

2Θ range from 20 to 90°.  
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2.2 Studies of the catalytic activity 

The measurements were carried out in a Zielinski-type reactor [24] 

under ambient pressure and in the kinetic regime using the samples after 

reduction for 3 h at 800°C in the hydrogen stream. The reactor was 

supplied by the stream of reagents composed by mixing methane (diluted 

in argon) with hydrogen (4 vol. %) using the mass flow controllers. The 

gas stream was saturated with water vapor in the saturator. The 

composition of the post-reaction mixture was monitored at the reactor 

outlet. The contents of CO, CO2 and CH4 were analyzed using a Philips 

PU-4500 gas chromatograph equipped with a CO and CO2 methanizer 

and a FID (Flame Ionization Detector) detector with an accuracy of  

10 ppm vol. The activity measurements were carried out at three 

temperatures, i.e. 450, 500 and 550°C using the reaction mixtures 

containing not more than 1.5 vol.% of methane and for H2O:CH4 reagents 

ratio in the range 1.4–6:1. 

 

2.3 Studies of the catalysts coking 

The measurements of the resistance to coking were carried out 

according to the following approaches: (i) the temperature-programmed 

surface reaction (TPSR) aimed at determining the temperature of the 

coking initiation in the steam reforming of methane; and (ii) the 

gravimetric method, in a plug flow quartz reactor, aimed at determining 

the rate of coking in the steam reforming of n-butane. 

 

2.3.1. Temperature-programmed surface reaction (TPSR) 

The TPSR method is commonly applied to study the resistance to 

coking of nickel catalysts, revealing significant differences in the texture 

and chemical composition [25, 26]. The measurements were carried out 

using a Cahn TG121 microbalance in a plug flow quartz microreactor for 

various reaction mixtures. The measurements of the coking initiation 

temperatures were performed for the catalysts grain fraction in the range 

0.3–0.5 mm.  

The studies of the coking initiation temperature in the steam 

reforming of methane were carried out using the reaction mixtures 

CH4 + H2O + H2 + He, under the constant flow rate of 70 cm
3
/min, 

constant partial pressure of methane pCH4/p0 = 0.34 and the variable water 

vapor or hydrogen amounts in the ranges corresponding to the molar 

ratios H2O:CH4 = 0–0.8 and H2:CH4 = 0.33–1.0. After reduction the 

reactor was cooled down to 400
o
C and the reducing mixture 
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(He + 10% H2) was replaced by the reaction mixture. It was followed by 

15 min of the stabilization period and the dynamics of the process was 

then recorded under the constant heating rate 5°C/min up to 800°C.  

 

2.3.2. Isothermal gravimetric studies of coking 

This method allows the estimation of the carbon deposits amount 

formed as a change of the sample weight. Normally, the sample is placed 

in a porous container, hanging on a balance beam, which, in turn, is 

placed in a working reactor.  

The studies of the coking process in the steam reforming reaction of 

n-butane were carried out at the temperature of 500
o
C, under the constant 

partial pressure of n-butane pC4H10/po = 0.06 and at two steam to n-butane 

ratios, i.e. H2O:C4H10 = 0.5 and 1.5. Various reagents ratios in the mixture 

were obtained by changing the partial pressure of the water vapor. The 

total volumetric flow rate of the mixture (500 cm
3
/min) was kept constant 

by adding nitrogen which, as we assume, does not affect the reaction 

mechanism.  

 

2.4 Morphology of carbon deposits 

The morphology of carbon deposits was studied using high-

resolution transmission electron microscopy (HTREM). The coked 

catalyst samples after being crushed in agate mortar were treated with 

99.8% ethanol (POCH Gliwice, Poland) to form suspension and then it 

was ultrasonically homogenized for 20s. Afterwards, it was placed on 

copper mesh (200 lines/inch – 200 mesh) covered with lacely formvar 

stabilized carbon (Ted Pella) and left on the filter paper until ethanol 

evaporated. Titan G2 60-300 kV (FEI Company) electron microscope was 

used to visualize the catalyst samples. It was equipped with FEG – Field 

Emission Gun, monochromator, lens system, image corrector  

(Cs-corrector), and HAADF (high-angle annular dark-field) detector. 

