Two hierarchies of \(R \)-recursive functions

Jerzy Mycka

Institute of Mathematics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

In the paper some aspects of complexity of \(R \)-recursive functions are considered. The limit hierarchy of \(R \)-recursive functions is introduced by the analogy to the \(\mu \)-hierarchy. Then its properties and relations to the \(\mu \)-hierarchy are analysed.

1. **Introduction**

The classical theory of computation deals with the functions on enumerable (especially natural) domains. The fundamental notion in this field is the notion of a (partial) recursive function. The problem of hierarchies for these functions is also in the interest of mathematicians (for elementary, primitive recursive function, Grzegorczyk hierarchy, compare [1].

During past years many mathematicians have been interested in creating analogous models of computation on real numbers (see for example Grzegorczyk [2], Blum, Shub, Smale [3]). An interesting approach was given by Moore. In the work [4] he defined a set of functions on the reals \(R \) (called \(R \)-recursive functions) in the analogous way to the classical recursive functions on the natural numbers \(\mathbb{N} \). His model has a continuous time of computation (a continuous integration instead of a discrete recursion). The great importance in Moore’s model has the zero-finding operation \(\mu \), which is used to construct \(\mu \)-hierarchy of \(R \)-recursive functions.

It was shown [5] that the zero-finding operator \(\mu \) can be replaced by the operation of infinite limits. This allows us to define a limit hierarchy and relate it to \(\mu \)-hierarchy.

E-mail address: Jerzy.Mycka@umcs.lublin.pl
2. Preliminaries

We start with a fundamental definition of a class of real functions called R-recursive functions [4].

Definition 2.1 The set of R-recursive functions is generated from the constants $0,1$ by the operations:

1) composition: $h(\bar{x}) = f\left(g\left(\bar{x}\right)\right)$;

2) differential recursion: $h(\bar{x},0) = f\left(\bar{x}\right), \partial_y h(\bar{x},y) = g\left(\bar{x},y,h(\bar{x},y)\right)$ (the equivalent formulation can be given by integrals: $h(\bar{x},y) = f\left(\bar{x}\right) + \int_0^y g\left(\bar{x},y',h(\bar{x},y')\right)dy'$);

3) μ-recursion $h(\bar{x}) = \mu_y f\left(\bar{x},y\right) = \inf\left\{y : f\left(\bar{x},y\right) = 0\right\}$, where infimum chooses the number y with the smallest absolute value and for two y with the same absolute value the negative one;

4) vector-valued functions can be defined by defining their components.

Several comments are needed to the above definition. A solution of a differential equation need not be unique or can diverge. Hence, we assume that if h is defined by a differential recursion then h is defined only where a finite and unique solution exists. This is why the set of R-recursive functions includes also partial functions. We use (after [4]) the name of R-recursive functions in the article, however we should remember that in reality we have partiality here (partial R-recursive functions).

The second problem arises with the operation of infimum. Let us observe that if an infinite number of zeros accumulates just above some positive y or just below some negative y then the infimum operation returns that y even if it itself is not a zero.

In the papers [5, 6] it was shown that if in the Moore’s definition [4] μ-operation is replaced by infinite limits: $h(\bar{x}) = \liminf_{y\to\infty} g\left(\bar{x},y\right)$, $h(\bar{x}) = \limsup_{y\to\infty} g\left(\bar{x},y\right)$ then the resulting class of functions remains the same.

This gives us also the following result (including the limit operation in the form $h(\bar{x}) = \lim_{y\to\infty} g\left(\bar{x},y\right)$, which can be in the obvious way obtained from limsup, liminf:
Corollary 2.2 The class of R-recursive functions is closed under the operations of infinite limits: \(h(\bar{x}) = \liminf_{y \to \infty} g(\bar{x}, y) \), \(h(\bar{x}) = \limsup_{y \to \infty} g(\bar{x}, y) \), \(h(\bar{x}) = \lim_{y \to \infty} g(\bar{x}, y) \).

