The sorption capability of halloysite

Małgorzata Skibińska

Abstract


Halloysite is commonly occuring in Poland a natural mineral which, due to its structure is very popular among researchers. First of all, the large number of sorption areas and their various selectivity makes the material capable of adsorbing the compounds of different nature at the same time. As a result, there is a lot of possible applications. In addition, ease of functionalization of the surface of the material increases its sorption capacity and makes its more attractive. 


Keywords


natural mineral; halloysite; sorption; aluminosilicate

Full Text:

PDF

References


References

F. Ferrante, N. Armata, G. Cavallaro, G. Lazzara, The Journal of Physical Chemistry, 121 2951 (2017).

G. Kiani, M. Dostali, A. Rostami, A. R. Khataee, Appl. Clay Sci., 54 34 (2011).

, 34–39.

MDC. Macewan, Nature,157 159 (1946).

E. Joussein, S. Petit, J. Churchman, B. Theng, D. Right, B. Delvaux, Clay Minerals, 40 383 (2005).

S.Y. Lee, S. J. Kim, Applied Clay Science, 22 55 (2002).

A. F. Peixoto, A. C. Fernandes, C. Pereira, J. Pires, C. Freire, Microporous and Mesoporous Materials, 219 145 (2016).

B. Szczepanik, P. Słomkiewicz, M. Garnuszek, K. Czech, D. Banaś, A. Kubala-Kukuś, I.

Stabrawa, I., J. Mol. Struct. 1084 16 (2015).

P. Yuan, D. Tan, F. Annabi-Bergaya, Applied Clay Science, 112-113 75 (2015).

Y. Zhang, A. Tang, H. Yang, J. Ouyang, Applied Clay Science, 119 8 (2016).

J. Tully, R. Yendluri, Y. Lvov, Biomacromolecules, 17 615 (2016).

R. Zhai, B. Zhang, L. Liu, Y. Xie, H. Zhang, J. Liu, Catalysis Communications, 12 259 (2010).

P. Yuan, P.D. Southon, Z. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, C.J. Kepert, J. Phys. Chem. C 112 (2008) 15742.

J. Marini, E. Pollet, L. Averous, R. E. S. Bretas, Polymer 55, 5226 (2014).

E. Abdullayev, Y. Lvov, Journal of Nanoscience and Nanotechnology, 11 10007 (2011).

T.A. Mammadova, N. V. Hasankhanova, Kh. Sh. Teyubov, E. N. Askerova, T. S. Latifova, V. M. Abbasov, Catal. Sustain. Energy, 2 28 (2015).

Y. Lvov, W. Wang, L. Zhang, R. Fakhmrllin, Adv. Mater., 28 1227 (2016).

American Mineralogist Crystal Structure Database.

M. T. Albdiry, H. Ku, B. F. Yousif, Engineering Failure Analysis, 35, 718 (2013).

A. F. Peixoto, A. C. Fernandes, C. Pereira, J. Pires, C. Freire, Microporous and Mesoporous Materials, 219, 145 (2016).

PE Askenasy, JB Dixon, TR McKee, Soil Sci Soc Am J, 37 79 (1974).

B. Singh, Clays Clay Miner, 44 191 (1996).

L. Yu, H. Wang, Y. Zhang, B. Zhang, J. Liu, Environ. Sci. Nano. 3, 28 (2016).

R. Shemesh, M. Krepker, M. Natan, Y. Danin-Poleg, E. Banin, Y. Kashi, N. Nitzan, A. Vaxman, E. Segal, RSC Adv., 5, 87108 (2015).

L. Guimaraes, A. N. Enyashin, G. Seifert, H. A. Duarte, J. Phys. Che. C, 114, 11358 (2010).

V. Vergaro, E. Abdullayev, Y. M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Biomacromolecules, 11, 820 (2010).

S. J. Antill, Aust. J. Chem. 56 723 (2003).

M. Du, B. Guo, D. Jia, Polym Int, 59, 574 (2010).

Levis, S.R., Deasy, P.B., 2002. Characterisation of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125–134.

Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H., He, H., 2013. Natural halloysite nanotubes asmesoporous carriers for the loading of ibuprofen. MicroporousMesoporous

Mater. 179, 89–98.

