Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ (1)

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F^*(x^*)h,$$ (2)

where

P^\perp - denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = KerF(x^*) \cap Ker^2 P^\perp F^\prime(x^*),$$

(3)

$$Ker^2 P^\perp F^\prime(x^*) = \{h \in R^n : P^\perp F^\prime(x^*)[h]^2 = 0\}.$$ (4)

We need the following assumption on F:
A1) completely degenerated in x^*:

$$Im F^\prime(x^*) = 0.$$ (5)

A2) operator F is 2-regular in x^*:

$$Im F^\prime(x^*) h = R^n \ for \ h \in K_2(x^*), \ h \neq 0.$$ (6)

A3)

$$KerF^\prime(x^*) \neq \{0\}.$$ (7)

If F satisfies A1 in x^*, then

$$K_2(x^*) = Ker^2 F^\prime(x^*) = \{h \in R^n : F^\prime(x^*)[h]^2 = 0\}.$$ (8)

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^\prime(x_k) + P_k^\perp F^\prime(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^\perp F^\prime(x_k) h_k \right\},$$

(9)

where

$$P_k^\perp$$ - denotes orthogonal projection on \((Im \hat{F}^\prime(x_k))^\perp in \ R^n, \$$

$$h_k \in Ker\hat{F}^\prime(x_k), \ \|h_k\| = 1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^\prime(x_k)$ obtained from $F^\prime(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{1-\alpha}/2$, $0<\alpha<1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}^\prime(x_k) + P_k^\perp F^\prime(x_k) h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^\prime(x_k) + P_k^\perp F^\prime(x_k) h_k \right]^+$$

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subseteq R^n$ of the point x^*.

Denote:

$$H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.$$

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp

$$j_i^h(x) = P(f_i(x))^T \quad \text{for} \quad i=1,2,...,m.$$

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix}, \quad (10)$$

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x) \hat{\rho}^h, \quad \hat{\rho}^h = [h_1, h_2, ..., h_r]^T,$$

$$\varphi(x) = M \begin{bmatrix} j_{i_1}^h(x) h_1 \\ \vdots \\ j_{i_r}^h(x) h_r \end{bmatrix}. \quad (11)$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k)\right]^\dagger \cdot \Phi(x_k), \quad k=0,1,2,...$$ \quad (12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k\right)^+ \cdot \Phi(x_k). \quad (13)$$

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k. \quad (14)$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi'(x_{k+1}) - \Phi'(x_k) \quad \text{for} \quad k=0,1,2,... \quad (15)$$

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \] (20)
then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.
Now we notice:
\begin{equation}
\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \\
\leq \|B_k - \Phi'(x^*)\| + \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \\
\left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \\
\left\|\frac{(\Phi(x_{k+1}) - \Phi'(x^*) (x_{k+1} - x^*)) s_k^T}{s_k^T s_k}\right\| \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} \\
+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + q_2 r_k \, ,
\end{equation}

where \(c_1>0, c_2>0, q_1>0, q_2>0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \hfill \Box

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),\]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k} B_k \]
where
\[L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\}\]
(22)
Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt \, .\]
We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References