Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ \hfill (1)

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F^\perp(x^*) h,$$ \hfill (2)

where

P^\perp - denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker} F^\top(x^*) \cap \text{Ker}^2 P^\perp F^\top(x^*),$$

$$\text{Ker}^2 P^\perp F^\top(x^*) = \{h \in \mathbb{R}^n : P^\perp F^\top(x^*)[h]^2 = 0\}.$$ (3)

We need the following assumption on F:
A1) completely degenerated in x^*:
$$\text{Im} F^\top(x^*) = 0.$$ (4)
A2) operator F is 2-regular in x^*:
$$\text{Im} F^\top(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$ (5)
A3) $$\text{Ker} F^\top(x^*) \neq \{0\}.$$ (6)

If F satisfies A1 in x^*, then
$$K_2(x^*) = \text{Ker}^2 F^\top(x^*) = \{h \in \mathbb{R}^n : F^\top(x^*)[h]^2 = 0\}.$$ (7)

In [1] it was proved, that if $n=m$, then the sequence
$$x_{k+1} = x_k - \left\{ \hat{F}^\top(x_k) + P_k^\perp F^\top(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^\perp F^\top(x_k) h_k \right\},$$

where
$$P_k^\perp$$ - denotes orthogonal projection on $\left(\text{Im} \hat{F}^\top(x_k) \right)^\perp \text{ in } \mathbb{R}^n,$
$$h_k \in \text{Ker} \hat{F}^\top(x_k), \|h_k\| = 1$$ converges Q-quadratically to x^*.

The matrices $\hat{F}^\top(x_k)$ obtained from $F^\top(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$,

$0<\alpha<1$.

In the case $n = m+1$ the operator
$$\left\{ \hat{F}^\top(x_k) + P_k^\perp F^\top(x_k) h_k \right\}^{-1}$$
in method (8) is replaced by the operator
$$\left[\hat{F}^\top(x_k) + P_k^\perp F^\top(x_k) h_k \right]^+$$
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H=\text{lin}\{h\}$ for $h \in KerF'(x^*)$, $h \neq 0$.

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix}$, (10)

where

$\varphi(x) : R^n \rightarrow R^r$, $r=n-m-1$,

$\varphi(x) = P F'(x) h^R$, $h^R = [h_1, h_2, ..., h_r]^T$,

$\varphi(x) = \begin{bmatrix} \varphi'(x) h_1 \\ \varphi'(x) h_r \end{bmatrix}$. (11)

In [2] it was proved, that the sequence

$x_{k+1} = x_k + \left[\Phi^*(x_k)\right]^T \cdot \Phi(x_k)$, $k=0,1,2,...$ (12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$x_{k+1} = x_k - \left\{B_k\right\}^+ \cdot \Phi(x_k)$. (13)

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$s_k = x_{k+1} - x_k$. (14)

We propose matrices B_k which satisfy the secant equation:

$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k)$ for $k=0,1,2,...$ (15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,\ldots \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^\ast \) i.e. there exists \(q \in (0,1) \) such that
\[\frac{\|x_{k+1} - x^\ast\|}{\|x_k - x^\ast\|} \leq q \quad \text{for } k = 0,1,2,\ldots \quad (18) \]

and next Q-superlinear convergence to \(x^\ast \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^\ast\|}{\|x_k - x^\ast\|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^\ast) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If there exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi' (x^\ast)\| \leq (1 + q_1 r_k) B_k - (x^\ast) + q_2 r_k, \quad (20) \]

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such that if
\[\|x_0 - x^\ast\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi' (x^\ast)\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^\ast \Phi (x_k) \]

converges Q-linearly to \(x^\ast \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^+ \cdot \Phi (x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^\ast \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\| B_{k+1} - \Phi'(x^*) \| = \left\| B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \leq \| B_k - \Phi'(x^*) \| + \left\| \{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T \right\| \leq \| B_k - \Phi'(x^*) \| + \left\| \{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k \} s_k^T \right\| \leq \| B_k - \Phi'(x^*) \| + \left\| \{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_{k+1} - x^*) \} s_k^T \right\| + \left\| \{ \Phi(x_k) - \Phi'(x^*)(x_k - x^*) \} s_k^T \right\| \leq \| \Phi'(x^*) - B_k \| \left(1 + q_i r_k \right) + c_i \left\| x_{k+1} - x^* \right\| \left\| s_k \right\| \leq \| \Phi'(x^*) - B_k \| \left(1 + q_i r_k \right) + q_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence

\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k), \]

\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[B_{k+1} = P_{L_k} B_k \] (21)

where

\[L_k = \{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \} \] (22)

Denote

\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[
\left\| B_{k+1} - B_k \right\|^2 + \left\| B_{k+1} - H_k \right\|^2 = \left\| B_k - H_k \right\|^2, \text{ for } i = 0, 1, 2, \ldots .
\]
By lemma 2 [5] we get
\[
\sum_{k=1}^{\infty} \left\| B_{k+1} - B_k \right\|^2 < \infty,
\]
thus we obtain
\[
\left\| B_{k+1} - B_k \right\| \to 0.
\]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References