3. Hierarchies

The operator \(\mu \) is a key operator in generating the R-recursive functions. In a physical sense it has a property of being strongly uncomputable. This fact suggests creating a hierarchy, which is built with respect to the number of uses of \(\mu \) in the definition of a given \(f \).

Definition 3.1 ([4]) For a given R-recursive expression \(s(\bar{x}) \), let \(M_x(s) \) (the \(\mu \)-number with respect to \(x_i \)) be defined as follows:

\[
M_x(0) = M_x(1) = M_x(-1) = 0, \quad (1)
\]

\[
M_x(f(g_1, g_2, \ldots)) = \max \left(M_{x_j}(f) + M_x(g_j) \right), \quad (2)
\]

\[
M_x(h = f + \int_0^y g(\bar{x}, y', h) \, dy') = \max \left(M_x(f), M_x(g), M_h(g) \right), \quad (3)
\]

\[
M_y(h = f + \int_0^y g(\bar{x}, y', h) \, dy') = \max \left(M_y(g), M_h(g) \right), \quad (4)
\]

\[
M_x(\mu, f(\bar{x}, y)) = \max \left(M_x(f), M_y(f) \right) + 1, \quad (5)
\]

where \(x \) can be any \(x_1, \ldots, x_n \) for \(\bar{x} = (x_1, \ldots, x_n) \).

For an R-recursive function \(f \), let \(M(f) = \max_x M_x(s) \) minimized over all expressions \(s \) that define \(f \). Now we are ready to define M-hierarchy (\(\mu \)-hierarchy) as a family of \(M_j = \{ f : M'(f) \leq j \} \).

Let us construct the analogous definition of L-hierarchy by replacing in the above definition \(M_x \) by \(L_x \) and changing line (5) to the following form (5‘):

\[
L_x\left(\liminf_{y \to \infty} g(\bar{x}, y) \right) = L_x\left(\limsup_{y \to \infty} g(\bar{x}, y) \right) =
\]

\[
= L_x\left(\lim g(\bar{x}, y) \right) = \max \left(L_x(f), L_y(f) \right) + 1.
\]

For an R-recursive function \(f \), let \(L(f) = \max_x L_x(s) \) minimized over all expressions \(S \) that define \(f \) without using the \(\mu \)-operation.
Definition 3.2 The L-hierarchy is a family of $L_j = \{ f : L(f) \leq j \}$.

Let us add that in Definition 3.2 we use explicitly the operator $f(\bar{x}) = \lim_{y \to \infty} g(\bar{x}, y)$ to avoid its construction by other operators (lim sup, lim inf), which would effect in a superficially higher class of a complexity of a function f.

As an obvious corollary from definitions we have the following statement.

Lemma 3.3 The classes M_0 and M_1 are identical.

A function $f \in L_0 = M_0$ will be called (by an analogy to the case of natural recursive functions) a primitive R-recursive function. After Moore [4] we can conclude that such functions as: $-x, x + y, xy, x/y, e^x, \ln x, y^x, \sin x, \cos x$ are primitive R-recursive.

We can give a few results on some levels of the limit hierarchy.

Lemma 3.4. The Kronecker δ function, the signum function and absolute value belong to the first level (L_1) of limit hierarchy.

Proof. It is sufficient to take the following definitions [5]: hence $\delta(0) = 1$ and for all $x \neq 0$ we have $\delta(x) = 0$ let us define $\delta(x) = \liminf_{y \to \infty} \left(\frac{1}{1 + x^2} \right)^y$. Now from the expression $\liminf_{y \to \infty} \arctan xy = \begin{cases} \pi/2, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -\pi/2, & \text{if } x < 0, \end{cases}$ we obtain $\operatorname{sgn}(x) = \frac{\liminf_{y \to \infty} \arctan xy}{2 \arctan 1}$ and $|x| = \operatorname{sgn}(x)x$.

