Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract
In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction
Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation
\[
F(x) = 0.
\] (1)

Definition 1
A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if
\[
\Psi_2(h) = F'(x^*) + P^\perp F(x^*) h,
\] (2)
where
\(P^\perp \) denotes the orthogonal projection on \((\text{Im } F'(x))^\perp\) in \(\mathbb{R}^n \) [1].

Definition 2
Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:
\[
\text{Im } \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*)\{0\} \), where

\[
K_2(x^*) = \ker F^* (x^*) \cap \ker P^\perp F^* (x^*) ,
\]

\[
\ker P^\perp F^* (x^*) = \{ h \in R^n : P^\perp F^* (x^*)[h]^2 = 0 \} .
\]

We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F^* (x^*) = 0 .
\]

A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F^* (x^*) h = R^m \text{ for } h \in K_2(x^*) , \ h \neq 0 .
\]

A3)
\[
\ker F^* (x^*) \neq \{0\} .
\]

If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \ker F^* (x^*) = \{ h \in R^n : F^* (x^*)[h]^2 = 0 \} .
\]

In [1] it was proved, that if \(n = m \), then the sequence

\[
x_{k+1} = x_k - \left(\hat{F}^* (x_k) + P_k^{\perp} F^* (x_k) h_k \right)^{-1} \cdot \left(F (x_k) + P_k^{\perp} F^* (x_k) h_k \right),
\]

where

\[
P_k^{\perp} \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^* (x_k) \right)^{\perp} \text{ in } R^n ,
\]

\[
h_k \in \ker \hat{F}^* (x_k) , \quad \| h_k \| = 1
\]

converges Q-quadratically to \(x^* \).

The matrices \(\hat{F}^* (x_k) \) obtained from \(F^* (x_k) \) by replacing all elements, whose absolute values do not increase \(v > 0 \), by zero, where \(v = v_k = \| F (x_k) \|^{(1-\alpha)/2} \), \(0 < \alpha < 1 \).

In the case \(n = m+1 \) the operator

\[
\left(\hat{F}^* (x_k) + P_k^{\perp} F^* (x_k) h_k \right)^{-1}
\]

in method (8) is replaced by the operator

\[
\left[\hat{F}^* (x_k) + P_k^{\perp} F^* (x_k) h_k \right]^+
\]

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined \((n > m) \) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset \mathbb{R}^n$ of the point x^*.

Denote:

$H=\text{lin}\{h\}$ for $h \in \ker F'(x^*)$, $h \neq 0$.

$P = P_{H^\perp}$ denotes the orthogonal projection \mathbb{R}^n on H^\perp.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset \mathbb{R}^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h_1 \\ \vdots \\ F'(x) h_{n-m-1} \\ \Phi(x) \end{bmatrix},$$

where

$$\phi(x) : \mathbb{R}^n \rightarrow \mathbb{R}^r, \quad r=n-m-1,$$

$$\phi(x) = P F'(x) \hat{h}, \quad \hat{h} \in [h_1, h_2, ..., h_r]^T,$$

$$\phi(x) = M$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - [\Phi'(x_k)]^- \cdot \Phi(x_k), \quad k=0,1,2,...$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \{x_k\} is defined by:

$$x_{k+1} = x_k - (B_k)^+ \cdot \Phi(x_k).$$

The operator Φ' will be approximated by matrices \{B_k\}.

Let

$$s_k = x_{k+1} - x_k.$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,...$$

For example, to obtain the sequence \{B_k\} we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \| B_k - \Phi'(x^*) \| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^* \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
where $c_1>0$, $c_2>0$, $q_1>0$, $q_2>0$, $r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}$.

\begin{proof}

\end{proof}

\textbf{Theorem 3 (Q-superlinear convergence)}

Let F satisfies the assumptions A1-A4 and the sequence

\[x_{k+1} = x_k - B_k^{-1} \Phi'(x_k), \]

\[B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T \]

linearly converges to x^*. Then the sequence \{x_k\} Q-superlinearly converges to x^*.

\begin{proof}

Matrices B_k satisfy secant equation (15), so

\[B_{k+1} = P_{L_k} B_k \] \quad (21)

where

\[L_k = \{X : Xs_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\} \] \quad (22)

Denote

\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) \, dt. \]

We have $H_k \in L_k$ [4].
From (21) and [3] it follows:
\[\left\| B_{k+1} - B_k \right\|^2 + \left\| B_{k+1} - H_k \right\|^2 = \left\| B_k - H_k \right\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \left\| B_{k+1} - B_k \right\|^2 < \infty \), thus we obtain
\[\left\| B_{k+1} - B_k \right\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary
The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{"}(x_k) \).

References