

Annales UMCS Informatica AI 1 (2003) 49-59
Annales UMCS
Informatica
Lublin-Polonia
Sectio AI
http://www.annales.umcs.lublin.pl/

Two hierarchies of R-recursive functions

Jerzy Mycka*
Institute of Mathematics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

In the paper some aspects of complexity of R -recursive functions are considered. The limit hierarchy of R -recursive functions is introduced by the analogy to the μ-hierarchy. Then its properties and relations to the μ-hierarchy are analysed.

1. Introduction

The classical theory of computation deals with the functions on enumerable (especially natural) domains. The fundamental notion in this field is the notion of a (partial) recursive function. The problem of hierarchies for these functions is also in the interest of mathematicians (for elementary, primitive recursive function, Grzegorczyk hierarchy, compare [1].

During past years many mathematicians have been interested in creating analogous models of computation on real numbers (see for example Grzegorczyk [2], Blum, Shub, Smale [3]). An interesting approach was given by Moore. In the work [4] he defined a set of functions on the reals R (called Rrecursive functions) in the analogous way to the classical recursive functions on the natural numbers N. His model has a continuous time of computation (a continuous integration instead of a discrete recursion). The great importance in Moore's model has the zero-finding operation μ, which is used to construct μ hierarchy of R-recursive functions.

It was shown [5] that the zero-finding operator μ can be replaced by the operation of infinite limits. This allows us to define a limit hierarchy and relate it to μ-hierarchy.

[^0]
2. Preliminaries

We start with a fundamental definition of a class of real functions called Rrecursive functions [4].

Definition 2.1 The set of R -recursive functions is generated from the constants 0,1 by the operations:

1) composition: $h(\bar{x})=f(g(\bar{x}))$;
2) differential recursion: $\quad h(\bar{x}, 0)=f(\bar{x}), \partial_{y} h(\bar{x}, y)=g(\bar{x}, y, h(\bar{x}, y)) \quad$ (the equivalent formulation can be given by integrals: $\left.h(\bar{x}, y)=f(\bar{x})+\int_{0}^{y} g\left(\bar{x}, y^{\prime}, h\left(\bar{x}, y^{\prime}\right)\right) d y^{\prime}\right) ;$
3) μ-recursion $h(\bar{x})=\mu_{y} f(\bar{x}, y)=\inf \{y: f(\bar{x}, y)=0\}$, where infimum chooses the number y with the smallest absolute value and for two y with the same absolute value the negative one;
4) vector-valued functions can be defined by defining their components.

Several comments are needed to the above definition. A solution of a differential equation need not be unique or can diverge. Hence, we assume that if h is defined by a differential recursion then h is defined only where a finite and unique solution exists. This is why the set of R -recursive functions includes also partial functions. We use (after [4]) the name of R -recursive functions in the article, however we should remember that in reality we have partiality here (partial R-recursive functions).

The second problem arises with the operation of infimum. Let us observe that if an infinite number of zeros accumulates just above some positive y or just below some negative y then the infimum operation returns that y even if it itself is not a zero.

In the papers [5, 6] it was shown that if in the Moore's definition [4] μ operation is replaced by infinite limits: $h(\bar{x})=\liminf _{y \rightarrow \infty} g(\bar{x}, y)$, $h(\bar{x})=\lim \sup _{y \rightarrow \infty} g(\bar{x}, y)$ then the resulting class of functions remains the same.

This gives us also the following result (including the limit operation in the form $h(\bar{x})=\lim _{y \rightarrow \infty} g(\bar{x}, y)$, which can be in the obvious way obtained from limsup, liminf:

Corollary 2.2 The class of R -recursive functions is closed under the operations of infinite limits: $\quad h(\bar{x})=\liminf _{y \rightarrow \infty} g(\bar{x}, y), \quad h(\bar{x})=\limsup _{y \rightarrow \infty} g(\bar{x}, y)$, $h(\bar{x})=\lim _{y \rightarrow \infty} g(\bar{x}, y)$.

