Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear converegence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factoroperator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} \ F'(x))^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \ \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*)\{0\} \), where
\[
K_2(x^*) = \text{Ker} F'(x^*) \cap \text{Ker}^2 P^\perp F'(x^*),
\] (3)

\[
\text{Ker}^2 P^\perp F'(x^*) = \left\{ h \in \mathbb{R}^n : P^\perp F'(x^*)[h]^2 = 0 \right\}.
\]

We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F'(x^*) = 0.
\] (4)
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F'(x^*) h = \mathbb{R}^m \text{ for } h \in K_2(x^*), h \neq 0.
\] (5)
A3)
\[
\text{Ker} F'(x^*) \neq \{0\}.
\] (6)

If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \text{Ker}^2 F'(x^*) = \left\{ h \in \mathbb{R}^n : F'(x^*)[h]^2 = 0 \right\}.
\] (7)

In [1] it was proved, that if \(n = m \), then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right\}^{-1} \left\{ F(x_k) + P^\perp_k F'(x_k) h_k \right\},
\] (8)
where
\[
P^\perp_k - \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}'(x_k) \right)^{\perp} \text{ in } \mathbb{R}^n,
\]
\[
h_k \in \text{Ker} \hat{F}'(x_k), \quad \|h_k\| = 1
\]
converges Q-quadratically to \(x^* \).

The matrices \(\hat{F}'(x_k) \) obtained from \(F'(x_k) \) by replacing all elements, whose absolute values do not increase \(\nu > 0 \), by zero, where \(\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2} \), \(0 < \alpha < 1 \).

In the case \(n = m + 1 \) the operator
\[
\left\{ \hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right]^\dagger
\] (9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined (\(n > m \)) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator \(\Phi : \mathbb{R}^n \to \mathbb{R}^{n-m} \) with the properties (4), (5) and such that \(\Phi(x^*) = 0 \) [2].

Assume

A4) Let \(F(x) = [f_1(x), f_2(x), ..., f_m(x)]^T \), \(n > m \) is two continuously differentiable in some neighbourhood \(U \subseteq \mathbb{R}^n \) of the point \(x^* \).

Denote:

\[
H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.
\]

\[
P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad \mathbb{R}^n \text{ on} \quad H^\perp
\]

\[
f_i'(x) = P(f_i'(x))^T \quad \text{for} \quad i = 1, 2, ..., m.
\]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subseteq \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subseteq \mathbb{R}^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix},
\]

where

\[
\varphi(x) : \mathbb{R}^r \to \mathbb{R}^r, \quad r = n-m-1,
\]

\[
\varphi(x) = PF'(x)P^T, \quad \rho \equiv [h_1, h_2, ..., h_r]^T,
\]

\[
\varphi(x) = M = \begin{bmatrix} f_1'(x)h_1 \\ f_1'(x)h_r \end{bmatrix}.\quad (11)
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \Phi(x_k), \quad k = 0, 1, 2,
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \{\(x_k \)\} is defined by:

\[
x_{k+1} = x_k - \left[B_k \right]^+ \cdot \Phi(x_k).
\]

The operator \(\Phi' \) will be approximated by matrices \{\(B_k \)\}.

Let

\[
s_k = x_{k+1} - x_k.
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k = 0, 1, 2, ...
\]

For example, to obtain the sequence \{\(B_k \)\} we can apply the Broyden method:
\[B_{k+1} = B_k - r_k s_k^T \] for \(k=0,1,2,... \) \hspace{1cm} (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] \hspace{1cm} (17)

We will prove for this method:
Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \] for \(k = 0,1,2,... \) \hspace{1cm} (18)

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] \hspace{1cm} (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi '\left(x^*\right) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi '\left(x^*\right) \right\| + q_2 r_k, \] \hspace{1cm} (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi '\left(x^*\right)\| \leq \delta , \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi \left(x_k\right) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - B_k^* \Phi \left(x_k\right) , \]
\[B_{k+1} = B_k - \frac{\{\Phi \left(x_{k+1}\right) - \Phi \left(x_k\right) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\| B_k - \Phi(x^*) \| = \left\| B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi(x^*) \right\| + \| \Phi(x_{k+1}) - \Phi(x_k) + \Phi(x^*) s_k - B_k s_k \| s_k^T \leq \left\| B_k - \Phi(x^*) \right\| + \| (\Phi(x_{k+1}) - \Phi(x_k) - \Phi(x^*)(x_{k+1} - x^*)) s_k^T \| + \left\| \frac{\Phi(x_k) - \Phi(x^*)(x_k - x^*) s_k^T}{s_k^T s_k} \right\| + \| \Phi(x^*) - B_k \| \left(1 + q_1 r_k \right) + c_1 \left\| x_{k+1} - x^* \right\| \| s_k \| + c_2 \left\| x_k - x^* \right\| \| s_k \| \leq \left\| \Phi(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + q_2 r_k , \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \} \). \(\square \)

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence

\[
\begin{align*}
 x_{k+1} &= x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k), \\
 B_{k+1} &= B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k}
\end{align*}
\]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[B_{k+1} = \frac{1}{L_k} B_k \] \(\tag{21} \)

where

\[L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi(x_{k+1}) - \Phi(x_k) \right\} \] \(\tag{22} \)

Denote

\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt . \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\| B_{k+1} - B_k \|^2 + \| B_{k+1} - H_k \|^2 = \| B_k - H_k \|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \| B_{k+1} - B_k \|^2 < \infty \), thus we obtain
\[\| B_{k+1} - B_k \| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{(x_k)} \).

References