Asymmetric desymmetrization of organophosphorus compounds with organolithium-sparteine chiral bases
Abstract
Chiral organophosphorus compounds are one of the main groups of ligands used in asymmetric homogenous catalysis. Ongoing progress in transition metal-catalyzed reactions requires that efficient methods for the synthesis of chiral phosphines and their derivatives are available. This review is focused on desymmetrization of heteroleptic tertiary phosphine derivatives via stereoselective lithiation using organolithium/sparteine complexes as chiral bases combined with oxidative homocoupling or trapping the P-chiral intermediates with electrophiles. The method has been used to obtain both known and new chiral ligands with application in stereoselective reactions catalyzed by transition metal complexes.
Keywords
Full Text:
PDFReferences
W. S. Knowles, M. J. Sabacky, B. D. Vineyard, J.C.S. Chem. Comm., 1972, 10‒11.
B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 18, 5946‒5952.
M. D. Fryzuk, B. Bosnich, J. Am. Chem. Soc., 1977, 99, 19, 6262‒6267.
A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, J. Am. Chem. Soc., 1980, 102, 7932‒7934.
W. S. Knowles, Acc. Chem. Res., 1983, 16, 106‒112.
F. López, A. J. Minnaard, B. L. Feringa, Acc. Chem. Res,. 2007, 40, 179‒188.
T. E. Schmid, S. Drissi‒Amraoui, C. Crévisy, O. Baslé, M. Mauduit, Beilstein J. Org. Chem. 2015, 11, 2418–2434.
A. Gutnov, Eur. J. Org. Chem. 2008, 4547–4554.
D. J. Weix, J. F. Hartwig, J. Am. Chem. Soc., 2007, 129, 7720‒7721.
S. Oliver, P. A. Evans, Synthesis, 2013; 45, 23, 3179‒3198.
J. F. Collados, R. Solà, S. R. Harutyunyan, B. Maciá, ACS Catalysis, 2016, 6, 1952‒1970.
J. Meisenheimer, L. Lichtenstadt, Ber. dtsch. chem. Ges.., 1911, 44, 356.
J. Meisenheimer, J. Casper, M. Höring. W. Lauter, L. Lichtenstadt, W. Samuel, J. Liebig. Ann. Chem., 1926, 449, 213.
J. Holt, A. M. Maj, E. P. Schudde, K. M. Pietrusiewicz, L. Sieroń, W. Wieczorek, T. Jerphagnon, I. W. C. E. Arends, U. Hanefeld, A. J. Minnaard, Synthesis, 2009, 12, 2061‒2065.
T. Novák, J. Schindler, V. Ujj, M. Czugler, E. Fogassy, G. Keglevich, Tetrahedron: Asymmetry, 2006, 17, 2599‒2602.
T. Novák, V. Ujj, J. Schindler, M. Czugler, M. Kubinyi, Z. A. Mayer, E. Fogassy, G. Keglevich, Tetrahedron: Asymmetry, 2007, 18, 2965‒2972.
P. Bagi, M. Kállay, D. Hessz, M. Kubinyi, T. Holczbauer, M. Czugler, E. Fogassy, G. Keglevich, Tetrahedron: Asymmetry, 2014, 25, 318‒326.
P. Bagi, A. Fekete, M. Kállay, D. Hessz, M. Kubinyi, T. Holczbauer, M. Czugler, E. Fogassy, G. Keglevich, Heteroatom Chemistry, 2015, 26, 79‒90.