Microscope measurements were carried out at an accelerating electron 

beam voltage of 300 kV.  

 

2.5 Carbon deposits gasification 

In the experimental setup described in section 2.3.2. the catalysts 

were coked in the steam reforming of n-butane at the temperature of 

500°C (isothermal studies) using the reagents ratio H2O:C = 0.5. After 

obtaining ~25 % of coke, in reference to the initial catalyst weight, the 
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gasification in the stream of the deoxidized and dried hydrogen was 

performed. 

The temperature-programmed oxidations (TPO) were carried out 

using an AMI-1 (Altamira Instruments Inc.) setup equipped with  

a HAL 201 RC (Hiden Analytical Ltd) mass spectrometer, using a plug 

flow quartz reactor with an internal diameter of 10 mm. The samples of 

ca. 0.05 g were heated with the heating rate of 10°C/min in the mixture 

5%O2/He (Praxair) using the flow rate 30 cm
3
/min. The intensities of 

signals corresponding to the ions with m/z = 2, 16, 18, 28, 30, 32, 44 were 

recorded continuously. 

 

 

3. RESULTS 

 

3.1. Temperature-programmed reduction 

The temperature-programmed reduction (TPR) profiles of the 

samples studied have already been published [27]. The increasing of MgO 

content diminishes the reducibility of the catalysts. It is related to the 

formation of the NiO–MgO solid solutions [8, 28] as well as NiO–Al2O3 

compounds [17, 29]. The shape of the TPR curves shows, that the 

reduction process occurs in two temperature regimes (Table 1).  

 

Table 1. The hydrogen uptake and reduction degree of the NiO–MgO– 

                Al2O3 catalysts. 

Catalyst 

Weight 

ratio 

MgO/NiO 

Hydrogen uptake 

Tmax 

[°C] 

NiO 

reduction 

degree 

[%] 
[mmol/gcat] 

[mmol/gNiO] 

up to 

400°C 

from 

400 to 

900°C 

total 

B0 0.00 7.48 0.28 10.48 10.7 703 81 

B1 0.14 6.79 0.93 10.07 11.0 749 82 

B2 0.32 5.51 0.71 9.69 10.4 772 78 

B3 0.47 4.55 0.47 9.43 9.9 798 74 

B4 0.70 3.56 0.43 8.67 9.1 837 68 

B5 1.5 1.95 0.47 6.86 7.3 864 55 
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Small hydrogen consumption are observed in the range 200–400°C 

but the most essential is the range 400–900°C. In both ranges, the 

reduction process depends on the catalyst composition. The maximum of 

the main peak shifts from ~700°C (B0) to ~860°C (B5). The increasing 

amounts of MgO hinder the reduction process, as evidenced by the 

decreasing NiO reduction degree for higher and higher amounts of MgO 

in the catalyst.  

 

3.2. Physicochemical properties of the catalysts 

The physicochemical properties of the catalysts under study are 

collected in Table 2.  

Table 2. The physicochemical properties of the studied Ni-MgO-Al2O3 

catalysts 

Catalyst 

Composition 

(wt.%) 
Weight 

ratio 

MgO/NiO 

Surface area 

(m
2
/gcat.) 

Mean nickel 

crystallite 

size (nm) 

NiO MgO total active dH
a 

dx
b 

B0 69.5 0.0 0.00 69.1 29.3 9.7 7.7 

B1 61.7 8.5 0.14 79.1 32.4 6.9 4.9 

B2 53.0 17.2 0.32 88.2 30.6 6.3 4.9 

B3 46.0 21.4 0.47 88.8 23.4 6.4 4.8 

B4 39.0 27.3 0.70 92.1 17.7 6.4 3.7 

B5 26.6 38.9 1.50 95.4 8.4 5.2 5.9 

a – determined from hydrogen chemisorption data. 

b – determined from X-ray diffraction data. 