3. Hierarchies

The operator μ is a key operator in generating the R -recursive functions. In a physical sense it has a property of being strongly uncomputable. This fact suggests creating a hierarchy, which is built with respect to the number of uses of μ in the definition of a given f.

Definition 3.1 ([4]) For a given R -recursive expression $s(\bar{x})$, let $M_{x_{i}}(s)$ (the μ-number with respect to x_{i}) be defined as follows:

$$
\begin{gather*}
M_{x}(0)=M_{x}(1)=M_{x}(-1)=0, \tag{1}\\
M_{x}\left(f\left(g_{1}, g_{2}, \ldots\right)\right)=\max _{j}\left(M_{x_{j}}(f)+M_{x}\left(g_{j}\right)\right), \tag{2}\\
M_{x}\left(h=f+\int_{0}^{y} g\left(\bar{x}, y^{\prime}, h\right) d y^{\prime}\right)=\max \left(M_{x}(f), M_{x}(g), M_{h}(g)\right), \tag{3}\\
M_{y}\left(h=f+\int_{0}^{y} g\left(\bar{x}, y^{\prime}, h\right) d y^{\prime}\right)=\max \left(M_{y^{\prime}}(g), M_{h}(g)\right), \tag{4}\\
M_{x}\left(\mu_{y} f(\bar{x}, y)\right)=\max \left(M_{x}(f), M_{y}(f)\right)+1, \tag{5}
\end{gather*}
$$

where x can be any x_{1}, \ldots, x_{n} for $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$.

For an R-recursive function f, let $M(f)=\max _{x_{i}}(s)$ minimized over all expressions s that define f. Now we are ready to define M-hierarchy (μ-hierachy) as a family of $M_{j}=\left\{f: M^{\prime}(f) \leq j\right\}$.

Let us construct the analogous definition of L-hierarchy by replacing in the above definition M_{x} by L_{x} and changing line (5) to the following form (5'):

$$
\begin{aligned}
& L_{x}\left(\liminf _{y \rightarrow \infty} g(\bar{x}, y)\right)=L_{x}\left(\limsup _{y \rightarrow \infty} g(\bar{x}, y)\right)= \\
& =L_{x}\left(\lim _{y \rightarrow \infty} g(\bar{x}, y)\right)=\max \left(L_{x}(f), L_{y}(f)\right)+1
\end{aligned}
$$

For an R-recursive function f, let $L(f)=\max _{i} L_{x_{i}}(s)$ minimized over all expressions S that define f without using the μ-operation.

Definition 3.2 The L-hierarchy is a family of $L_{j}=\{f: L(f) \leq j\}$.

Let us add that in Definition 3.2 we use explicitly the operator $f(\bar{x})=\lim _{y \rightarrow \infty} g(\bar{x}, y)$ to avoid its construction by other operators (lim sup, lim inf), which would efect in a superficially higher class of a complexity of a function f.

As an obvious corollary from definitions we have the following statement.
Lemma 3.3 The classes M_{0} and M_{1} are identical.

A function $f \in L_{0}=M_{0}$ will be called (by an analogy to the case of natural recursive functions) a primitive R -recursive function. After Moore [4] we can conclude that such functions as: $-x, x+y, x y, x / y, e^{x}, \ln x, y^{x}, \sin x$, $\cos x$ are primitive R -recursive.

We can give a few results on some levels of the limit hierarchy.

Lemma 3.4. The Kronecker δ function, the signum function and absolute value belong to the first level (L_{1}) of limit hierarchy.

Proof. It is sufficient to take the following definitions [5]: hence $\delta(0)=1$ and for all $x \neq 0$ we have $\delta(x)=0$ let us define $\delta(x)=\liminf _{y \rightarrow \infty}\left(\frac{1}{1+x^{2}}\right)^{y}$. Now from the expression $\liminf _{y \rightarrow \infty} \arctan x y=\left\{\begin{array}{r}\pi / 2, \text { if } x>0, \\ 0, \\ \text { if } x=0, \\ -\pi / 2, \\ \text { if } x<0,\end{array}\right.$ we obtain $\operatorname{sgn}(x)=\frac{\liminf _{y \rightarrow \infty} \arctan x y}{2 \arctan 1}$ and $|x|=\operatorname{sgn}(x) x$.