Tan, D.Y., Yuan, P., Annabi-Bergaya, F., Liu, D.,Wang, L.J., Liu, H.M., He, H.P., 2014. Loading and in vitro release of ibuprofen in tubular halloysite. Appl. Clay Sci. 96, 50–55.

V. Vergaro, Y. M. Lvov, S. Leporatti, Colloids Surf. A Physicochem. Eng. Asp. 396 182 (2012).

Y. F. Shi, Z. Tian, Y. Zhang, H. B. Shen, N. Q Jia, Nanoscale Res. Lett. 6 1 (2011).

S. A. Konnova, I. R. Sharipova, T. A. Demina, Y. N. Osin, D. R. Yarullina, O. N. Ilinskaya, Y. M. Lvov, R. F. Fakhrullin, Chem. Commun. 49 4208 (2013).

K. M. Rao, S. Nagappan, D. J. Seo, C.-S. Ha, Appl. Clay Sci. 97–98 33 (2014).

P. Sakiewicz, R. Nowosielski, W. Pilarczyk, K. Gołombek, M. Lutyński, Journal of Achievements in Materials and Manufacturing Engineering, 48, 117 (2011).

J. Matusik, Chemical Engineering Journal, 246, 244 (2014).

P. Yuan, P.D. Southon, Z. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, C.J. Kepert, J. Phys. Chem. C 112 (2008) 15742.

M. Du, B. Guo, D. Jia, Polym Int, 59, 574 (2010).

E. Abdullayev, Y. Lvov, J. Mater. Chem. B, (2013).

M. Liu, Z. Jia, D. Jia, C. Zhou, Progress in Polymer Science, 39, 1498 (2014).

D. G. Shchukin, G. B. Sukhorukow, R. R. Price, Y. M. Lvov, Small 1 510 (2005).

Y. Zhang, H. M.Yang, Phys.Chem.Miner.39 789 (2012).

J. Marini, E. Pollet, L. Averous, R. E. S. Bretas, Polymer 55 5226 (2014).

L.N. Carli, T. S. Daitx, G. V. Soares, J. S. Crespo, R. S. Mauler, Appl. Clay Sci., 87311 (2014).

B. Guo, Y. Lei, F. Chen, X. Liu, M. Du, D. Jia, Appl. Surf. Sci. 255 2715 (2008).

N-Y. Ning, Q-J. Yin, F. Luo, Q. Zhang, R. Du, Q. Fu, Polymer 48 2374 (2007).

P. Pasbakhsh, H. Ismail, M. N. A. Fauzi, A. A. Bakar, Appl. Clay Sci. 48 405 (2010).

K. Prashantha, M. F. Lacrampe, P. Krawczak, Express Polym. Lett. 5, 295 (2011).

A. Das, V. Thakur, R. N. Mahaling, A. K. Bhowmick, G. Heinrich, Mater. Des. 31 2151 (2010).

M. Liu, Z. Jia, D. Jia, C. Zhou, Progress in Polymer Science, 39, 1498 (2014).

L. N. Carli, T. S. Daitx, G. V. Soares, J. S. Crespo, R. S. Mauler, Applied Clay Science, 87, 311 (2014).

M. T. Albdiry, B. F. Yousif, Materials and Design, 57, 279 (2014).

E. Bischoff, T. Daitx, D. A. Simon, H. S. Schrekker, S. A. Liberman, R. S. Mauler, Applied Clay Science, 112-113, 68 (2015).

Li, C.P.,Wang, J.Q., Feng, S.Q., Yang, Z.L., Ding, S.J., J. Mater. Chem. A 1, 8045 (2013).

P.Pasbakhsh, GJ. Churchman, JL. Keeling, Appl Clay Sci, 74 47 (2007).

G. S. Machado, K. A. D. d. F. Castro, F. Wypych, S. G. S.Nakagakia, J. Mol. Catal. A Chem. 283 99 (2008).

Zatta, L.,Gardolinski,J.,Wypych,F.,2011.Raw halloysites asreusable heterogeneous catalyst for esterificationoflauric acid.Appl.Clay Sci.51, 165–169.