 

Figure 1 shows, how the MgO content affects some of these crucial 

parameters. The total surface area SBET gradually increases with the 

increasing MgO content. The values of the active surface area initially 

increase upon incorporation of small amounts of MgO, and then decrease 

as the MgO/NiO ratio increases.  
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Fig. 1. Changes of the total SBET and active SA surface areas and the mean size of nickel 

            crystallites dx as a function of the MgO/NiO ratio after reduction at 800°C.  

 

Furthermore, the data reveal a decreasing trend of the mean size of 

nickel crystallites with the increasing MgO content. This phenomenon is 

most probably related to the formation of the NiO–MgO solid solutions in 

the catalysts [2, 8, 9, 30, 31]. 

X-ray powder diffraction patterns of the samples after reduction have 

already been published [27]. The hydrotalcite-like phases are not 

observed after reduction. The XRD patterns evidence the presence of 

metallic nickel crystallites (#PDF 04-850) with reflection lines at 2Θ 

angle 44.5° and 51.9°. The additional small peaks (e.g. at ~37� or 62° are 

observed for MgO containing samples. The nickel crystallites size slightly 

decreases with the increasing Mg/Ni ratio in the samples (Table 2). 
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3.3. Activity measurements in the steam reforming of methane 

The activity measurements were carried out at three temperatures: 

450, 500 and 550°C, as a function of the reagents H2O:CH4 ratio. Figure 2 

shows, as an illustration, the activity of the catalysts at the temperature 

550°C, with the reagents mixture containing 4% of H2. 

The catalysts activity increases with the increasing H2O:CH4 ratio. The 

highest activity is exhibited by the reference B0 catalyst containing the 

highest amount of nickel (without MgO). The decreasing activity of the 

other catalysts is due to the decreasing amount of nickel and increasing 

MgO:NiO ratio. It is worth noting that the most noticeable change of the 

activity occurs after incorporation of 8.5% of MgO. Further increase of 

MgO, up to 38.9%, leads to a gradual though not rapid decrease of the 

activity. 

 

 

Fig. 2. The rate constant as a function of the reagents H2O:CH4 ratio at the temperature 

            550°C and at the constant amount (4%) of H2 in the reaction mixture. 

 

Figure 3 shows how the MgO/NiO ratio affects the rate constants, 

determined for the H2O:CH4 = 2 ratio and recalculated to 1 g of the 

catalysts, 1 m
2
 of the active nickel area and 1 g of NiO in the catalyst, 

respectively.  



Monika Pa�czyk et al. 10

\ 

Fig. 3. The rate constants per unit of the catalyst weight, unit of the active surface area 

            and unit of the NiO content determined at the constant H2O:CH4 = 2 ratio. 

 

In this way we can exclude the effect of the H2O:CH4
 
ratio on the rate 

constants values. The activity of 1 g of the catalysts gradually decreases as 

the MgO/NiO ratio increases. The specific activity (per unit of the active 

surface area) initially decreases for the catalyst B1 (MgO/NiO ratio = 0.14) 

and then it remains at almost constant level until the MgO/NiO ratio reaches 

0.7. Further increase of the MgO/NiO ratio to 1.5 leads to some increase of 

the activity though it does not reach the value corresponding to the B0 

catalyst. Figure 3 also shows that the rate constants per unit of the NiO 

content in a catalyst decreases slightly with the increase the MgO/NiO ratio. 
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It becomes evident that, the increasing amount of MgO reduces the rate 

constants though its influence is not that strong.  

From the Arrhenius plots the activation energies and pre-exponential 

factors were calculated using the rate constants determined for the constant 

amount of hydrogen (~4 vol.%) in the reagents mixture and similar 

H2O:CH4 ratios. As shown in Fig. 4 the activation energies vary from 111 to 

123 kJ/mol. The observed higher activities of B0 and B5 catalysts result 

from higher values of the pre-exponential factors as the activation energies 

are almost the same in every case. 