We should be careful with definitions of functions by cases:

Lemma 3.5 For $h(\bar{x}) = \begin{cases} g_1(\bar{x}), & \text{if } f(\bar{x}) = 0, \\ g_2(\bar{x}), & \text{if } f(\bar{x}) = 1, \\ M & \text{if } f(\bar{x}) \geq k - 1 \end{cases}$ and $g_i \in L_i$ for all $1 \leq i \leq k$,

If $f \in L_m$ the function h belongs to $L_{\max(n_1, n_2, \ldots, n_m + 1)}$.
Proof. Let us see that \(eq(x, y) = \delta(x - y) \in L_1 \) and
\[
geq(x, y) = \frac{\left(\text{sgn}(x - y) + eq(x, y)\right)}{2} + \frac{1}{2} \in L_1.
\]
Then of course
\[
h(\bar{x}) = \sum_{i=1}^{k} g_i(\bar{x})eq(f(\bar{x}), i-1) + g_k(\bar{x})ge(f(\bar{x}), k-1) \square
\]
Of course this result can be easily extended to other forms of definitions by cases.

Lemma 3.6 The function \(\Theta(x) \) (equal to 1 if \(x \geq 0 \), otherwise 0), maximum \(\max(x, y) \), square-wave function \(s \) are in \(L_2 \), the function \(p(x) \) such that \(p(x) = 1 \) for \(x \in [2n, 2n+1] \) and \(p(x) = 0 \) for \(x \in [2n+1, 2n+2] \) is in \(L_2 \) and the floor function \(\lfloor x \rfloor \) is in \(L_3 \).

Proof. We give the proper definitions (from [6]) for these functions. Let
\[
\Theta(x) = \delta(x - |x|),
\]
\[
\max(x, y) = x\delta(x - y) + (1 - \delta(x - y))\left[x\Theta(x - y) + y\Theta(y - x)\right],
\]
\[
s(x) = \Theta(\sin(\pi x)).
\]
The function \(p(x) \) can be given as
\[
s(x)\left(1 - \delta\left(\sin\left(\frac{x-1}{2}\right)\pi\right)\right), \text{ so } p \in L_2.
\]
The floor function we can define by the auxiliary function \(w(0) = 0, \partial_x w(x) = 2\Theta(-\sin(2\pi x)) \) as
\[
\lfloor x \rfloor = \begin{cases}
2w(x/2) & \text{if } p(x) = 1, \\
2w((x-1)/2) & \text{if } p(x) = 0.
\end{cases}
\]
From the above equation we have \(\lfloor x \rfloor \) in \(L_3 \) \(\square \)

Let us recall that if \(f : R^n \to R \) is an \(R \)-recursive function then the function \(f_{\text{iter}}(i, \bar{x}) \) is \(R \)-recursive, too.

Lemma 3.7 Let \(f : R^n \to R \) belongs to the class \(L_i \), then we have \(f_{\text{iter}} : R^{n+1} \to R \) is in \(L_{\max(2, j)} \).

Proof. The definitions, which were given by Moore [3] \(f_{\text{iter}}(i, \bar{x}) = h(2i) \), where
\[
h(0) = g(0) = \bar{x},
\]
\[\partial_t g(t) = \left[f(h(t)) - h(t) \right] s(t), \]
\[\partial_t h(t) = \frac{g(t) - h(t)}{r(t)} (1 - s(t)), \]

with \(s \) - a square wave function in \(L_2 \) and \(r(0) = 0 \), \(\partial_t r(t) = 2s(t) - 1 \), \(r, s \in L_2 \) give us the desirable statement. □

Lemma 3.8 The \(R^l \)-recursive functions \(\gamma_2 : R^2 \to R \), \(\gamma'_2, \gamma''_2 : R \to R \) such that \((\forall x,y \in R) \gamma'_2 (\gamma_2(x,y)) = x \), \((\forall x,y \in R) \gamma''_2 (\gamma_2(x,y)) = y \), have the following properties: \(\gamma_2, \gamma'_2 \) are in \(L_{10} \), \(\gamma''_2 \) is in \(L_{14} \).