We should be careful with definions of functions by cases:
Lemma 3.5 For $h(\bar{x})=\left\{\begin{array}{ll}g_{1}(\bar{x}), & \text { if } f(\bar{x})=0, \\ g_{2}(\bar{x}), & \text { if } f(\bar{x})=1, \\ M & \mathrm{M} \\ g_{k}(\bar{x}), & \text { if } f(\bar{x}) \geq k-1\end{array} \quad\right.$ and $g_{i} \in L_{n_{i}}$ for all $1 \leq i \leq k$, $f \in L_{m}$ the function h belongs to $L_{\max \left(n_{1}, \ldots n, m+1\right)}$

Proof. Let us see that $e q(x, y)=\delta(x-y) \in L_{1} \quad$ and $g e(x, y)=\frac{(\operatorname{sgn}(x-y)+e q(x, y))}{2}+\frac{1}{2} \in L_{1} . \quad$ Then of course $h(\bar{x})=\sum_{i=1}^{k-1} g_{i}(\bar{x}) e q(f(\bar{x}), i-1)+g_{k}(\bar{x}) g e(f(\bar{x}), k-1)$.

Of course this result can be easily extended to other forms of definitions by cases.

Lemma 3.6 The function $\Theta(x)$ (equal to 1 if $x \geq 0$, otherwise 0), maximum $\max (x, y)$, square-wave function S are in L_{2}, the function $p(x)$ such that $p(x)=1$ for $x \in[2 n, 2 n+1]$ and $p(x)=0$ for $x \in[2 n+1,2 n+2]$ is in L_{2} and the floor function $\lfloor x\rfloor$ is in L_{3}.

Proof. We give the proper definitions (from [6]) for these functions. Let

$$
\begin{gathered}
\Theta(x)=\delta(x-|x|) \\
\max (x, y)=x \delta(x-y)+(1-\delta(x-y))[x \Theta(x-y)+y \Theta(y-x)] \\
s(x)=\Theta(\sin (\pi x))
\end{gathered}
$$

The function $p(x)$ can be given as $s(x)\left(1-\delta\left(\sin \frac{(x-1) \pi}{2}\right)\right)$, so $p \in L_{2}$.
The floor function we can define by the auxiliary function $w(0)=0$, $\partial_{x} w(x)=2 \Theta(-\sin (2 \pi x))$ as

$$
\lfloor x\rfloor= \begin{cases}2 w(x / 2) & \text { if } p(x)=1 \\ 2 w((x-1) / 2) & \text { if } p(x)=0\end{cases}
$$

From the above equation we have $\lfloor x\rfloor$ in L_{3}. \square

Let us recall that if $f: R^{n} \rightarrow R$ is an R -recursive function then the function $f_{\text {iter }}(i, \bar{x})$ is R -recursive, too.

Lemma 3.7 Let $f: R^{n} \rightarrow R$ belongs to the class L_{i}, then we have $f_{\text {iter }}: R^{n+1} \rightarrow R$ is in $L_{\max (2, j)}$.
Proof. The definitions, which were given by Moore [3] $f_{\text {iter }}(i, \bar{x})=h(2 i)$, where

$$
h(0)=g(0)=\bar{x},
$$

$$
\begin{gathered}
\partial_{t} g(t)=[f(h(t))-h(t)] s(t), \\
\partial_{t} h(t)=\geq\left[\frac{g(t)-h(t)}{r(t)}\right](1-s(t)),
\end{gathered}
$$

with s - a square wave function in L_{2} and $r(0)=0, \partial_{t} r(t)=2 s(t)-1, r, s \in L_{2}$ give us the desirable statement.