 

Fig. 4. The temperature dependence of the catalysts activity calculated per unit of the 

           active surface area.  

 

 

3.4. Coking 

3.4.1. Coking in the steam reforming of methane 

Studies of the catalysts coking are an important part of the catalytic 

tests. This is because the catalysts exhibiting high initial activity are 

easier to be obtained than catalysts with long-term resistance to 

deactivation. Many catalytic reactions involving hydrocarbons or carbon 

oxides are accompanied by the coking phenomenon. Its origin is related 

to the interaction of reagents (or gasifying factors such as steam, carbon 

dioxide, oxygen or hydrogen also) with the catalysts surface [7, 32, 33]. 

Preliminary studies by the TPSR method have shown that at the 

reagents ratio H2O:CH4 = 0.8 only the B0 catalyst has exhibited the 

carbon deposit formation and this process started to occur only at a high 

temperature, i.e. 827°C. The other samples were totally resistant to the 
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coke formation even at the temperatures of about 850°C. Further studies 

were carried out at the reagents ratio H2O:CH4 = 0.3. The temperatures of 

the coking initiation differ insignificantly from each other and cover the 

range from 612 to 621°C. Figure 5 shows that the highest temperature of 

the coking initiation and the temperature corresponding to the deposition 

of 10 wt.% of coke (when referred to the initial catalysts weight) was 

observed for the catalyst B4 (the ratio MgO/NiO = 0.7). This catalyst is, 

thus, the most resistant to deactivation via coke formation during the 

reaction. 

 

 

Fig. 5. The temperatures of the coking initiation and temperatures corresponding to the 

            deposition of 10 wt.% of coke as a function of the MgO/NiO ratio in the steam  

            reforming of methane. 

 

3.4.2. Coking in the steam reforming of n-butane 

The coking process in the TPSR method is a function of two 

variables: temperature and time. In view of small differences between the 

temperatures of the coking initiation in the steam reforming of methane, it 

is reasonable to verify these results using higher hydrocarbons,  

i.e. n-butane, which normally enhances the coking phenomena [19, 32] 

and to apply the isothermal gravimetric method.  

Isothermal measurements allow for a continuous monitoring of the 

deposit amount formed. Initially, a non-linear and slow increase of the 

sample weight is observed and the duration of this initial stage may be 

various depending on the reaction conditions and the catalyst. Afterwards, 

the sample weight increases linearly with time and in the literature this 
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stage is called the steady-state rate of deposition [33-35]. The rate of 

coking, determined from the linear sections of the weight vs time curves, 

and referred to either the catalyst unit weight or unit of the active surface 

area, is normally used for comparison of the coking resistance of the 

samples. These studies were carried out at the temperature of ca. 500°C, 

which corresponds to the maximum of the coking rate in the reforming of 

higher hydrocarbons [8, 37]. Figure 6 shows how the amounts of carbon 

deposits increase with the reaction time in the steam reforming of n-

butane at the reagents ratio H2O:C = 0.5.  

 

 

Fig. 6. Carbon deposit weight vs time in the steam reforming of n-butane. (T = 500°C,  

           H2O:C = 0.5) 

 

The coking rates, rC, determined from the slopes of the linear 

sections, indicate that there is some optimal amount of MgO  

(21.4–27.3 wt.%), for which the catalysts reveal the highest resistance to 

coking. Further increase of the MgO content leads again to the increase of 

the coking rate. The second important parameter describing the resistance 

to coking is the so-called induction time. It can be determined from the 

deposit weight vs time curves as the time at which the enlarged linear 

section of the curve crosses the time axis [33, 36]. For highly resistant 

catalysts the induction times might reach large values [38, 39]. 

Figure 7 shows the determined induction times as well as the coking 

rates (at 10 wt.% of the initial catalyst weight of the deposit formed) as 

functions of the MgO/NiO ratio in the steam reforming of n-butane. 
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Fig. 7. Coking parameters in the steam reforming of n-butane as a function of the 

             MgO/NiO ratio (T = 500°C, H2O:C = 0.5); (rC – determined at 10 wt.% of the 

             initial catalysts weight of the deposit formed). 

