

Annales UMCS Informatica AI 1 (2003) 15-20
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Distributed solving of Markov chains for computer network models

Jarosław Bylina∗

Department of Computer Science, Institute of Mathematics, Maria Curie Skłodowska University,
 Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

In this paper a distributed iterative GMRES algorithm for solving huge and sparse linear sys-
tems (that appear in the Markov chain analysis of queueing network models) is considered. It is
implemented using the MPI standard on a collection of Linux machines and the emphasis is put
upon the size of linear systems being solved and possibility of storing huge and sparse matrices as
well as huge vectors on distributed systems.

1. Introduction
Queuing network models have been widely used for analysis of real computer

networks and many other kinds of networks (as comunication networks, for
example).

For queuing networks satsifying some conditions [1], there exist efficient
algorithms (called product-form algorithms) that can compute the network
parameters. In some cases various methods that compute approximate solutions
(without sufficient mathematical justification and defined error bounds) can be
used. However, the application range of such algorithms is very limited.

In general, it is necessary to adopt a strictly numerical approach to queueing
networks. It is always possible to obtain a Markov chain for any queuing
network – we can approximate arbitrarily closely any probability distribution
with phase-type representation [2]. Additionally, we can include features such as
priority queueing, blocking etc. in the Markov chain representation.

Although, in general, when a compilcated network behaviour is to be
represented by a Markov chain then the size of the state space becomes huge
very fast and there are problems with space and time complexity of algorithms
for solving such huge linear systems.

∗ E-mail address: jmbylina@hektor.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 03:59:57

UM
CS

2. Model specification
We start with the description of the queuing network model [3, 4]. Such a

model consists of customers moving among a set of service stations. The
customers (also called clients, jobs can be divided into classes, but within a class
all customers are identical.

A service station consists of queues where customers wait until they are
served and servers. The queues may have infinite capacity (that is sufficiently
large to hold any number of customers) or finite capacity. In one station there
may be any number of identical servers.

The time distribution used most commonly for service distribution is the
exponential distribution or - when the latter is insufficient - Coxian distribution
(with which we can approximate any distribution arbitrarily closely).

Each station has its own scheduling discipline which defines the order in
which clients are served (for example FIFO, LIFO, service in random order etc.).

Clients travel from a station to a station according to routing probabilities
which determines chances for a customer to go from the given station after
service to another. The transitions are instantaneous (but we can add a service
station on the path of the clients as a delay mechanism).

3. Markov chain analysis of queuing networks
To represent behaviour of a queueing network as a Markov chain first we

have to choose a state space representation. A state can be represented as a
vector whose components described completely the state of each of the elements
of the queuing network. For example a state of a station with one queue (storing
only one class of the customers) and one server with the exponential service time
can be described with only one integer – the number of customers in the queue.
But for the station with a server with a Coxian service distribution we need two
numbers - one for the number of customers and the other for the state (phase) of
the server. Further, for example, we may require more paremeters if there may
be more classes of customers in the queue and so on.

Next we have to enumerate all potential transitions among states and define
for them the transition rates ()ijq . That way we generate transition rate matrix

(or infinitesimal generator matrix, ()ijQ q= given by

 () ()
0

,
lim for ij

ij t

p t t t
q t i j

t∆ →

+ ∆
= ≠

∆
, (1)

 () ()ii ij
j i

q t q t
≠

= −∑ , (2)

where ()1 2,ijp t t is the probability that the transition occurs from the state i to the
state j between the moments t1 and t2.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 03:59:57

UM
CS

The last step in our analysis is to compute probability vector (()tπ , see
below) of the Markov chain which can be used to describe effectivenes of the
network and its elements.

The components ()i tπ of the (horizontal) vector ()tπ are the probabilities
that the system is in the state i at time t. To find them we are to solve the
equation

() () ()d t

t Q t
dt
π

π= , (3)

that becomes

() ()d t

t Q
dt
π

π= , (4)

when the transition rates are independent of time (that is when the Markov chain
is homogeneous what we can often assume). The solution is given by

 ()
1 !

n n
Qt

n

Q tt e I
n

π
∞

=

= = + ∑ , (5)

that is rather hard to compute [5].
However, we often deal with steady-states probability distribution, when

there exists
 ()lim

t
tπ π

→∞
= , (6)

and then the rate of change of ()tπ at steady-state is zero, so

()

0
d t

dt
π

= , (7)

and we are to solve a simpler equation
 0Qπ = ,
(now π is written as independent of time). It is worth noticing that the matrix Q
is singular, so there exists a nonzero solution and if Q is of rank 1n − (this case
is the most interesting for us) there exists exactly one nonzero solution satisfying
an additional equation, namely
 1i

i

π =∑ . (9)

4. Iterative GMRES algorithm

There are many ways to solve such an equation. The first class of methods are
direct methods which are variants of the Gaussian elimination algorithms.
Applying them to our problem requires some caution, because of singularity of
the matrix Q. These methods can make the matrix denser which may use up the
computer memory (for huge matrices) and slows down performance (changing a

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 03:59:57

UM
CS

zero element to a nonzero element in a sparse matrix is time-consuming because
of specific storage schemes for sparse matrix).

Other classes include iterative (like the power method, Jacobi method,Gauss-
Seidel, SOR etc.) and projection methods one of wich (namely: iterative
GMRES algorithm) we implemented.