Lemma 3.8 The R^{l}-recursive functions $\gamma_{2}: R^{2} \rightarrow R, \quad \gamma_{2}^{1}, \gamma_{2}^{2}: R \rightarrow R$ such that $(\forall x, y \in R) \gamma_{2}^{1}\left(\gamma_{2}(x, y)\right)=x, \quad(\forall x, y \in R) \gamma_{2}^{2}\left(\gamma_{2}(x, y)\right)=y$, have the following properties: $\gamma_{2}, \gamma_{2}^{1}$ are in L_{10}, γ_{2}^{2} is in L_{14}.

Proof. We have the auxiliary functions $\Gamma_{2}, \Gamma_{2}^{1}, \Gamma_{2}^{2}$, which are coding and decoding functions in the interval $(0,1): \Gamma_{2}(x, y)=c(x)+c(y) / 10$, where

$$
c(x)=\lim _{i \rightarrow \infty} z(a(i, x)) / 10^{2 i}+b(i, x) / 10^{i},
$$

and later $z(x)=\lim _{i \rightarrow \infty} z_{\text {iter }}(i, x)$,

$$
\begin{gathered}
z_{\text {ier }}^{\prime}\left(i, a_{1} \ldots a_{n} \cdot a_{n+1} \ldots\right)=a_{1} \ldots a_{n} 0 \ldots a_{n+1} 0 . a_{n+i+1} \cdots, \\
a\left(i, 0 \cdot a_{1} a_{2} \ldots a_{i} \ldots\right)=0 \cdot a_{1} \ldots a_{i} \\
b\left(i, 0 \cdot a_{1} a_{2} \ldots a_{i} \ldots\right)=0.0 \leftarrow \cdot 0 a_{i+1} \cdots, \\
\left(z^{\prime}(x)=\left\{\begin{array}{ll}
100\lfloor x\rfloor+10(x-\lfloor x\rfloor), & \text { if }\lfloor x\rfloor \neq x, \\
x, & \text { if }\lfloor x\rfloor=x ;
\end{array} \in L_{4}, a, b \in L_{4} . \text { Also } z_{\text {iter }}^{\prime}\right. \text { belongs }\right.
\end{gathered}
$$

to L_{4}, hence $\Gamma_{2}(x, y) \in L_{10}$, decoding of the first element is described in the symmetric way so $\Gamma_{2}^{1}(x)$ is in L_{10}, but $\Gamma_{2}^{2}(x)=\Gamma_{2}^{1}(10-\lfloor 10 x\rfloor)$ so $\Gamma_{2}^{2} \in L_{14}$.

The functions $\Gamma_{2}, \Gamma_{2}^{1}, \Gamma_{2}^{2}$ can be extended to all reals by one-to-one $f:(0,1) \rightarrow R \in L_{0}$ without the loss of their class.

The same method of coding and decoding by interlacing of ciphers (only the power of 10 should be changed) gives us the functions $\gamma_{n}: R^{n} \rightarrow R$ and $\gamma_{n}^{i}: R \rightarrow R$ for $i=1, \ldots, n$ such that

$$
(\forall i)\left(\forall x_{1} \ldots, x_{n} \in R\right) \gamma_{n}^{i}\left(\gamma_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=x_{i}
$$

in the same class: $\gamma_{n}, \gamma_{n}^{1} \in L_{10}$ and $(\forall i>1) \gamma_{n}^{i} \in L_{14}$.
We finish this part with the important form of defining: a new function is given as a product of values f in some integer points.

Lemma 3.9 There exists such constant $p \in N$ that for the function

$$
\prod_{z=0}^{y} f(\bar{x}, z)= \begin{cases}f(\bar{x}, 0) f(\bar{x}, 1) \ldots f(\bar{x},\lfloor y-1\rfloor), & \text { if } y \geq 1, \\ 1, & \text { if } 0 \leq y<1, \\ 0, & \text { if } y<0,\end{cases}
$$

if the function f is in the class L_{m} then $\prod_{z=0}^{y} f(\bar{x}, z)$ is in the class L_{m+p} (p is independent of m).

