Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset R^n \rightarrow R^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ \hfill (1)

Definition 1

A linear operator $\Psi_2(h) : R^n \rightarrow R^m$, $h \in R^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*)h,$$ \hfill (2)

where

P^\perp - denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in R^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in R^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = R^m.$$
Definition 3

Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[
K_2(x^*) = \text{Ker} F^\dagger(x^*) \cap \text{Ker}^2 P\perp F^\dagger(x^*),
\]
(3)

\[
\text{Ker}^2 P\perp F^\dagger(x^*) = \{ h \in R^n : P\perp F^\dagger(x^*)[h]^2 = 0 \}.
\]
We need the following assumption on F:

A1) completely degenerated in x^*:
\[
\text{Im} F^\perp(x^*) = 0.
\]
(4)

A2) operator F is 2-regular in x^*:
\[
\text{Im} F^\dagger(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
(5)

A3)
\[
\text{Ker} F^\dagger(x^*) \neq \{0\}.
\]
(6)

If F satisfies A1 in x^*, then
\[
K_2(x^*) = \text{Ker}^2 F^\dagger(x^*) = \{ h \in R^n : F^\dagger(x^*)[h]^2 = 0 \}.
\]
(7)

In [1] it was proved, that if $n=m$, then the sequence
\[
x_{k+1} = x_k - \left(\hat{F}^\dagger(x_k) + P_k\perp F^\dagger(x_k) h_k \right)^{-1} \cdot \left(F(x_k) + P_k\perp F^\dagger(x_k) h_k \right),
\]
where
\[
P_k\perp - \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}^\dagger(x_k) \right)^\perp \text{ in } R^n,
\]
converges Q-quadratically to x^*.

The matrices $\hat{F}^\dagger(x_k)$ obtained from $F^\dagger(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator
\[
\left(\hat{F}^\dagger(x_k) + P_k\perp F^\dagger(x_k) h_k \right)^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^\dagger(x_k) + P_k\perp F^\dagger(x_k) h_k \right]^+.
\]
(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined $(n>m)$ and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator \(\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset \mathbb{R}^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.
\]

\[P = P_{H^\perp} \] denotes the orthogonal projection \(\mathbb{R}^n \) on \(H^\perp \)

\[j'_i q(x) = P\left(f'_i(x)\right)^T \] for \(i=1,2,..,m \).

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset \mathbb{R}^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x) & h \\ \varphi(x) & & \end{bmatrix}, \quad \text{(10)}
\]

where

\[
\varphi(x) : \mathbb{R}^n \rightarrow \mathbb{R}^r, \quad r=n-m-1,
\]

\[
\varphi(x) = PF'(x)h, \quad h=\left[h_1, h_2, ..., h_r \right]^T,
\]

\[
\varphi(x) = \begin{bmatrix} \frac{\partial q}{\partial x_i}(x) h_i \\ \vdots \\ \frac{\partial q}{\partial x_r}(x) h_r \end{bmatrix}.
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^{-1} \cdot \Phi(x_k), \quad k=0,1,2,.... \quad \text{(12)}
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \left[B_k \right]^{-1} \cdot \Phi(x_k). \quad \text{(13)}
\]

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k. \quad \text{(14)}
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,.... \quad \text{(15)}
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{x_{k+1} - x^*}{x_k - x^*} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{ B_k \} \) satisfy the inequality:
\[\| B_{k+1} - \Phi' (x^*) \| \leq (1 + q_1 r_k) \| B_k - \Phi' (x^*) \| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi' (x^*) \| \leq \delta , \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi (x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^* \Phi (x_k), \]
\[B_{k+1} = B_k - \left\{ \Phi (x_{k+1}) - \Phi (x_k) - B_k s_k \right\} s_k^T \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*)\right\| \leq \\
\leq \|B_k - \Phi'(x^*)\| + \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\|\frac{(\Phi(x_{k+1}) - \Phi'(x^*) s_k) s_k^T}{s_k^T s_k}\right\| + \left\|\frac{(\Phi(x_k) - \Phi'(x^*) s_k) s_k^T}{s_k^T s_k}\right\| + \\
+ \left\|\frac{(\Phi'(x^*) - B_k s_k) s_k^T}{s_k^T s_k}\right\| \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} + \\
+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + q_2 r_k ,
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \(\Box\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),
\]

\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \left\{ X : Xs_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \right\}
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

$$\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots.$$

By lemma 2 [5] we get

$$\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty,$$

thus we obtain

$$\|B_{k+1} - B_k\| \to 0.$$

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of $F^{(j)}(x_k)$.

References