 

The results indicate that in both reforming reaction of methane  

or n-butane, a maximum of the coking resistance exists for the catalyst  

B4 with the MgO/NiO ratio of ca. 0.7. This catalyst exhibits the highest 

temperature of the coking initiation in the case of the methane reforming 

and the longest induction time and the smallest coking rate in the case of 

the n-butane reforming. 

In order to estimate an influence of the reagents ratio on the coking 

rate, similar studies were carried out using the higher H2O:C4H10 ratio, 

corresponding to H2O:C = 1.5. Only the nickel catalyst B0 has exhibited 

some small coke production within the considered period of several hours 

(results not shown). 

 

3.4. The properties of the carbon deposits 

Significant differences in the coking process for various catalysts 

raise the question about the influence of the catalyst composition 
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(MgO/NiO ratio) on the nature and properties of the carbon deposits 

formed.  

 

Fig. 8. Carbon deposits on B0 catalyst. 

 

The morphology of fibrous deposits formed on the studied catalysts 

in n-butane steam reforming (Fig. 8) was typical for this reaction  

[17, 38, 40] and its low temperature [17, 41]. A typical fiber is made of 

poorly ordered carbon (although there is some ordering of the graphite 

layers – Fig. 8c). In the middle of the fibers there is a narrow channel 

(empty or filled with amorphous carbon). The fibers are terminated with a 

nickel metal particle (Fig. 8b). 

 

 

Fig. 9. Isothermal (500°C) hydrogenation of carbon deposits produced during the steam 

            reforming of n-butane at the reagents ratio H2O:C=0.5. 

 

The deposits produced during the steam reforming of n-butane were 

gasified according to two approaches: using the isothermal gravimetric 
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method with hydrogen as the gasifying agent and using the temperature-

programmed oxidation (TPO). Figure 9 shows the isothermal decoking 

curves for the selected catalysts at the temperature of 500°C. 

The carbon deposit removal proceeds with various rates depending 

on the catalyst composition. The rates of the catalyst weight uptakes 

follow the same trend as the coking rates (Fig. 6), i.e. B0 > B1 > B4. 

Figure 10 shows the TPO curves determined for the catalysts coked. 

As it can be seen, the catalyst composition has almost no effect on the 

temperature of the gasification maximum rate (~610°C). 

 

 

Fig. 10. The TPO curves determined for the catalysts coked in the steam reforming 

               of  n-butane. 

 

 

4.   DISSCUSION 

 

The modification of the catalyst composition (the MgO:NiO ratio) 

leads to changes of the nickel state due to influence on the NiO reduction 

degree, development of the nickel surface area and its dispersion. The 

state of the active phase affects the most important properties of the 

studied catalysts: activities and resistance to coking.  

The introduction of magnesia into the catalysts leads to changes in 

the surface properties of nickel crystallites. Studies of the temperature-

programmed desorption of hydrogen give, normally, an insight into the 

nature or quantity of the active centers on the catalyst surface. The  

TPD-H2 profiles of catalysts with the variable MgO/NiO ratios were 
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subjected to a quantitative analysis in ref. [42]. The determined 

adsorption energy distribution functions showed that the catalysts 

containing ≤ 27.3 wt.% of MgO revealed qualitatively similar bands of 

the adsorption energy. Only the catalyst containing 38.9 wt.% of MgO 

differs substantially from the others. However, the increasing amount of 

MgO alters the population of various types of adsorption centers found on 

catalysts active phases. Thus, the amount of MgO modifies significantly 

the morphology of nickel crystallites formed during the reduction  

process [42].  

In the steam reforming of methane (Fig. 3) a relatively broad minimum 

of the specific activity was found in the range of MgO:NiO ratios from 0.14 

to 0.7. In the same range the catalysts studied exhibit the smallest mean 

sizes of nickel crystallites (dX).  

As it is shown in Fig. 11 the specific activity increases linearly with the 

mean nickel crystallites size. This suggests the existence of the structure 

sensitivity [43-45] of the methane steam reforming reaction. 

