Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0. \quad (1)$$

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \to \mathbb{R}^m$, $h \in \mathbb{R}^n$, is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h, \quad (2)$$

where P^\perp - denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.plublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker}F^*(x^*) \cap \text{Ker}^2P^\perp F^*(x^*), \quad (3)$$

$$\text{Ker}^2P^\perp F^*(x^*) = \{h \in R^n : P^\perp F^*(x^*)[h]^2 = 0\}.$$

We need the following assumption on F:

A1) completely degenerated assumption in x^*:
$$\text{Im}F^*(x^*) = 0. \quad (4)$$

A2) operator F is 2-regular in x^*:
$$\text{Im}F^*(x^*) = R^m \quad \text{for} \quad h \in K_2(x^*), h \neq 0. \quad (5)$$

A3)
$$\text{Ker}F^*(x^*) \neq \{0\}. \quad (6)$$

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2F^*(x^*) = \{h \in R^n : F^*(x^*)[h]^2 = 0\}. \quad (7)$$

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^*(x_k) + P_k^\perp F^*(x_k)h_k \right\}^{-1} \left\{ F(x_k) + P_k^\perp F^*(x_k)h_k \right\}, \quad (8)$$

where

P_k^\perp - denotes orthogonal projection on $\left(\text{Im} \hat{F}^*(x_k) \right)^\perp$ in R^n,

$$h_k \in \text{Ker}\hat{F}^*(x_k), \quad \|h_k\| = 1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^*(x_k)$ obtained from $F^*(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}^*(x_k) + P_k^\perp F^*(x_k)h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^*(x_k) + P_k^\perp F^*(x_k)h_k \right]^+ \quad (9)$$

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for } h \in Ker^2 F'(x^*), \ h \neq 0.$$

$$P = P_{H^\perp} \quad \text{denotes the orthogonal projection } \ R^n \text{ on } H^\perp;$$

$$f_i'(x) = P\left(f_i'(x)\right)^T \quad \text{for } i=1,2,\ldots,m.$$

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix}, \quad (10)$$

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x)^T \widehat{h}, \quad \widehat{h} = [h_1, h_2, ..., h_r]^T,$$

$$\varphi(x) = M \begin{bmatrix} \frac{\partial f_i(x)}{\partial x} h_i \\ \frac{\partial f_i(x)}{\partial x} h_r \end{bmatrix}. \quad (11)$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k)\right]^+ \cdot \Phi(x_k), \quad k=0,1,2,\ldots \quad (12)$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k). \quad (13)$$

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k. \quad (14)$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k=0,1,2,\ldots \quad (15)$$

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

\textit{Q-linear convergence} to \(x^\ast \) i.e. there exists \(q \in (0,1) \) such that
\[\left\| x_{k+1} - x^\ast \right\| \leq q \left\| x_k - x^\ast \right\| \quad \text{for } k = 0,1,2,... \quad (18) \]

and next \textit{Q-superlinear convergence} to \(x^\ast \), i.e.:
\[\lim_{k \to \infty} \frac{\left\| x_{k+1} - x^\ast \right\|}{\left\| x_k - x^\ast \right\|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^\ast) \) is nonsingular.

\textbf{Theorem 1} (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^\ast) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^\ast) \right\| + q_2 r_k, \quad (20) \]
then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\| x_0 - x^\ast \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^\ast) \| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^T \Phi(x_k) \]
converges Q-linearly to \(x^\ast \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

\textbf{Theorem 2} (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \left\{ B_k \right\}^T \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^\ast \).

\textbf{Proof.}

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\| B_{k+1} - \Phi'(x^*) \| = \left\| B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \left\| \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \left\| \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k \} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \left\| \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_{k+1} - x^*) s_k^T}{s_k^T s_k} \right\| + \left\| \frac{\{ \Phi(x_k) - \Phi'(x^*)(x_k - x^*) s_k^T}{s_k^T s_k} \right\| + \left\| \frac{\{ \Phi(x^*) - B_k s_k \} s_k^T}{s_k^T s_k} \right\| \leq \left\| \Phi'(x^*) - B_k \right\| (1 + q_1 r_k) + c_1 \left\| x_{k+1} - x^* \right\|^2 + c_2 \left\| x_k - x^* \right\| s_k \right\| + \left\| \Phi'(x^*) - B_k \right\| (1 + q_1 r_k) + q_2 r_k, \]
\]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \left\| x_{k+1} - x^* \right\|, \left\| x_k - x^* \right\| \} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[
x_{k+1} = x_k - \{ B_k \}^{-1} \cdot \Phi(x_k),
\]
\[
B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k}
\]
linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so
\[
B_{k+1} = P_{k+1} B_k
\]
where
\[
L_k = \{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \}
\]
(22)

Denote
\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:

\[\left\| B_{k+1} - B_k \right\|^2 + \left\| B_{k+1} - H_k \right\|^2 = \left\| B_k - H_k \right\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \left\| B_{k+1} - B_k \right\|^2 < \infty \), thus we obtain

\[\left\| B_{k+1} - B_k \right\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{(m)}(x_k) \).

References