Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ (1)

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m, h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F^*(x^*)h,$$ (2)

where P^\perp denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n, h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*) \{0\} \), where
\[
K_2(x^*) = \text{Ker} F^* (x^*) \cap \text{Ker}^2 P^+ F^* (x^*),
\]
(3)
\[
\text{Ker}^2 P^+ F^* (x^*) = \{ h \in \mathbb{R}^n : P^+ F^* (x^*) [h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F^* (x^*) = 0.
\]
(4)
A2) operator F is 2-regular in \(x^* \): \[
\text{Im} F^* (x^*) h = \mathbb{R}^m \quad \text{for} \quad h \in K_2(x^*), \; h \neq 0.
\]
(5)
A3)
\[
\text{Ker} F^* (x^*) \neq \{0\}.
\]
(6)
If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \text{Ker}^2 F^* (x^*) = \{ h \in \mathbb{R}^n : F^* (x^*) [h]^2 = 0 \}.
\]
(7)
In [1] it was proved, that if \(n=m \), then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}^* (x_k) + P^+_k F^* (x_k) h_k \right\}^{-1} \cdot \left\{ F (x_k) + P^+_k F^* (x_k) h_k \right\},
\]
(8)
where
\[
P^+_k \quad \text{denotes orthogonal projection on} \quad \left(\text{Im} \hat{F}^* (x_k) \right)^{\perp} \quad \text{in} \quad \mathbb{R}^n,
\]
\[
h_k \in \text{Ker} \hat{F}^* (x_k), \quad \| h_k \| = 1
\]
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}^* (x_k) \) obtained from \(F^* (x_k) \) by replacing all elements, whose
absolute values do not increase \(\nu>0 \), by zero, where \(\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}, \)
\(0<\alpha<1. \)

In the case \(n = m+1 \) the operator
\[
\left\{ \hat{F}^* (x_k) + P^+_k F^* (x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^* (x_k) + P^+_k F^* (x_k) h_k \right]^{+}
\]
(9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined \((n>m) \) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.
\]

\[
P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp.
\]

\[
\frac{\partial F}{\partial x}(x) = P \left(f_i'(x) \right)^T \quad \text{for } i=1,2,...,m.
\]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix},
\]

where

\[
\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,
\]

\[
\varphi(x) = PF'(x) P_{H} h, \quad \frac{\partial \varphi}{\partial x} = [h_1, h_2, ..., h_r]^T,
\]

\[
\varphi(x) = M, \quad \frac{\partial \varphi}{\partial x} = [h_1, h_2, ..., h_r]. \tag{11}
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k), \quad k=0,1,2,.... \tag{12}
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k). \tag{13}
\]

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k. \tag{14}
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k=0,1,2,.... \tag{15}
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \quad (18) \]

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi' (x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi' (x^*) \right\| + q_2 r_k, \quad (20) \]
then there are constants \(\epsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \epsilon \quad \text{and} \quad \|B_0 - \Phi' (x^*)\| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\left\| B_{k+1} - \Phi' \left(x^* \right) \right\| = \left\| B_k - \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T \right\| \leq B_k - \Phi' \left(x^* \right) \right| + \\
\leq B_k - \Phi' \left(x^* \right) \right| + \left\| \Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - \Phi' \left(x^* \right) s_k + \Phi' \left(x^* \right) s_k - B_k s_k \right\| s_k^T s_k \leq B_k - \Phi' \left(x^* \right) \right| + \\
\leq \left\| \Phi' \left(x^* \right) - B_k \right\| \left(1 + q_i r_k \right) + c_i \left\| x_{k+1} - x^* \right\| \left\| s_k \right\| s_k^T s_k \leq \left\| \Phi' \left(x^* \right) - B_k \right\| \left(1 + q_i r_k \right) + q_2 r_k ,
\]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence \(x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi \left(x_k \right) \),

\[
B_{k+1} = B_k - \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T
\]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \left\{ X : X s_k = y_k, \right. \text{ where } y_k = \Phi' \left(x_{k+1} \right) - \Phi' \left(x_k \right) \left\}
\]

Denote

\[
H_k = H (x_k, x_{k+1}) = \int_0^1 \Phi' \left(x_k + t \left(x_{k+1} - x_k \right) \right) dt .
\]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\| B_{k+1} - B_k \|^2 + \| B_{k+1} - H_k \|^2 = \| B_k - H_k \|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \| B_{k+1} - B_k \|^2 < \infty \), thus we obtain
\[\| B_{k+1} - B_k \| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(\frac{F''(x_k)}{F'(x_k)} \).

References