Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$, is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P \perp F'(x^*) h,$$

where $P \perp$ denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[K_2(x^*) = KerF'(x^*) \cap Ker^2 P^\perp F'(x^*), \]
\[Ker^2 P^\perp F'(x^*) = \{ h \in R^n : P^\perp F'(x^*)[h]^2 = 0 \}. \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F'(x^*) = 0. \] (4)
A2) operator F is 2-regular in x^*:
\[\text{Im} F'(x^*) h = R^m \quad \text{for} \quad h \in K_2(x^*), h \neq 0. \] (5)
A3)
\[KerF'(x^*) \neq \{0\}. \] (6)

If F satisfies A1 in x^*, then
\[K_2(x^*) = Ker^2 F'(x^*) = \{ h \in R^n : F'(x^*)[h]^2 = 0 \}. \] (7)

In [1] it was proved, that if n=m, then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}'(x_k) + P_k^\perp F'(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^\perp F'(x_k) h_k \right\}, \]
where
\[P_k^\perp \text{- denotes orthogonal projection on} \quad \left(\text{Im} \hat{F}'(x_k) \right)^\perp \quad \text{in} \quad R^n, \]
\[h_k \in Ker\hat{F}'(x_k), \|h_k\| = 1 \]
converges Q-quadratically to x^*.
The matrices $\hat{F}'(x_k)$ obtained from $F'(x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator
\[\left\{ \hat{F}'(x_k) + P_k^\perp F'(x_k) h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}'(x_k) + P_k^\perp F'(x_k) h_k \right]^\perp \]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^\top \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2F'(x^*), \quad h \neq 0.
\]

\(P = P_{H^\perp} \) denotes the orthogonal projection \(R^n \) on \(H^\perp \)

\[
\frac{\partial \varphi}{\partial x_i}(x) = P\left(f'_i(x)\right)^\top \quad \text{for} \quad i=1,2,\ldots,m.
\]

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix}
F'(x)h \\
\varphi(x)
\end{bmatrix},
\]

(10)

where

\[
\varphi (x) : R^n \rightarrow R^r, \quad r=n-m-1,
\]

\[
\varphi(x) = PF'(x)h_i, \quad \frac{\partial \varphi}{\partial x_i}(x) = \begin{bmatrix}
\frac{\partial \varphi}{\partial x_1}(x)h_i \\
\ldots \\
\frac{\partial \varphi}{\partial x_r}(x)h_i
\end{bmatrix},
\]

(11)

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k)\right]^\top \cdot \Phi(x_k), \quad k=0,1,2,\ldots
\]

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \{\(x_k \)\} is defined by:

\[
x_{k+1} = x_k - \left(B_k\right)^\top \cdot \Phi(x_k).
\]

(13)

The operator \(\Phi' \) will be approximated by matrices \{\(B_k \)\}.

Let

\[
s_k = x_{k+1} - x_k.
\]

(14)

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,\ldots
\]

(15)

For example, to obtain the sequence \{\(B_k \)\} we can apply the Broyden method:
We will prove for this method:

- **Q-linear convergence** to x^* i.e. there exists $q \in (0,1)$ such that
 \[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \quad (18) \]

and next **Q-superlinear convergence** to x^*, i.e.:
 \[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator $F' (x^*)$ is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let F satisfies the assumptions A1-A4. If exist constants $q_1 \geq 0$ and $q_2 \geq 0$ such that matrices $\{B_k\}$ satisfy the inequality:

\[\left\| B_{k+1} - \Phi (x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi' (x^*) \right\| + q_2 r_k, \quad (20) \]

then there are constants $\varepsilon > 0$ and $\delta > 0$ such that if

\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi' (x^*) \| \leq \delta, \]

then the sequence

\[x_{k+1} = x_k - B_k^t \Phi (x_k) \]

converges Q-linearly to x^*.

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let F satisfies the assumptions A1-A4. Then the method

\[x_{k+1} = x_k - \{ B_k \}^t \cdot \Phi (x_k), \]

\[B_{k+1} = B_k - \frac{\{ \Phi (x_{k+1}) - \Phi (x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to x^*.

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| = \left\| \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\| s_k^T s_k - \Phi'(x^*) \leq \|B_k - \Phi'(x^*)\| + \|\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)s_k + \Phi'(x^*)s_k - B_k s_k \| s_k^T s_k \leq B_k - \Phi'(x^*) \]

\[\|\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*)\| s_k^T s_k + \|\Phi(x_k) - \Phi'(x^*)(x_k - x^*)\| s_k^T s_k \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + c_1 \|x_{k+1} - x^*\|^2 s_k \]\n
\[+ c_2 \|x_k - x^*\|^2 s_k \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + q_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \]

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \left\{B_k\right\}^{-1} \cdot \Phi(x_k), \]

\[B_{k+1} = B_k - \left\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T \]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k} B_k \]

where
\[L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \right\} \]

Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) \ dt. \]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain

\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References