 

 

Fig. 11. Influence of the mean nickel crystallites sizes on the activity of catalysts in the 

             steam reforming of methane.  

 

The phenomenon of the structure sensitivity in steam reforming has not 

been reported very often in the literature so far. Parmaliana et al. [46] have 

found the existence of the maximum activity of the Ni/MgO catalysts in the 

range of  nickel crystallites from 9 to 13 nm. Within the range from 2 to  

9 nm the activity increased, whereas from 9 to 13 nm a decreasing trend has 

been observed. The increase of the activity for mean sizes of nickel 
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crystallites in the range 3.7–8 nm (Fig. 11) confirms the results found in 

literature [46].  

Other results have been published in [47, 48]. Jones et al. [47] have 

shown for some metals, including Ni, that the reaction rate of the steam 

reforming of methane at the temperature 500°C increases with the 

increasing dispersion up to D = 40%. However, it should be emphasized, 

that in [47] there are no source data concerning the discussed relationship as 

well as a detailed information about the catalysts. In the CO2 reforming of 

methane Wang et al. [48] have found the decrease of activity with the 

increasing size of crystallites for Ni/MgO catalysts with various contents of 

Ni (3.4–45 wt.%) and various calcination temperatures (400–950°C). 

However, some doubts arise concerning the methods used to calculate the 

nickel dispersion based on the data from TPD-H2 and TPR measurements, 

particularly for the samples with the highest dispersion (dNi ≤ 4.5nm) 

calcined at highest temperatures (> 650°C). Under such conditions the 

degree of NiO reduction was lower than 14%, thus the error concerning 

hydrogen uptake could be the largest. Therefore, it seems that the question 

about the structure sensitivity of the steam reforming reaction has not been 

answered and this issue requires further studies.  

The modifications of the catalysts composition (the MgO:NiO ratio) 

affect significantly the resistance to coking either in the steam reforming of 

methane or n-butane (Figs. 5 and 7, respectively). The catalysts with the 

MgO:NiO ratio ranging from 0.14 to 0.7 exhibit promising properties 

(enhanced resistance to the coke formation). This is clearly illustrated in the 

studies of the steam reforming of n-butane. Even a small addition of MgO 

(~10 wt.%) to the NiO–Al2O3 system leads to a substantial decrease of the 

coking rate, rC and it levels off until the MgO:NiO ratio reaches 0.7. Further 

increase of that ratio enhances the coking rate (Fig. 7). The most resistant to 

coking, in both reactions, is thus the catalyst containing 27.3 wt.% of MgO. 

The resistance to coking is affected by the presence of the acid 

centers on the catalysts surfaces [15, 20, 49-51]. For the studied catalysts 

in [11] it has been shown, that the acid centers density decrease with the 

increasing MgO:NiO ratio in the range from 0.14 to 0.7, with a minimum 

for the ratio ~0.3. However, decreasing of the surface acidity cannot be 

the only reason for changes in the coking rate.  

The coking rate, rC as a function of the catalyst composition 

correlates well with the mean size of nickel crystallites. The catalyst with 

the MgO/NiO ratio equal to 0.7 reveals the lowest coking rate and the 

longest induction time of coking (Fig. 8), at the same time it shows the 

highest dispersion of nickel. Figure 12 underlines the linear relationship 
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between the coking rate and the mean size of nickel crystallites. The 

increase of the nickel dispersion leads to the decrease of the coking rate. 

This relationship confirms again a strong influence of the nickel 

dispersion on the course of processes leading to the coke formation, 

reported in literature [2,52-55].  

 

Fig. 12. The coking rate as a function of the mean sizes of nickel 

crystallites for the catalysts studied. 

 

The apparent inconsistency observed in the results of the carbon 

deposits gasification using both isothermal and temperature-programmed 

oxidation methods, can be explained by taking into account the 

mechanisms of their formation.  

