A review on physicochemical measurements by headspace gas chromatography. Studies of vapour-liquid equilibria.

Andrzej Lewandowski, Katarzyna Szymczyk

Abstract


Headspace gas chromatography (HS-GC) is a powerful technique for the analysis of volatile compounds. It has found broad applications for quantitative and qualitative analyses of various samples as well as for physicochemical measurements. This paper briefly reviews the basic physicochemical applications of HS-GC including vapour pressure measurements and studies of vapour-liquid equilibria in multicomponent systems. A special attention is paid to methodological aspects of these measurements. The advantages and limitations of HS-GC in this field as well as typical applications are also pointed out.


Keywords


headspace gas chromatography, vapour-liquid equilibrium, vapour pressure

Full Text:

PDF

References


B. Kolb and L. S. Ettre, Static Headspace-Gas Chromatography: Theory and Practice, 2nd ed., Wiley-Interscience, Hoboken, 2006.

B. V. Ioffe and A. G. Vitenberg, Head-Space Analysis and Related Methods in Gas Chromatography, Wiley-Interscience, New York, 1984.

H. Hachenberg and A. P. Schmidt, Gas Chromatographic Headspace Analysis, Heyden, London, 1977.

A. C. Soria, M. J. García-Sarrió, and M. L. Sanz, Trends Anal. Chem. 71, 85 (2015).

J. Y. Zhu and X. S. Chai, Curr. Anal. Chem. 1, 79 (2005).

D. C. Leggett, J. Chromatogr. 133, 83 (1977).

K. Schoene and J. Steinhanses, Z. Anal. Chem. 309, 198 (1981).

K. Schoene, W. Böhmer, and J. Steinhanses, Z. Anal. Chem. 319, 903 (1984).

J. E. Woodrow and J. N. Seiber, J. Chromatogr. 455, 53 (1988).

J. E. Woodrow, Energy Fuels 17, 216 (2003).

J. C. Oxley, J. L. Smith, K. Shinde, and J. Moran, Propellants, Explos. Pyrotech. 30, 127 (2005).

J. C. Oxley, J. L. Smith, W. Luo, and J. Brady, Propellants, Explos. Pyrotech. 34, 539 (2009).

B. Kolb, J. Chromatogr. 112, 287 (1975).

P. Luis, C. Wouters, B. Van der Bruggen, and S. I. Sandler, J. Chromatogr. A 1302, 111 (2013).

P. Luis, C. Wouters, N. Sweygers, C. Creemers, and B. Van Der Bruggen, J. Chem. Thermodyn. 49, 128 (2012).

J.-H. Oh and S.-J. Park, J. Chem. Eng. Data 42, 517 (1997).

J.-H. Oh and S.-J. Park, J. Chem. Eng. Data 43, 1009 (1998).

M. T. Sanz and J. Gmehling, Fluid Phase Equilib. 267, 158 (2008).

J.-Y. Lee, I.-C. Hwang, S.-J. Park, and S.-J. In, J. Chem. Eng. Data 55, 864 (2010).

I.-C. Hwang, M.-Y. Jo, H.-Y. Kwak, S.-J. Park, and K.-J. Han, J. Chem. Eng. Data 52, 2503 (2007).

E. J. González, J. Palomar, P. Navarro, M. Larriba, J. García, and F. Rodríguez, J. Mol. Liq. 250, 9 (2018).

B. Mokhtarani and J. Gmehling, J. Chem. Thermodyn. 42, 1036 (2010).

I.-C. Hwang, S.-J. Park, and K.-J. Han, Fluid Phase Equilib. 303, 150 (2011).

H. Matsuda, K. Tochigi, V. Liebert, and J. Gmehling, Fluid Phase Equilib. 307, 197 (2011).

F. A. Banat, F. A. Abu Al-rub, and J. Simandl, Chem. Eng. Technol. 22, 761 (1999).

F. A. Abu Al-Rub, F. A. Banat, and J. Simandl, Chem. Eng. J. 74, 205 (1999).

F. Banat, S. Al-Asheh, and J. Simandl, Chem. Eng. Process. 41, 793 (2002).

F. Banat, S. Al-Asheh, and J. Simandl, Chem. Eng. Process. Process Intensif. 42, 917 (2003).

H. Takamatsu and S. Ohe, J. Chem. Eng. Data 48, 277 (2003).




DOI: http://dx.doi.org/10.17951/aa.2017.72.2.37-50
Data publikacji: 2018-09-10 09:42:28
Data złożenia artykułu: 2018-01-18 14:33:36

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Andrzej Lewandowski, Katarzyna Szymczyk