Proof. We have the auxiliary functions \(\Gamma_2, \Gamma'_2, \Gamma''_2 \), which are coding and decoding functions in the interval \((0,1): \Gamma_2(x,y) = c(x)+c(y)/10 \), where
\[c(x) = \lim_{i \to \infty} z(a(i,x))/10^i + b(i,x)/10^i, \]
and later \(z(i) = \lim_{i \to \infty} z_{iter}^*(i,x), \)
\[z_{iter}^*(i,a_1...a_n,a_{n+1}...) = a_1...a_n0...a_{n+1}0.a_{n+2}... \]
\[a(i,0.a_1a_2...a_i...) = 0.a_1...a_i \]
\[b(i,0.a_1a_2...a_i...) = 0.0.a_1...a_i \]

\[(z'(x) = \begin{cases} 100(x) + 10(x-[x]), & \text{if } [x] \neq x, \\ x, & \text{if } [x] = x \end{cases} \]

\(z' \) belongs to \(L_4 \), hence \(\Gamma_2(x,y) \in L_{10} \), decoding of the first element is described in the symmetric way so \(\Gamma'_2(x) \) is in \(L_{10} \), but \(\Gamma''_2(x) = \Gamma'_2(10-[10x]) \) so \(\Gamma''_2 \in L_{14} \).

The functions \(\Gamma_2, \Gamma'_2, \Gamma''_2 \) can be extended to all reals by one-to-one \(f : (0,1) \to R \) without the loss of their class. □

The same method of coding and decoding by interlacing of ciphers (only the power of 10 should be changed) gives us the functions \(\gamma_n : R^n \to R \) and \(\gamma'_n : R \to R \) for \(i = 1,...,n \) such that
\[(\forall i)(\forall x_1,...,x_n \in R) \gamma'_n(\gamma_n(x_1,...,x_n)) = x_i \]
in the same class: \(\gamma_n, \gamma'_n \in L_{10} \) and \((\forall i > 1) \gamma'_n \in L_{14} \).

We finish this part with the important form of defining: a new function is given as a product of values \(f \) in some integer points.
Lemma 3.9 There exists such constant \(p \in N \) that for the function

\[
\prod_{z=0}^{y} f(\bar{x}, z) = \begin{cases}
\prod_{y=0}^{0} f(x_0,0) f(x_1,0) \ldots f(x_{y-1},0), & \text{if } y \geq 1, \\
1, & \text{if } 0 \leq y < 1, \\
0, & \text{if } y < 0,
\end{cases}
\]

if the function \(f \) is in the class \(L_m \) then \(\prod_{z=0}^{y} f(\bar{x}, z) \) is in the class \(L_{m+p} \) (\(p \) is independent of \(m \)).

Proof. By the definitions

\[
t(w) = \gamma_{n+2} \left(\gamma_{n+2}^{1,1}(w), \gamma_{n+2}^{1,2}(w) + 1, f(\gamma_{n+2}^{1,1}(w), \gamma_{n+2}^{1,2}(w)) \gamma_{n+2}^{1,2}(w) \right)
\]

and

\[
S(\bar{x}, z) = t_{(z, f(s(\bar{x}, 0)) \ldots)} = t_{\text{iter}(\left[z \right], \gamma_{n+2}^{1,2}(\bar{x}, 0, 1))}
\]

we get the property

\[
\prod_{y=0}^{z} f(\bar{x}, y) = \gamma_{n+2}^{1,2}(S(\bar{x}, z)).
\]

From the definition of the limit hierarchy we get \(\prod_{y=0}^{z} f(\bar{x}, y) \in L_{m+38} \).

In the rest of the paper we will use the constant \(p \) as the number of limits used in the recursive definition of the product \(\prod_{y=0}^{z} f(\bar{x}, y) \) instead of the value 38.

The above constructions are tedious and can be improved with a better approximation of \(p \).

4. Main results

Now we are ready to formulate two theorems which demonstrate connections between \(L \)-hierarchy and \(M \)-hierarchy.

