Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[F(x) = 0. \] (1)

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m, h \in \mathbb{R}^n \) is called 2-factor operator, if

\[\Psi_2(h) = F'(x^*) + P^\bot F^*(x^*)h, \] (2)

where

\(P^\bot \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\bot \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[\text{Im} \Psi_2(h) = \mathbb{R}^m. \]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[K_2(x^*) = \text{Ker} F^* (x^*) \cap \text{Ker}^2 P^\perp F^- (x^*), \]
\[\text{Ker}^2 P^\perp F^- (x^*) = \{ h \in R^n : P^\perp F^- (x^*)[h]^2 = 0 \}. \] (3)

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F^* (x^*) = 0. \] (4)
A2) operator F is 2-regular in x^*:
\[\text{Im} F^- (x^*) h = R^n \text{ for } h \in K_2(x^*), h \neq 0. \] (5)
A3)
\[\text{Ker} F^- (x^*) \neq \{0\}. \] (6)

If F satisfies A1 in x^*, then
\[K_2(x^*) = \text{Ker}^2 F^- (x^*) = \{ h \in R^n : F^- (x^*)[h]^2 = 0 \}. \] (7)

In [1] it was proved, that if $n=m$, then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}^- (x_k) + P^\perp_k F^- (x_k) h_k \right\}^{-1} \cdot \left\{ F (x_k) + P^\perp_k F^- (x_k) h_k \right\}, \] (8)
where P^\perp_k denotes orthogonal projection on $\left(\text{Im} \hat{F}^- (x_k) \right)^\perp$ in R^n,
\[h_k \in \text{Ker} \hat{F}^- (x_k), \|h_k\| = 1 \]
converges Q-quadratically to x^*.
The matrices $\hat{F}^- (x_k)$ obtained from $F^- (x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \| F (x_k) \|^{\nu m}/(\nu m)^{\nu m + 1}$, $0<\alpha<1$.

In the case $n = m+1$ the operator
\[\left\{ \hat{F}^- (x_k) + P^\perp_k F^- (x_k) h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^- (x_k) + P^\perp_k F^- (x_k) h_k \right]^+ \] (9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*) = 0 \) [2].

Assume

\(\text{A4)} \) Let \(F(x) = [f_1(x), f_2(x), \ldots, f_m(x)]^T \), \(n > m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F^\prime \left(x^* \right), \ h \neq 0.
\]

\(P = P_{H^\perp} \) denotes the orthogonal projection \(R^n \) on \(H^\perp \)

\[
j_{i}^{\varphi}(x) = P \left(f_{i}^\prime (x) \right)^T \quad \text{for} \ i=1,2,\ldots,m.
\]

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F^\prime(x)h \\ \varphi(x) \end{bmatrix}, \quad (10)
\]

where

\[
\varphi(x) : R^n \rightarrow R^r, \quad r = n-m-1,
\]

\[
\varphi(x) = P F^\prime(x) \hat{h}, \quad \hat{h} \in \left[h_1, h_2, \ldots, h_r \right]^T,
\]

\[
\varphi(x) = \mathbf{M} \begin{bmatrix} j_{i}^{\varphi}(x) h_i \\ j_{i}^{\varphi}(x) h_r \end{bmatrix}. \quad (11)
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi^\prime(x_k) \right]^T \cdot \Phi(x_k), \quad k=0,1,2,\ldots. \quad (12)
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \{B_k\} \cdot \Phi(x_k). \quad (13)
\]

The operator \(\Phi^\prime \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k. \quad (14)
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \ k=0,1,2,\ldots \quad (15)
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi (x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi (x^*) \right\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi (x^*) \| \leq \delta, \]

then the sequence \(x_{k+1} = x_k - B_k^* \Phi (x_k) \)
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi (x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \left\{ \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} \right\} s_k^T - \Phi'(x^*) \right\| \leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k}{s_k^T s_k} \right\| \leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_{k+1} - x^*)}{s_k^T s_k} \right\| + \left\| \frac{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)}{s_k^T s_k} \right\| \]
\[+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \left\| \Phi'(x^*) - B_k \right\|(1 + q_2 r_k) + q_1 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \)

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \left\{ \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} \right\} s_k^T \]
linearly converges to \(x^* \). Then the sequence \(\{x_k\} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so
\[B_{k+1} = P_{k+1} B_k \]
where
\[L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \right\} \]
Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]
We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References