Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0. \tag{1}
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m, h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*)h, \tag{2}
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[
K_2\left(x^*\right) = \text{Ker} F^* \left(x^*\right) \cap \text{Ker}^2 F^* \left(x^*\right),
\]
\[
\text{Ker}^2 P^\perp F^* \left(x^*\right) = \left\{h \in R^n : P^\perp F^* \left(x^*\right)[h]^2 = 0\right\}.
\]
We need the following assumption on F:
A1) completely degenerated in x^*:
\[
\text{Im} F^* \left(x^*\right) = 0.
\]
A2) operator F is 2-regular in x^*:
\[
\text{Im} F^* \left(x^*\right)h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
A3)
\[
\text{Ker} F^* \left(x^*\right) \neq \{0\}.
\]
If F satisfies A1 in x^*, then
\[
K_2\left(x^*\right) = \text{Ker}^2 F^* \left(x^*\right) = \left\{h \in R^n : F^* \left(x^*\right)[h]^2 = 0\right\}.
\]
In [1] it was proved, that if $n=m$, then the sequence
\[
x_{k+1} = x_k - \left\{\hat{F}^* \left(x_k\right) + P_k^\perp \hat{F}^* \left(x_k\right) h_k\right\}^{-1} \left\{F \left(x_k\right) + P_k^\perp \hat{F}^* \left(x_k\right) h_k\right\},
\]
where
\[
P_k^\perp \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^* \left(x_k\right)\right)^\perp \text{ in } R^n,
\]
converges Q-quadratically to x^*.
The matrices $\hat{F}^* \left(x_k\right)$ obtained from $F^* \left(x_k\right)$ by replacing all elements, whose absolute values do not increase ∇_0, by zero, where $\nabla = \nabla_k = \left\|F \left(x_k\right)\right\|^{(1-\alpha)/2}$, $0<\alpha<1$.
In the case $n = m+1$ the operator
\[
\left\{\hat{F}^* \left(x_k\right) + P_k^\perp \hat{F}^* \left(x_k\right) h_k\right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^* \left(x_k\right) + P_k^\perp \hat{F}^* \left(x_k\right) h_k\right]^+
\]
and then the method converges Q-linearly to the set of solutions [2].
Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*) = 0 \) [2].

Assume

A4) Let \(F(x) = [f_1(x), f_2(x), ..., f_m(x)]^T \), \(n > m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*), \quad h \neq 0.
\]

\[
P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp.
\]

\[
\frac{\partial q}{\partial f_i}(x) = P\left(f_i'(x)\right)^T \quad \text{for} \quad i = 1, 2, ..., m.
\]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10)
\]

where

\[
\varphi(x) : R^n \rightarrow R^r, \quad r = n - m - 1,
\]

\[
\varphi(x) = P F'(x) \tilde{P}, \quad \tilde{P} \tilde{h} = [h_1, h_2, ..., h_r]^T,
\]

\[
\varphi(x) = \begin{bmatrix} \frac{\partial q}{\partial f_i}(x) h_i \\ \frac{\partial q}{\partial f_j}(x) h_j \end{bmatrix}.
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^T \cdot \Phi(x_k), \quad k = 0, 1, 2, \quad (12)
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - (B_k)^T \cdot \Phi(x_k).
\]

(13)

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k.
\]

(14)

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1} = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k = 0, 1, 2, ...
\]

(15)

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such, that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi'(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \] (20)
then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assaysptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \Phi(x_k), \]
\[B_{k+1} = B_k - \left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T s_k \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| \leq \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_{k+1} - x^*)\} s_k^T}{s_k^T s_k} \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k} \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\Phi'(x^*) - B_k s_k^T}{s_k^T s_k} \right\| \leq B_k - \Phi'(x^*) + \frac{1}{s_k^T s_k} \left\| \frac{\{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k} \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\Phi'(x^*) - B_k s_k^T}{s_k^T s_k} \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\Phi'(x^*) - B_k s_k^T}{s_k^T s_k} \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\Phi'(x^*) - B_k s_k^T}{s_k^T s_k} \right\| \leq \left\| \frac{\{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k} \right\| + \frac{1}{s_k^T s_k} \left\| \frac{\Phi'(x^*) - B_k s_k^T}{s_k^T s_k} \right\| = c_1 \left\| x_{k+1} - x^* \right\|^2 + c_2 \left\| x_k - x^* \right\|^2 s_k^T s_k
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0\), \(r_k = \max \{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \(\Box\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[
\begin{align*}
x_{k+1} &= x_k - \left\{ B_k \right\}^{-1} \Phi(x_k), \\
B_{k+1} &= B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\end{align*}
\]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[
B_{k+1} = P_{L_k} B_k
\]
where
\[
L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \right\}
\]
Denote
\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]
We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \rightarrow 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{(n)}(x_k) \).

References