Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \to \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ \hspace{1cm} (1)

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \to \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) P^\perp F^*(x^*) h,$$ \hspace{1cm} (2)

where P^\perp - denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker}F^r(x^*) \cap \text{Ker}^2P^\perp F^r(x^*),$$

(3)

$$\text{Ker}^2P^\perp F^r(x^*) = \{ h \in \mathbb{R}^n : P^\perp F^r(x^*)[h]^2 = 0 \}.$$

We need the following assumption on F:
A1) completely degenerated in x^*:
$$\text{Im} F^r(x^*) = 0.$$ (4)
A2) operator F is 2-regular in x^*:
$$\text{Im} F^r(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$ (5)
A3)
$$\text{Ker}F^r(x^*) \neq \{0\}.$$ (6)

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2F^r(x^*) = \{ h \in \mathbb{R}^n : F^r(x^*)[h]^2 = 0 \}.$$ (7)

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^r(x_k) + P_k^\perp \hat{F}^r(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^\perp \hat{F}^r(x_k) h_k \right\},$$

(8)

where

P_k^\perp - denotes orthogonal projection on $\left(\text{Im} \hat{F}^r(x_k) \right)^\perp$ in \mathbb{R}^n,

$$h_k \in \text{Ker} \hat{F}^r(x_k), \quad \| h_k \| = 1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^r(x_k)$ obtained from $F^r(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}^r(x_k) + P_k^\perp \hat{F}^r(x_k) h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^r(x_k) + P_k^\perp \hat{F}^r(x_k) h_k \right]^+$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equations

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\operatorname{lin}\{h\} \text{ for } h \in \text{Ker}^2 F\left(x^*\right), \; h \neq 0.$$

$$P = P_{H^\perp}$$ denotes the orthogonal projection R^n on H^\perp

$$f_i^q(x) = P\left(f_i^r(x)\right)^T$$ for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'\left(x\right) h \\ \varphi\left(x\right) \end{bmatrix},$$

where

$$\varphi\left(x\right) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi\left(x\right) = PF'\left(x\right) \tilde{h}^r, \quad \tilde{h}^r = [h_1, h_2, ..., h_r]^T,$$

$$\varphi\left(x\right) = M$$

(10)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi\left(x_k\right)\right]^T \cdot \Phi\left(x_k\right), \quad k=0,1,2,...$$

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - B_k \cdot \Phi\left(x_k\right).$$

(13)

The operator Φ^r will by approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1} s_k = \Phi\left(x_{k+1}\right) - \Phi\left(x_k\right) \text{ for } k=0,1,2,...$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such, that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi' (x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi' (x^*)\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi' (x^*)\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^\ast \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\begin{align*}
&\|B_{k+1} - \Phi'(x^*)\| = \|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*)\| \\
&\leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \right\| \\
&\leq \|B_k - \Phi'(x^*)\| + \left(\left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k} \right\| + \left\| \frac{\{\Phi(x_k) - \Phi'(x^*)s_k\} s_k^T}{s_k^T s_k} \right\| \right) \\
&\leq \|B_k - \Phi'(x^*)\| + c_1 \frac{\|x_k - x^*\|^2}{s_k^T s_k} + c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \\
&\leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k \right) + q_2 r_k,
\end{align*}

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \(\Box\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi\left(x_k \right),
\]

\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k}^{-1} B_k
\]

where

\[
L_k = \{ X : X s_k = y_k, \ \text{where} \ y_k = \Phi' \left(x_{k+1} \right) - \Phi' \left(x_k \right) \} \quad (22)
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi' \left(x_k + t (x_{k+1} - x_k) \right) dt.
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain

\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References