Theorem 4.1 Let \(f : R^n \to R \) be an \(R \)-recursive function. Then if \(f \in L_i \) then \(f \in M_{10i} \).

Proof. We use a simple induction here. The case \(i = 0 \) is given in Lemma 3.3. Now let us suppose that the thesis is true for \(i = n \). Let \(f \in L_{n+1} \) be defined as \(f(\bar{x}) = \lim_{y \to \infty} g(\bar{x}, y) \) for \(g \in L_n \). Then we can recall Theorem 4.2 from [6] which gives us the following result: to define \(f \) from \(g \) it is necessary to use at
most 10 μ-operation. Hence for \(g \in M_{10n} \) the function \(f \) satisfies \(f \in M_{10n+10} \).

Similar inferences hold for \(\lim \inf \), \(\lim \sup \).

Now we can give the result about the 'limit complexity' of the infimum operator \(\mu \).

Lemma 4.2 If \(f(x,y): R^{n+1} \to R \) is in the class \(L_n \) then the function \(g: R^n \to R \), \(g(x) = \mu_y f(x,y) \) is in the class \(L_{n+3p+9} \) is from Lemma 3.9.

Proof. Here we must employ the results from [6]. There we defined the function \(g(x,y) = \mu_y f(x,y) \) for \(f(x,y): R^{n+1} \to R \) (\(f \) - \(R \)-recursive) replacing the \(\mu \)-operator by limit operation. First we introduced the function

\[
Z^f(\bar{x}, z) = \begin{cases}
\inf_y \{ f : K^f(\bar{x}, y) = 0 \}, & \text{if } z = 0 \text{ and } \exists y K^f(\bar{x}, y) = 0, \\
\text{undefined} & \text{if } z = 0 \text{ and } \forall y K^f(\bar{x}, y) \neq 0, \\
1 & \text{if } z \neq 0,
\end{cases}
\]

given in the following way:

\[
Z^f(\bar{x}, z) = \begin{cases}
\text{undefined} & \text{if } (z = 0) \land (S^f(\bar{x}) < 1/12), \\
\sqrt{S^f(\bar{x}) - 1/12} & \text{if } (z = 0) \land (S^f(\bar{x}) \geq 1/12) \land f(\bar{x}, \sqrt{S^f(\bar{x}) - 1/12}) = 0, \\
-\sqrt{S^f(\bar{x}) - 1/12}, & \text{if } (z = 0) \land (S^f(\bar{x}) \geq 1/12) \land f(\bar{x}, -\sqrt{S^f(\bar{x}) - 1/12}) = 0, \\
1, & \text{if } z \neq 0,
\end{cases}
\]

where \(S^f(\bar{x}) = \lim_{t \to \infty} S^f_i(\bar{x}, t) + \lim_{t \to \infty} S^f_i(\bar{x}, t) \). Both functions \(S^f_1, S^f_2 \) are defined by an integration

\[
S^f_i(\bar{x}, t) = \int y^i \left(1 - h^f(\bar{x}, (-1)^{i+1} y - 1/2, (-1)^{i+1} y + 1/2) \right) dy, \quad i = 1, 2
\]

from \(h^f(\bar{x}, a, b) = \liminf_{y \to \infty} \prod_{w=0}^{x+1} K^f(\bar{x}, a + w \frac{b-a}{z}) \) where \(K^f \) is the characteristic function of \(f \).

Hence we can conclude that if \(K^f \) is in the \(L_s \) then \(Z^f \) is in the class \(L_{s+p+3} \).