S. Barrientos-Ramírez, E. V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda- Escribano, M. M. Pastor-Blas, A. González-Montiel, Micropor. Mesopor. Mat. 120 132 (2009).

X. Tang, L. Li, B. Shen, C. Wang, Chemosphere, 91, 1368 (2013).

Y. Zhao, E. Abdullayev, A. Vasiliev, Y. Lvov, J. Colloid Interface Sci. 406 121 (2013).

T. P. Ahammed Shabeer, A. Saha, V. T. Gajbhiye, S. Gupta, K. M. Manjaiah, E. Varghese, Water Air Soil Pollut, 226, 41 (2015).

W. O. Yah, A. Takahara, Y. M. Lvov, J. Am. Chem. Soc., 134, 1853 (2012a).

E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, Y. Lvov, ACS Nano 6, 7216 (2012).

D. Grabska, M. Raczyńska-Żak, K. Czech, P. M. Słomkiewicz, M. A. Jóźwiak, Applied Clay Science, 114, 321 (2015).

R. Gao, Q. Meng, J. Li, M. Liu, Y. Zhang, C. Bi, A. Shan, Journal of Animal Science and Biotechnology, 7 (2016).

M. Korczyński, J. Jankowski, D. Witkowska, S. Opaliński, M. Szołtysik, R. Kołacz, Przemysł Chemiczny, 92, 1027 (2013).

P. Liu, M. Zhao, Appl. Surf. Sci. 255 3989 (2009).

M. Zieba, J. L. Hueso, M. Arruebo, G. Martínez, J. Santamaría, New J. Chem. 38 2037 (2014).

K. A. Gonchar, A. V. Kondakova, S. Jana, V. Yu. Timoshenko, A. N. Vasiliev, Optical Properites, 58, 601 (2016).

L. Yu, H. Wang, Y. Zang, B. Zhang, J. Liu, Environ., 3 28 (2016).

M. T. Viseras, C. Aguzzi, P. Cerezo, C. Viseras, C. Valenzuela, Micropor. Mesopor. Mat. 108 112 (2008).

G. Kiani, Appl. Clay Sci. 90 159 (2014).

M. Lutyński, P. Sakiewicz, M. A. Gonzales, Inżynieria Mineralna, 111 (2014).

. C-L. Zhang, S-J. Cui, Y. Wang, Journal og Industrial and Engineering Chemistry, 23, 12 (2015).

T. P. Ahammed Shabeer, A. Saha, V. T. Gajbhiye, S. Gupta, K. M. Manjaiah, E. Varghese, Water Air Soil Pollut, 226, 41 (2015).

F. Ferrante, N. Armata, G. Cavallaro, G. Lazzara, The Journal of Physical Chemistry, 121, 2951 (2017).

A. Świercz, E. Smorzewska, P. Słomkiewicz, G. Suchanek, Journal of Elementology, 21(2), 559 (2016).

L. Liu, Y. Z.Wan, Y. D. Xie, R. Zhai, B. Zhang, J. D. Liu, Chem. Eng. 187 210 (2012).

G. Kiani, M. Dostali, A. Rostami, A. R. Khataee, Appl. Clay Sci., 54 34 (2011).

M. F. Zhao, P. Liu, 112 419 (2008).

E. Ruiz-Hitzhy, K. Ariga, Y. Lvov, Bio-inorganic Hybrid Nanomaterials, Wilet-VCH (2008).

R. D. D. V. White, Bavykin, F. C. Walsh, Nanotechnology 23 065705 (2012).

A. B. Zhang, L. Pan, H. Y. Zhang, S. T. Liu, Y. Ye, M. S. Xia, X. G. Chen, Colloids

Surf. A Physicochem. Eng. Asp. 396 182 (2012).

T. S. Gaaz, A. B. Sulong, A. A. H. Kadhum, M. H. Nassir, A. A. Al-Amiery, Materials, 9, 620 (2016).




DOI: http://dx.doi.org/10.17951/aa.2017.72.1.47
Data publikacji: 2017-12-08 10:35:23
Data złożenia artykułu: 2017-03-31 07:44:12

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Małgorzata Skibińska