F. Toda, K. Mori, J. Org. Chem., 1988, 53, 308‒312.
O. Korpiun, K. Mislow, J. Am. Chem. Soc., 1967, 89, 4784‒4786.
O. Korpiun, R. A. Lewis, J. Chickos, K. Mislow, J. Am. Chem. Soc., 1968, 90, 4842‒4846.
R. A. Lewis, K. Mislow, J. Am. Chem. Soc. 1969, 91, 7009–7012.
W. B. Farnham, R. K. Murray Jr., K. Mislow, J. Am. Chem. Soc., 1970, 92, 5809–5810.
Y. Wada, T. Imamoto, H. Tsuruta, K. Yamaguchi, I. D. Gridnev, Adv. Synth. Catal., 2004, 346, 777‒788.
Y. Koide, A. Sakamoto, T. Imamoto, Tetrahedron Lett., 1991, 32, 3375‒3376.
Y. Koide, A. Sakamoto, T. Imamoto, Tetrahedron Lett., 1991, 32, 3371‒3374.
S. Jugé, M. Stephan, J. A. Laffitte, J. P. Genêt, Tetrahedron Lett., 1990, 31, 6357–6360.
S. Jugé, Phosphorus, Sulfur, and Silicon, 2008, 183, 233‒248.
L. T. Byrne, L. M. Engelhardt, G. E. Jacobsen, W.‒P. Leung, R. I. Parasergio, C. L. Raston, B. W. Skelton, P. Twiss, A. H. White, J. Chem. Soc. Dalton Trans., 1989, 105‒113.
A. R. Muci, K. R. Campos, D. A. Evans, J. Am. Chem. Soc., 1995, 117, 9075‒9076.
T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H. Yamada, H. Tsuruta, S. Matsukawa, K. Yamaguchi, J. Am. Chem. Soc. 1998, 120, 1635‒1636.
Y. Yamanoi, T. Imamoto, J. Org. Chem. 1999, 64, 2988‒2989.
I. D. Gridnev, Y. Yamanoi, N. Higashi, H. Tsuruta, M. Yasutake, T. Imamoto, Adv. Synth. Catal. 2001, 343, 118‒136.
K. Nagata, S. Matsukawa, T. Imamoto, J. Org. Chem. 2000, 65, 4185‒4188.
X. Wu, P. O’Brien, S. Ellwood, F. Secci, B. Kelly, Org. Lett., 2013, 15, 192‒195.
P. Woźnicki, E. Korzeniowska, M. Stankevič, J. Org. Chem., 2017, 82, 10271‒10296.
S. Kobayashi, N. Shiraishi, W. W.‒L. Lam, K. Manabe, Tetrahedron Lett., 2001, 42, 7303‒7306.
W. Tang, X. Zhang, Angew. Chem. Int. Ed., 2002, 41, 1612‒1614.
W. Tang, W. Wang, X. Zhang, Angew. Chem. Int. Ed., 2003, 42, 943‒946.
C. Popovici, P. Ona‒Burgos, I. Fernandez, L. Roces, S. Garcia‒Granda, M. J. Iglesias, F. Lopez Ortiz, Org. Lett., 2010, 12, 428‒431.
J. J. Gammon, V. H. Gessner, G. R. Barker, J. Granader, A. C. Whitwood, C. Strohmann, P. O’Brien, B. Kelly, J. Am. Chem. Soc., 2010, 132, 13922–13927.
B. Wolfe, T. Livinghouse, J. Am. Chem. Soc. 1998, 120, 5116‒5117.
B. T. Smith, J. A. Wendt, J. Aubé, Org. Lett., 2002, 4, 2577‒2579.
M. J. Dearden, C. R. Firkin, J.‒P. R. Hermet, P. O’Brien, J. Am. Chem. Soc., 2002, 124, 11870‒11871.
M. Johanssen, L. O. Schwartz, M. Amedjkouh, N. C. Kann, Eur. J. Org. Chem., 2004, 1894‒1896.
M. J. Johansson, L. Schwartz, M. Amedjkouh, N. Kann, Tetrahedron: Asymmetry, 2004, 15, 3531‒3538.
G. Carbone, P. O’Brien, G. Hilmersson, J. Am. Chem. Soc., 2010, 132, 15445‒15450.
P. Beak, S. T. Kerrick S. Wu, J. Chu, J. Am. Chem. Soc., 1994, 116, 3231‒3239.
C. Genet, S. J. Canipa, P. O’Brien, S. Taylor, J. Am. Chem. Soc., 2006, 128, 9336–9337.
J. J. Gammon, S. J. Canipa, P. O’Brien, B. Kelly, S. Taylor, Chem. Commun., 2008, 3750‒3752.
J. Granader, F. Secci, S. J. Canipa, P. O’Brien, B. Kelly, J. Org. Chem., 2011, 76, 4794–4799.
M. J. McGrath, P. O’Brien, J. Am. Chem. Soc., 2005, 127, 16378‒16379.
DOI: http://dx.doi.org/10.17951/aa.2019.74.1.65-92
Date of publication: 2020-06-17 11:49:16
Date of submission: 2019-09-22 13:40:08
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Paweł Woźnicki