Generalized minimum residual algorithm (GMRES) begins by constructing
an orthonormal basis for a Krylov subspace (of dimension m much lesser than
the size of Q) from the normalized residual υ1 produced from an initial
approximation x0:
 0 0

Tr Q x= − , (10)
 0 2

rβ = , (11)

 0
1

r
υ

β
= . (12)

Constructing an orthonormal basis for a Krylov subspace is done by the Arnoldi
process (for 1,...,j m=)
 T

jw Q υ= , (13)

 for 1,..., : T
ij i ij ii j h w w w hυ υ= = = − ,

 1, 2j jh w+ = ,

 1
1,

j
j j

w
h

υ +
+

= .

The next step is to solve the least square problem by finding the vector
()1 ,..., T

my y y= that minimizes the function
 1 2

e Hyβ −
where
 ()1 1,0,...,0 is of size 1Te m= + ,
H is the 1m m+ × marix and

for 1,

0 for 1,
ijh i j

H
i j

≤ +
=  > +

and to compute the new approximate solution

 0
1

m

i i
i

x x yυ
+

= + ∑ . (14)

In iterative GMRES we start over with ox x= , if computed approximation is
insufficient.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 03:59:57

UM
CS

5. Storage of sparse matrices
If we want to use the iterative GMRES algorithm to solve Markov chains

representing behaviour of a queuing network we should expect the matrix (and
of course vectors) of huge sizes.

First, we must consider storage schemes for the sparse matrix. To store such a
matrix in an efficient manner we use three one-dimensional arrays (after [4] and
others). First of them (with real items) is used to hold the nonzero elements of
the matrix. The elements are stored by rows of TQ not Q, because we need rows
of TQ to multiply it by a vector in our algorithm), but the elements need not to
be in order within a row (in other words: it is only necessary for all elements of
row i to be before all elements of row i + 1).

Two other arrays are integer arrays. The first integer array contains the
column index of each nonzero element. The second integer array is much
smaller than the former two arrays - it holds only one number for each column:
starting position of the column in the former arrays.

6. Implementation
In our distributed implementation of iterative GMRES we used MPI

(Message-Passing Interface, [6-7]) standard that allows writing distributed
programs relatively easy. Program was written in C, compiled with gcc under
Linux and tested on a collection of PC stations (nodes) connected with 10Mb
Ethernet.

To achieve the best size performance we decide to divide evenly among
nodes the matrix TQ (n/k consecutive rows for each node, n is the size of the
matrix, k is the number of nodes) and vectors r0, x0, w and , 1,..., 1i i mυ = + (n/k
consecutive items of each vector for each node).

That is how operations of GMRES are held in our distributed implementation:
All operations on vectors (as scaling, adding, multiplying, computing their
norm) are computed locally by a node on the node's part of the vector(s). Then
the partial result is exchanged with others nodes (only if it is necessary - as for
computing the norm of a vector or the scalar product of two vectors).

To multiply the matrix TQ by a vector we have to gather all components of
the vector at the node (so we need one additional full-sized vector in each node)
before multiplying but we do not need to exchange the elements of the product,
because each node holds ‘its own’ part of the vector after multiplying.

7. Performance consideration
We focused on the best utilisation of the node memory. Let us see how much

memory a node needs to perform computations. Let n be the size of the matrix

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 03:59:57

UM
CS

TQ , nz be the number of nonzero elements of the matrix TQ and k be the
number of nodes. Let f be the size of a float number representation and i be the
size of an integer number representation (in memory units, eg. bytes)

Each node requires ()nz f nz i n i k⋅ + ⋅ + ⋅ bytes for storing its part of the
matrix TQ , ()n f k⋅ bytes for its part of each vector r0, x0, w and iυ ,

1,..., 1i m= + and n f⋅ bytes for the additional full-sized vector.

8. Conclusion
We managed to create a program, which can find solution of a Markov chain

of arbitrary size of state space (for example with 20k = nodes, 128MB physical
RAM each, we can solve problems with 65 10n = ⋅ and 675 10nz = ⋅) – if we
have at our disposal a suitable number of nodes connected with fast
communication media and protocols.

Unfortunately, the time performance was unsatisfactory but there are many
points in which we are going to correct performance – both in algorithm (for
example by using fast numerical subroutines – as BLAS etc. – for computations
on vectors) and in connection of the nodes (by changing the network topology
etc.).

References
[1] Chandy K.M., The analysis and solution of general queueing networks, Proceedings of the

Sixth Princeton Conference of Information Sciences and Systems, Princeton, NJ, (1972) 224.
[2] Neuts M.F., Matrix Geometric Solutions in Stochastic Models - An Algorithmic Approach,

Johns Hopkins University Press, Baltimore, (1981).
[3] Czachórski T., Modele kolejkowe w ocenie efektywności sieci i systemów, Gliwice (1999),

in Polish.
[4] Stewart W.J., Introduction to the Numerical Solution of Markov Chain, Princeton University

Press, Princeton, NJ, (1994).
[5] Moler C., van Loan C., Nineteen dubious ways to compute the exponential of a matrix, SIAM

Review, 20 (1978) 801.
[6] Pacheco P.S., A User's Guide to MPI, University of San Francisco, (1998).
[7] Bylina B., „Komunikacja w MPI”, Informatyka Stosowana S2/01, V Lubelskie Forum

Informatyczne, Lublin, (2001) 31, in Polish

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/02/2026 03:59:57

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

