Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : R^n \rightarrow R^m \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F(x^*) h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp\) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \Psi_2(h) = R^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[K_2(x^*) = \text{Ker}^2 F^r(x^*) \cap \text{Ker}^2 P^\perp F^r(x^*), \]
(3)
\[\text{Ker}^2 P^\perp F^r(x^*) = \left\{ h \in R^n : P^\perp F^r(x^*)[h]^2 = 0 \right\}. \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F^r(x^*) = 0. \]
(4)
A2) operator F is 2-regular in x^*:
\[\text{Im} F^r(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0. \]
(5)
A3) \[\text{Ker} F^r(x^*) \neq \{0\}. \]
(6)

If F satisfies A1 in x^*, then
\[K_2(x^*) = \text{Ker}^2 F^r(x^*) = \left\{ h \in R^n : F^r(x^*)[h]^2 = 0 \right\}. \]
(7)

In [1] it was proved, that if $n=m$, then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}^r(x_k) + P^\perp_k F^r(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P^\perp_k F^r(x_k) h_k \right\}, \]
(8)
where
\[P^\perp_k \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^r(x_k) \right)^\perp \text{ in } R^n, \]
converges Q-quadratically to x^*. The matrices $\hat{F}^r(x_k)$ obtained from $F^r(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator
\[\left\{ \hat{F}^r(x_k) + P^\perp_k F^r(x_k) h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^r(x_k) + P^\perp_k F^r(x_k) h_k \right]^+ \]
(9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*) = 0$ [2].

Assume

A4) Let $F(x) = [f_1(x), f_2(x), \ldots, f_m(x)]^T$, $n > m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0$.

$P = P_{h^\perp}$ denotes the orthogonal projection R^n on H^\perp.

For each system of indices $i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\}$ and vectors $h_1, h_2, \ldots, h_{n-m-1} \subset R^n$ we define

$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix}$, \hspace{1cm} (10)

where

$\varphi(x) : R^n \rightarrow R^r$, \hspace{0.5cm} r = n-m-1,

$\varphi(x) = PF'(x) \tilde{h}$, \hspace{0.5cm} $\tilde{h} \equiv [h_1, h_2, \ldots, h_r]^T$,

$\varphi(x) = \begin{bmatrix} \frac{\partial q_i}{\partial x}(x) h_1 \\ \vdots \\ \frac{\partial q_i}{\partial x}(x) h_r \end{bmatrix}$, \hspace{1cm} (11)

In [2] it was proved, that the sequence

$x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k)$, \hspace{0.5cm} k = 0, 1, 2, \ldots \hspace{1cm} (12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k)$. \hspace{1cm} (13)

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$s_k = x_{k+1} - x_k$. \hspace{1cm} (14)

We propose matrices B_k which satisfy the secant equation:

$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k)$ \hspace{0.5cm} for $k = 0, 1, 2, \ldots$ \hspace{1cm} (15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \quad (18) \]

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let F satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \quad (20) \]

then there are constants \(\varepsilon >0 \) i \(\delta >0 \) such that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let F satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T - \Phi'(x^*)\right\|
\]
\[
\leq \left\|B_k - \Phi'(x^*)\right\| + \left\|\frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T\right\| \leq \left\|B_k - \Phi'(x^*)\right\| +
\]
\[
\left\|\frac{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k}{s_k^T s_k} s_k^T\right\| \leq \left\|B_k - \Phi'(x^*)\right\| +
\]
\[
\left\|\frac{(\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*)) s_k^T}{s_k^T s_k} + \left\|\frac{(\Phi(x_k) - \Phi'(x^*)(x_k - x^*)) s_k^T}{s_k^T s_k}\right\| +
\]
\[
\left\|\frac{(\Phi(x^*) - B_k s_k) s_k^T}{s_k^T s_k}\right\| \leq \left\|\Phi'(x^*) - B_k\right\| (1 + q_1 r_k) + c_1 \left\|x_{k+1} - x^*\right\| ^2 s_k \right\| + \]
\[
+ c_2 \left\|x_k - x^*\right\| \left\|s_k\right\| \leq \left\|\Phi'(x^*) - B_k\right\| (1 + q_1 r_k) + q_2 r_k ,
\]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{||x_{k+1} - x^*||, ||x_k - x^*||\} \). \(\square\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),
\]
\[
B_{k+1} = B_k \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T
\]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[
B_{k+1} = P_{L_k}^{-1} B_k
\]
where \(L_k = \left\{X : X s_k = y_k\,\text{, where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\right\} \) \(22\)

Denote
\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt .
\]
We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References