Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear converegence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \to \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0. \quad (1)$$

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \to \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factoroperator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*)h, \quad (2)$$

where P^\perp - denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*)\{0\} \), where
\[
K_2\left(x^*\right) = \text{Ker}F^*\left(x^*\right) \cap \text{Ker}^2P^\perp F^*\left(x^*\right),
\]
and
\[
\text{Ker}^2P^\perp F^*\left(x^*\right) = \left\{ h \in R^n : P^\perp F^*\left(x^*\right)[h]^2 = 0 \right\}.
\]

We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F^*\left(x^*\right) = 0.
\]
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F^*\left(x^*\right)h = R^m \text{ for } h \in K_2(x^*), \ h \neq 0.
\]
A3) \[
\text{Ker}^2P^\perp F^*\left(x^*\right) \neq \{0\}.
\]

If F satisfies A1 in \(x^* \), then
\[
K_2\left(x^*\right) = \text{Ker}^2P^\perp F^*\left(x^*\right) = \left\{ h \in R^n : F^*\left(x^*\right)[h]^2 = 0 \right\}.
\]

In [1] it was proved, that if \(n = m \), then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}^*\left(x_k\right) + P^\perp_k F^*\left(x_k\right)h_k \right\}^{-1} \left\{ \hat{F}^*\left(x_k\right) + P^\perp_k F^*\left(x_k\right)h_k \right\},
\]
where
\[
P^\perp_k \text{ - denotes orthogonal projection on } \left(\text{Im} \hat{F}^*\left(x_k\right)\right)^\perp \text{ in } R^n,
\]
\[
h_k \in \text{Ker} \hat{F}^*\left(x_k\right), \ \|h_k\|_2 = 1
\]
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}^*\left(x_k\right) \) obtained from \(F^*\left(x_k\right) \) by replacing all elements, whose absolute values do not increase \(v > 0 \), by zero, where \(v = v_k = \|F(x_k)\|_2^{(1-\alpha)/2} \), \(0 < \alpha < 1 \).

In the case \(n = m+1 \) the operator
\[
\left\{ \hat{F}^*\left(x_k\right) + P^\perp_k F^*\left(x_k\right)h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^*\left(x_k\right) + P^\perp_k F^*\left(x_k\right)h_k \right]^{+}
\]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined (\(n > m \)) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*), \; h \neq 0.$$

$$P = P_{H^\perp}$$ denotes the orthogonal projection R^n on H^\perp.

$$\frac{\partial^2 \phi}{\partial x_i^2}(x) = P\left(f_i'(x)\right)^T$$ for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix},$$

(10)

where

$$\varphi (x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi (x) = P F'(x) \hat{p}, \quad \hat{p} \in \left[h_1, h_2, ..., h_r \right]^T,$$

$$\varphi (x) = M \begin{bmatrix} \frac{\partial^2 \phi}{\partial x_i^2}(x)h_1 \\ \frac{\partial^2 \phi}{\partial x_i^2}(x)h_r \end{bmatrix}.$$

(11)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k), \quad k=0,1,2,...$$

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k).$$

(13)

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \; k=0,1,2,...$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \]
\[(16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \]
\[(17) \]

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\left\| x_{k+1} - x^* \right\| \leq q \left\| x_k - x^* \right\| \quad \text{for } k = 0,1,2,... \]
\[(18) \]

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\left\| x_{k+1} - x^* \right\|}{\left\| x_k - x^* \right\|} = 0. \]
\[(19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi' (x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi' (x^*) \right\| + q_2 r_k, \]
\[(20) \]

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi' (x^*) \| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi (x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \left\{ B_k \right\}^* \cdot \Phi (x_k), \]

\[B_{k+1} = B_k - \frac{\left\{ \Phi (x_{k+1}) - \Phi (x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\| B_{k+1} - \Phi'(x^*) \| = \| B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} - \Phi'(x^*) \| \leq \| B_k - \Phi'(x^*) \| \]
\[+ \left\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k \right\} s_k^T \]
\[+ \left\{ (\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*)) s_k^T \right\} \]
\[+ \left\{ (\Phi(x_k) - \Phi'(x^*)(x_k - x^*)) s_k^T \right\} \]
\[+ \left\{ (x^* - B_k) s_k s_k^T \right\} \leq \| \Phi'(x^*) - B_k \| (1 + q_1 r_k) + c_1 \left\| x_{k+1} - x^* \right\| s_k^T s_k \]
\[+ c_2 \left\| x_k - x^* \right\| \leq \| \Phi'(x^*) - B_k \| (1 + q_1 r_k) + q_2 r_k , \]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi'(x_k) , \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k} B_k \] (21)

where
\[L_k = \left\{ X : X s_k = y_k , \text{ where } y_k = \Phi' (x_{k+1}) - \Phi' (x_k) \right\} \] (22)

Denote
\[H_k = H (x_k, x_{k+1}) = \frac{1}{0} \Phi'(x_k + t (x_{k+1} - x_k)) dt . \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[
\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots .
\]
By lemma 2 [5] we get \(\sum \|B_{k+1} - B_k\|^2 < \infty\), thus we obtain
\[
\|B_{k+1} - B_k\| \to 0.
\]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{"}(x_k)\).

References