Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear converegence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factoroperator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[
K_2(x^*) = \text{Ker} F^* (x^*) \cap \text{Ker}^2 P^\perp F^* (x^*),
\]
\[
\text{Ker}^2 P^\perp F^* (x^*) = \{ h \in R^n : P^\perp F^* (x^*)[h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in x^*:
\[
\text{Im} F^* (x^*) = 0.
\]
A2) operator F is 2-regular in x^*:
\[
\text{Im} F^* (x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
A3)
\[
\text{Ker} F^* (x^*) \neq \{0\}.
\]
If F satisfies A1 in x^*, then
\[
K_2(x^*) = \text{Ker}^2 F^* (x^*) = \{ h \in R^n : F^* (x^*)[h]^2 = 0 \}.
\]

In [1] it was proved, that if $n=m$, then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}^* (x_k) + P_k^\perp F^* (x_k) h_k \right\}^{-1} \cdot \left\{ F (x_k) + P_k^\perp F^* (x_k) h_k \right\},
\]
where
\[
P_k^\perp \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^* (x_k) \right)^\perp \text{ in } R^n,
\]
converges Q-quadratically to x^*.
The matrices $\hat{F}^* (x_k)$ obtained from $F^* (x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator
\[
\left\{ \hat{F}^* (x_k) + P_k^\perp F^* (x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^* (x_k) + P_k^\perp F^* (x_k) h_k \right]^+
\]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator $\Phi: R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.$$

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp.

$$j_i'(x) = P (f_i' (x))^T \quad \text{for} \quad i=1,2,\ldots,m.$$

For each system of indices $i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\}$ and vectors $h_1, h_2, \ldots, h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix},$$

where

$$\varphi(x): R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x) \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_r \end{bmatrix}, \quad \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_r \end{bmatrix} = \left[j_{i_1}'(x) h_{i_1} \\ \vdots \\ j_{i_r}'(x) h_{i_r} \right].$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k + \left[\Phi' \left(x_k \right) \right]^{-1} \cdot \Phi'(x_k), \quad k=0,1,2,\ldots$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left[B_k \right]^+ \cdot \Phi(x_k).$$

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1} s_k = \Phi' (x_{k+1}) - \Phi' (x_k) \quad \text{for} \quad k=0,1,2,\ldots$$

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi'(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\| B_{k+1} - \Phi'(x^*) \| = \| B_k - \left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T s_k - \Phi'(x^*) \| \leq \| B_k - \Phi'(x^*) \| + \| \left\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k \right\} s_k^T s_k \| \leq \| B_k - \Phi'(x^*) \| + \| \left\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_k - x^*) \right\} s_k^T s_k \| + \| \left\{ \Phi(x_k) - \Phi'(x^*)(x_k - x^*) \right\} s_k^T s_k \| \leq \| \Phi'(x^*) - B_k \| (1 + q_1 r_k) + c_1 \| x_{k+1} - x^* \|^2 \| s_k \| + c_2 \| x_k - x^* \|^2 \| s_k \| \leq \| \Phi'(x^*) - B_k \| (1 + q_1 r_k) + q_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, \) \(r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \}. \] \(\square \)

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfy the assumptions A1-A4 and the sequence
\[
x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k),
\]

then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so
\[
B_{k+1} = B_k - \left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T s_k
\]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Denote
\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary
The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References