Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski∗, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0. \quad (1)$$

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h, \quad (2)$$

where

P^\perp - denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \ker F^+(x^*) \cap \ker P^+ F^-(x^*),$$

(3)

$$\ker P^+ F^-(x^*) = \{ h \in R^n : P^+ F^-(x^*)[h]^2 = 0 \}.$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$\text{Im} F^-(x^*) = 0.$$

(4)

A2) operator F is 2-regular in x^*:

$$\text{Im} F^+(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$

(5)

A3)

$$\ker F^-(x^*) \neq \{0\}.$$

(6)

If F satisfies A1 in x^*, then

$$K_2(x^*) = \ker F^2 F^-(x^*) = \{ h \in R^n : F^-(x^*)[h]^2 = 0 \}.$$

(7)

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^-(x_k) + P_k^+ F^+(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^+ F^-(x_k) h_k \right\},$$

(8)

where

$$P_k^+ \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^+(x_k) \right)^\perp \text{ in } R^n,$$

converges Q-quadratically to x^*. The matrices $\hat{F}^-(x_k)$ obtained from $F^-(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n=m+1$ the operator

$$\left\{ \hat{F}^-(x_k) + P_k^+ F^+(x_k) h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right]^+$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \to R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 [2] \).

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*) , \ h \neq 0.
\]

\[
P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp
\]

\[
\frac{\partial^2}{\partial x_i \partial x_j} F(x) = P \left(\frac{\partial^2}{\partial x_i \partial x_j} F(x) \right)^T \quad \text{for } i=1,2,\ldots,m.
\]

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix}, \tag{10}
\]

where

\[
\varphi(x) : R^n \to R^r , \quad r=n-m-1,
\]

\[
\varphi(x) = PF'(x) h, \quad h \equiv [h_1, h_2, \ldots, h_r]^T,
\]

\[
\varphi(x) = \begin{bmatrix} \frac{\partial^2}{\partial x_i \partial x_j} F(x) \h_i \\ \frac{\partial^2}{\partial x_i \partial x_j} F(x) \h_r \end{bmatrix}.
\tag{11}
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \Phi(x_k) , \quad k=0,1,2,\ldots
\tag{12}
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k).
\tag{13}
\]

The operator \(\Phi' \) will be approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k.
\tag{14}
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1} s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k=0,1,2,\ldots
\tag{15}
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \quad (18) \]

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{ B_k \} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi (x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi' (x^*) \right\| + q_2 r_k, \quad (20) \]

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi' (x^*) \| \leq \delta , \]

then the sequence
\[x_{k+1} = x_k - B_k \Phi (x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^+ \cdot \Phi (x_k), \]
\[B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \]
\[+ \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \]
\[+ \left\| \frac{\{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k}\right\| \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} + \]
\[+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + q_2 r_k, \]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \]

Theorem 3 (Q-superlinear convergence)
Let \(F\) satisfies the assumptions \(A1-A4\) and the sequence
\[x_{k+1} = x_k - \left\{B_k\right\}^{-1} \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.
Matrices \(B_k\) satisfy secant equation (15), so
\[B_{k+1} = P_{k+1}^+ B_k \] (21)
where
\[L_k = \{X : X s_k = y_k, \ \text{where} \ y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\} \] (22)
Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]
We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[
\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots.
\]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[
\|B_{k+1} - B_k\| \to 0.
\]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References