Let us finish with the definition of the characteristic function of the infimum of zeros of \(f \) (see Theorem 4.2 from [5].
\[K^f_\mu (y) = 1 - \lim_{a \to -\infty} \lim_{b \to +\infty} \lim_{z \to +\infty} G^f_\mu (\bar{x}, z, a, b, y), \]

where \(G^f_\mu (\bar{x}, z, a, b, y) \) divides the interval \([a, b]\) into \(2^{[z]}\) equal subintervals and gives the value 1 for \(y\) from the subintervals, which contains the least zero of \(f\) in \([a, b]\) and value 0 otherwise. Precisely for \(y\) from \([a, a + \frac{b-a}{2^{[z]}}]\)

\[G^f_\mu (\bar{x}, z, a, b, y) = \begin{cases} 1, & \text{if } h^f (\bar{x}, a, a + \frac{b-a}{2^{[z]}}) = 0, \\ 0, & \text{otherwise} \end{cases} \]

for \(y \in \left(a + \frac{(k-1)(b-a)}{2^{[z]}}, a + \frac{k(b-a)}{2^{[z]}}\right)\) (where \(k = 2, 3, \ldots, 2^n\)) we have:

\[G^f_\mu (\bar{x}, z, a, b, y) = \begin{cases} 1, & \text{if } \prod_{i=1}^{k-1} h^f (\bar{x}, a + \frac{(i-1)(b-a)}{2^{[z]}}, a + \frac{i(b-a)}{2^{[z]}}) \neq 0, \\ 0, & \text{otherwise} \end{cases} \]

and for \(Y \notin [A, B]\) the function \(g^f_\mu\) is equal to 2.

The definition of \(G_f\) is given by the cases with respect to the value of the expression given by \(\prod h^f\), since for \(f \in L_m\), the function \(h_f \in L_{m+p+2}\) and \(G^f \in L_{m+2+p+3}\). Then we have \(K^f_\mu \in L_{m+2+p+6}\). Now we must use the function \(K^f_\mu\) in the same way as \(K^f\) which gives us \(Z_f\) in the class \(L_{m+3+p+9}\). The final definition of \(g(\bar{x}) = \mu_f(\bar{x}, y)\) ([5] Theorem 4.3) given below
\[g(x) = \begin{cases}
Z^{f'}(x,0) - Z^{f'}(x,0), & \text{if } S^{f'}(x) < \frac{1}{12} \land S^{f'}(x) < \frac{1}{12}, \\
Z^{f'}(x,0), & \text{if } S^{f'}(x) \geq \frac{1}{12} \land S^{f'}(x) < \frac{1}{12} \\
-Z^{f'}(x,0), & \text{if } S^{f'}(x) < \frac{1}{12} \land S^{f'}(x) \geq \frac{1}{12} \\
\land Z^{f'}(x,0) < Z^{f'}(x,0) \\
\land Z^{f'}(x,0) \geq Z^{f'}(x,0),
\end{cases} \]

where \(f'^+ (x, y) = \begin{cases}
f(x, y), & y \geq 0, \\
1, & y < 0;
\end{cases} \)
and
\(f^-(x, y) = \begin{cases}
f(x, -y), & y > 0, \\
1, & y \leq 0;
\end{cases} \)

remains the class of \(g \) identical to the class of \(Z' \), i.e. \(g \in L_{m+3,p+9} \).

Theorem 4.3 Let \(f : R^n \to R \) be an \(R \)-recursive function. Then for all \(i \geq 0 \) if \(f \in M_i \) then \(f \in L_{(3,p+9)i} \).

The above statement is a simple consequence of the fact \(M_0 = L_0 \) and Lemma 4.2.

5. Conclusions

In the paper we give the first rough approximation of 'a complexity' of limit operations in the terms of the \(\mu \)-operator and conversely. The results, interpreted in the intuitional way, can suggest what kind of connection exists between infinite limits and a \(\mu \)-operator.

We also establish the proper relation between the levels of the limit hierarchy and \(\mu \)-hierarchy. Let us point out that in consequence we may investigate analogies which exist for the limit hierarchy (also \(\mu \)-hierarchy) and Baire classes.
[7]. Also the kind of a connection between the \(\sum^0_n \)–measurable functions and \(\mathbb{R} \)-recursive functions is an open problem.

Acknowledgments

I am especially grateful to Professor Jose Felix Costa for his valuable remarks, which were used in the proof of Lemma 3.6 (definitions of \(p,w \)).

References