Proof. By the definitions

$$
t(w)=\gamma_{n+2}\left(\gamma_{n+2}^{1, n}(w), \gamma_{n+2}^{n+1}(w)+1, f\left(\gamma_{n+2}^{1, n}(w), \gamma_{n+2}^{n+1}(w)\right) \cdot \gamma_{n+2}^{n+2}(w)\right)
$$

and

$$
S(\bar{x}, z)=t \underbrace{\lfloor\ldots t}_{\lfloor\ldots\rfloor}(s(\bar{x}, 0)) \ldots)=t_{\text {iter }}\left(\lfloor z\rfloor, \gamma_{n+2}(\bar{x}, 0,1)\right)
$$

we get the property

$$
\prod_{y=0}^{z} f(\bar{x}, y)=\gamma_{n+2}^{n+2}(S(\bar{x}, z)) .
$$

From the defintion of the limit hierarchy we get $\prod_{y=0}^{z} f(\bar{x}, y) \in L_{m+38}$. \square
In the rest of the paper we will use the constant p as the number of limits used in the recursive defintion of the product $\prod_{y=0}^{z} f(\bar{x}, y)$ instead of the value 38. The above constructions are tedious and can be improved with a better approximation of p.

4. Main results

Now we are ready to formulate two theorems which demonstrate connections between L-hierarchy and M -hierarchy.

Theorem 4.1 Let $f: R^{n} \rightarrow R$ be an R -recursive function. Then if $f \in L_{i}$ then $f \in M_{10 i}$.

Proof. We use a simple induction here. The case $i=0$ is given in Lemma 3.3. Now let us suppose that the thesis is true for $i=n$. Let $f \in L_{n+1}$ be defined as $f(\bar{x})=\lim _{y \rightarrow \infty} g(\bar{x}, y)$ for $g \in L_{n}$. Then we can recall Theorem 4.2 from [6] which gives us the following result: to define f from g it is necessary to use at
most 10μ-operation. Hence for $g \in M_{10 n}$ the function f satisfies $f \in M_{10 n+10}$. Similar inferences hold for liminf, lim sup.

Now we can give the result about the 'limit complexity' of the infimum operator μ.

Lemma 4.2 If $f(\bar{x}, y): R^{n+1} \rightarrow R$ is in the class L_{m} then the function $g: R^{n} \rightarrow R, g(\bar{x})=\mu_{y} f(\bar{x}, y)$ is in the class $L_{m+3 p+9}$ is from Lemma 3.9.

Proof. Here we must employ the results from [6]. There we defined the function $g: R^{n} \rightarrow R, \quad g(\bar{x})=\mu_{y} f(\bar{x}, y) \quad$ for $\quad f(\bar{x}, y): R^{n+1} \rightarrow R \quad(f-\mathrm{R}$-recursive $)$ replacing the μ-operator by limit operation. First we introduced the function

$$
Z^{f}(\bar{x}, z)= \begin{cases}\inf _{y}\left\{f: K^{f}(\bar{x}, y)=0\right\}, & \text { if } z=0 \text { and } \exists y K^{f}(\bar{x}, y)=0 \\ \text { undefined } & \text { if } z=0 \text { and } \forall y K^{f}(\bar{x}, y) \neq 0 \\ 1 & \text { if } z \neq 0\end{cases}
$$

given in the following way:

$$
Z^{f}(\bar{x}, z)= \begin{cases}\text { undefined } & \text { if }(z=0) \wedge\left(S^{f}(\bar{x})<1 / 12\right), \\ \sqrt{S^{f}(\bar{x})-1 / 12}, & \text { if }(z=0) \wedge\left(S^{f}(\bar{x}) \geq 1 / 12\right) \\ & \wedge f\left(\bar{x}, \sqrt{S^{f}(\bar{x})-1 / 12}\right)=0 \\ -\sqrt{S^{f}(\bar{x})-1 / 12}, & \text { if }(z=0) \wedge\left(S^{f}(\bar{x}) \geq 1 / 12\right) \\ & \wedge f\left(\bar{x},-\sqrt{S^{f}(\bar{x})-1 / 12}\right)=0 \\ 1, & \text { if } z \neq 0\end{cases}
$$

where $S^{f}(\bar{x})=\lim _{t \rightarrow \infty} S_{1}^{f}(\bar{x}, t)+\lim _{t \rightarrow \infty} S_{2}^{f}(\bar{x}, t)$. Both functions S_{1}^{f}, S_{2}^{f} are defined by an integration

$$
S_{i}^{f}(\bar{x}, t)=\int y^{2}\left(1-h^{f}\left(\bar{x},(-1)^{i+1} y-1 / 2,(-1)^{i+1} y+1 / 2\right)\right) d y, i=1,2
$$

from $\quad h^{f}(\bar{x}, a, b)=\liminf _{t \rightarrow \infty} \prod_{w=0}^{z+1} K^{f}\left(\bar{x}, a+w \frac{b-a}{z}\right) \quad$ where $\quad K^{f} \quad$ is the characteristic function of f.

Hence we can conclude that if K^{f} is in the L_{s} then Z_{f} is in the class L_{s+p+3}. Let us finish with the definition of the characteristic function of the infimum of zeros of f (see Theorem 4.2 from [5]

$$
K_{\mu}^{f}(y)=1-\lim _{a \rightarrow-\infty} \lim _{b \rightarrow \infty} \lim _{z \rightarrow \infty} G^{f}(\bar{x}, z, a, b, y),
$$

where $G^{f}(\bar{x}, z, a, b, y)$ divides the interval $[a, b]$ into $2^{\lfloor z\rfloor}$ equal subintervals and gives the value 1 for y from the subintervals, which contains the least zero of f in $[a, b]$ and value 0 otherwise. Precisely for y from $\left[a, a+\frac{b-a}{2^{\lfloor z\rfloor}}\right]$

$$
G^{f}(\bar{x}, z, a, b, y)=\left\{\begin{array}{lc}
1, & \text { if } h^{f}\left(\bar{x}, a, a+\frac{b-a}{2^{\lfloor z\rfloor}}\right)=0, \\
0, & \text { otherwise }
\end{array}\right.
$$

for $y \in\left(a+\frac{(k-1)(b-a)}{2^{\lfloor z\rfloor}}, a+\frac{k(b-a)}{2^{\lfloor z\rfloor}}\right)\left(\right.$ where $\left.k=2,3, \ldots, 2^{n}\right)$ we have:
$G^{f}(\bar{x}, z, a, b, y)= \begin{cases}1, & \text { if } \prod_{i=1}^{k-1} h^{f}\left(\bar{x}, a+\frac{(i-1)(b-a)}{2^{\lfloor z\rfloor}}, a+\frac{i(b-a)}{2^{\lfloor z\rfloor}}\right) \neq 0 \\ & \wedge h^{f}\left(\bar{x}, a+\frac{(k-1)(b-a)}{2^{\lfloor z\rfloor}}, a+\frac{k(b-a)}{2^{\lfloor z\rfloor}}\right)=0, \\ 0, & \text { otherwise }\end{cases}$
and for $Y \notin[A, B]$ the function g_{x}^{f} is equal to 2 .
The definition of G_{f} is given by the cases with respect to the value of the expression given by $\prod h^{f}$, since for $f \in L_{m}$, the function $h_{f} \in L_{m+p+2}$ and $G^{f} \in L_{m+2 p+3}$. Then we have $K_{\mu}^{f} \in L_{m+2 p+6}$. Now we must use the function K_{μ}^{f} in the same way as K^{f} which gives us Z_{f} in the class $L_{m+3 p+9}$. The final definition of $g(\bar{x})=\mu_{y} f(\bar{x}, y)$ ([5] Theorem 4.3) given below

