Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear converegence for the nonlinear operators is developed.

1. Introduction

Let $F: D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ \hfill (1)

Definition 1

A linear operator $\Psi^*_2(h): \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factoroperator, if

$$\Psi^*_2(h) = F'(x^*) + P^\perp F^*(x^*)h,$$ \hfill (2)

where

P^\perp - denotes the orthogonal projection on $(\text{Im} \, F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi^*_2(h)$ has the property:

$$\text{Im} \, \Psi^*_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[K_2(x^*) = \text{Ker}^\bot F(x^*) \cap \text{Ker}^2 P^\bot F(x^*), \] (3)
\[\text{Ker}^2 P^\bot F(x^*) = \{ h \in \mathbb{R}^n : P^\bot F(x^*)[h]^2 = 0 \}. \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F^\bot(x^*) = 0. \] (4)
A2) operator F is 2-regular in x^*:
\[\text{Im} F^\bot(x^*) h = R^m \text{ for } h \in K_2(x^*), \ h \neq 0. \] (5)
A3)
\[\text{Ker} F^\bot(x^*) \neq \{0\}. \] (6)

If F satisfies A1 in x^*, then
\[K_2(x^*) = \text{Ker}^2 F(x^*) = \{ h \in \mathbb{R}^n : F(x^*)[h]^2 = 0 \}. \] (7)

In [1] it was proved, that if $n=m$, then the sequence
\[x_{k+1} = x_k - \left(\hat{F}^\bot(x_k) + P_k^\bot F(x_k) h_k \right)^{-1} \{ F(x_k) + P_k^\bot F(x_k) h_k \}, \] (8)

where
\[P_k^\bot \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^\bot(x_k) \right)^\bot \text{ in } \mathbb{R}^n, \]
\[h_k \in \text{Ker} \hat{F}^\bot(x_k), \ \| h_k \| = 1 \]
converges Q-quadratically to x^*.
The matrices $\hat{F}^\bot(x_k)$ obtained from $F^\bot(x_k)$ by replacing all elements, whose absolute values do not increase $\forall \sigma > 0$, by zero, where $\sigma = \sqrt{\| F(x_k) \|^{(1-\alpha)/2}}, \ 0 < \alpha < 1$.

In the case $n = m+1$ the operator
\[\{ \hat{F}^\bot(x_k) + P_k^\bot F(x_k) h_k \}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^\bot(x_k) + P_k^\bot F(x_k) h_k \right]^+ \] (9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:
\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^\perp F'(x^*), \quad h \neq 0.
\]
\[
P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp.
\]
\[
\frac{\partial \phi}{\partial x}(x) = P\left(f_i'(x)\right)^T \quad \text{for} \quad i=1,2,..,m.
\]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset R^n \) we define
\[
\Phi(x) = \begin{bmatrix} F'(x)h \\ \phi(x) \end{bmatrix},
\]
where
\[
\phi(x) : R^n \rightarrow R^r, \quad r=n-m-1,
\]
\[
\phi(x) = PF'(x)\hat{\rho}, \quad \hat{\rho} = [h_1, h_2, ..., h_r]^T,
\]
\[
\phi(x) = M \begin{bmatrix} \frac{\partial \phi}{\partial x}(x)h_1 \\ \vdots \\ \frac{\partial \phi}{\partial x}(x)h_r \end{bmatrix}.
\]

In [2] it was proved, that the sequence
\[
x_{k+1} = x_k - \left[\Phi(x_k)\right]^+ \cdot \Phi(x_k), \quad k=0,1,2,...
\]
quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:
\[
x_{k+1} = x_k - \left\{B_k\right\}^+ \cdot \Phi(x_k).
\]
The operator \(\Phi^r \) will be approximated by matrices \(\{B_k\} \).

Let
\[
s_k = x_{k+1} - x_k.
\]
We propose matrices \(B_k \) which satisfy the secant equation:
\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,...
\]
For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\left\| x_{k+1} - x^* \right\| \leq q \left\| x_k - x^* \right\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\left\| x_{k+1} - x^* \right\|}{\left\| x_k - x^* \right\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\left\| x_0 - x^* \right\| \leq \varepsilon \quad \text{and} \quad \left\| B_0 - \Phi'(x^*) \right\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \left\{ B_k \right\}^* \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \leq \\
\leq \left\| B_k - \Phi'(x^*) \right\| + \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \\
+ \left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \\
+ \left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*) s_k \} s_k^T}{s_k^T s_k} \right\| + \left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*) s_k \} s_k^T}{s_k^T s_k} \right\| + \\
+ \frac{\{\Phi(x^*) - B_k s_k\} s_k^T}{s_k^T s_k} \leq \left\| \Phi'(x^*) - B_k \right\| (1 + q_1 r_k) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} \\
+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \left\| \Phi'(x^*) - B_k \right\| (1 + q_1 r_k) + q_2 r_k,
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\} \). \(\Box \)

Theorem 3 (Q-superlinear convergence)

Let F satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),
\]

\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\}
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get
\[\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty, \]
thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square\)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{''}(x_k)\).

References