In the steam reforming of hydrocarbons the main type of carbon 

deposits are the so-called filamentous deposits [15,19,38,41,56]. The 

nickel crystallites are placed on the top of filaments and, during the 

reaction, they are lifted by the developing carbon filaments [19,38,56-60]. 

The processes occurring on the nickel crystallites affect coking as well as 

decoking processes. A lower coking rate indicates that some portion of 

nickel crystallites does not take part in coke formation processes because 

of e.g. small sizes [2,52-55] or surface composition [61-63]. The „in situ” 

observations using the SEM technique showed that the coke formation 

processes and coke gasification were reversible and proceeded according 

to the same mechanism [64]. 
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The studied deposits are the same (Fig. 10). Thus, the differences in 

the coking rates are not related to the changes of the deposits properties 

but to smaller amounts of the coked crystallites. However, although the 

total removal of the deposits is possible, it does not result in the full 

regeneration of the catalysts because their initial state cannot anyway be 

recovered [65, 66]. 

As it can be concluded from our studies the crucial factor controlling 

the properties of  composite Ni/MgO–Al2O3 catalysts is the nickel 

dispersion which, in turn, depends on the catalyst composition and its 

initial treatment. 

The existence of a wide range of the MgO to NiO ratios, for which 

the catalysts exhibit a high resistance to coking is very promising. It 

should facilitate the optimization of other properties, including the 

activity, without a negative influence on the resistance to coking.  

Table 3 compares the coking parameters of the catalysts studied in 

the steam reforming of hydrocarbons. The shaded areas underline the 

catalyst composition providing the highest resistance to coking in a given 

reaction. 

Table 3. The coking parameters of the catalysts studied. 

Coking parameter 
MgO/NiO ratio 

0 0.14 0.32 0.47 0.7 1.5 

C4H10 + H2O 

[H2O:C = 0.5] 

Induction time [min] 

 

6 

 

20 

 

35 

 

41 

 

46 

 

32 

CH4 + H2O 

[H2O:C = 0.3] 

Temperature of the 

coking initiation [°C]
 

 

 

613 

 

 

615 

 

 

616 

 

 

620 

 

 

621 

 

 

612 

 

 

5.  CONCLUSIONS 

 

The NiO–MgO–Al2O3 catalysts were investigated in order to find the 

optimal composition in terms of the activity and resistance to coking. It 

was found that all the catalysts containing MgO exhibited a higher 

reduction temperature than the standard alumina-supported nickel 
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catalysts. The increasing amounts of the MgO lead to a gradual decrease 

of the reduction degree and increase of the maximum of the TPR peaks. It 

means that the presence of MgO facilitates the formation of hardly 

reducible compounds containing NiO such as NiO–MgO solid solutions 

or MgAl2O4 spinel. 

The activity of catalysts depends on the composition though its value 

only slightly depends on the amount of MgO. The highest activity was 

observed for the catalysts without MgO; a small addition of MgO reduced 

the activity to some extent but it remained at almost constant level as the 

amount of MgO increased. Furthermore, it was found a correlation 

between the mean size of nickel crystallites and the catalysts activity. 

Within the size range from 3.7 to 8.0 nm the activity increases linearly 

what suggests the existence of the structure sensitivity of the reaction.��

The presence of MgO reduces the coke formation in the steam 

reforming of methane and n-butane. The coking rate was found to 

decrease with the increasing dispersion of nickel crystallites. The highest 

resistance to coking was observed for the catalyst containing 27.3 wt.% 

MgO, which, revealed also the highest dispersion of nickel crystallites. 

The properties of carbon deposits turned out to be of the same type (the 

same temperature of the maximum for the TPO peaks), though the rates 

of coking and decoking depended on the catalysts composition. 

Thus, the nickel crystallites sizes turn out to be a very important 

parameter affecting either the activity or resistance to the coke formation. It 

seems that this parameter directly affects the catalysts properties. Other 

parameters like the amount of MgO, preparation technique, calcination 

conditions and the reduction degree of NiO affect the catalysts properties 

indirectly through modification of the nickel crystallites morphology. 
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