$$
g(\bar{x})= \begin{cases}Z^{f^{+}}(\bar{x}, 0)-Z^{f^{-}}(\bar{x}, 0), & \text { if } S^{f^{+}}(\bar{x})<\frac{1}{12} \wedge S^{f^{-}}(\bar{x})<\frac{1}{12}, \\ Z^{f^{+}}(\bar{x}, 0), & \text { if }\left(S^{f^{+}}(\bar{x}) \geq \frac{1}{12} \wedge S^{f^{-}}(\bar{x})<\frac{1}{12}\right) \\ & \text { or } \\ & \left(S^{f^{+}}(\bar{x})<\frac{1}{12} \wedge S^{f^{-}}(\bar{x})<\frac{1}{12}\right. \\ & \left.\wedge Z^{f^{+}}(\bar{x}, 0)<Z^{f^{-}}(\bar{x}, 0)\right), \\ -Z^{f^{-}}(\bar{x}, 0), & \text { if }\left(S^{f^{+}}(\bar{x})<\frac{1}{12} \wedge S^{f^{-}}(\bar{x}) \geq \frac{1}{12}\right) \\ & \text { or } \\ & \left(S^{f^{+}}(\bar{x})<\frac{1}{12} \wedge S^{f^{-}}(\bar{x})<\frac{1}{12}\right. \\ & \left.\wedge Z^{f^{+}}(\bar{x}, 0) \geq Z^{f^{-}}(\bar{x}, 0)\right),\end{cases}
$$

where $f^{+}(\bar{x}, y)=\left\{\begin{array}{ll}f(\bar{x}, y), & y \geq 0, \\ 1, & y<0 ;\end{array} f^{-}(\bar{x}, y)=\left\{\begin{array}{ll}f(\bar{x},-y), & y>0, \\ 1, & y \leq 0 ;\end{array}\right.\right.$ remains the class of g identical to the class of Z^{f}, i.e. $g \in L_{m+3 p+9} . \square$

Theorem 4.3 Let $f: R^{n} \rightarrow R$ be an R -recursive function. Then for all $i \geq 0$ if $f \in M_{i}$ then $f \in L_{(3 p+9) i}$.

The above statement is a simple consequence of the fact $M_{0}=L_{0}$ and Lemma 4.2.

5. Conclusions

In the paper we give the first rough approximation of 'a complexity' of limit operations in the terms of the μ-operator and conversely. The results, interpreted in the intuitional way, can suggest what kind of connection exists between infinite limits and a μ-operator.

We also establish the proper relation between the levels of the limit hierarchy and μ-hierarchy. Let us point out that in consequence we may investigate analogies which exist for the limit hierarchy (also μ-hierarchy) and Baire classes
[7]. Also the kind of a connection between the \sum_{n}^{0} - measurable functions and R-recursive functions is an open problem.

Acknowledgments

I am especially grateful to Professor Jose Felix Costa for his valuable remarks, which were used in the proof of Lemma 3.6 (definitions of p, w).

References

[1] Odifreddi P., Classical Recursion Theory, North-Holland, (1989).
[2] Grzegorczyk A., On the definition of computable real continuous functions, Fund. Math. 44 (1957) 61.
[3] Blum L., Shub M., Smale S., On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Soc. 21 (1989) 1.
[4] Moore C., Recursion theory on reals and continuous-time computation, Th. Comp. Sc., 162 (1996) 23.
[5] Mycka J., μ-recursion and infinite limits, Th. Comp. Sc., 302 (2003) 123.
[6] Mycka J., Infinite limits and R -recursive functions, Acta Cybernetica, to appear.
[7] Moschovakis Y. N., Descriptive Set Theory, North-Holland, (1980).

[^0]: * E-mail address: Jerzy.Mycka@umcs.lublin.pl

