Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0. \tag{1}
\]

Definition 1

A linear operator \(\Psi_2(h) : R^n \rightarrow R^m \), \(h \in R^n \) is called 2-factoroperator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h, \tag{2}
\]

where

\(P^\perp - \) denotes the orthogonal projection on \((\text{Im} F'(x))^\perp\) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \Psi_2(h) = R^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3

Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker}F^+(x^*) \cap \text{Ker}^2P^+F^-(x^*),$$

$$\text{Ker}^2P^+F^-(x^*) = \{h \in \mathbb{R}^n : P^+F^-(x^*)[h]^2 = 0\}.$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$\text{Im}F^-(x^*) = 0.$$

A2) operator F is 2-regular in x^*:

$$\text{Im}F^+(x^*)h = R^m \quad \text{for} \ h \in K_2(x^*), \ h \neq 0.$$

A3)

$$\text{Ker}F^-(x^*) \neq \{0\}.$$

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2F^+(x^*) = \{h \in \mathbb{R}^n : F^-(x^*)[h]^2 = 0\}.$$

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^-(x_k) + P^+_kF^-(x_k)h_k \right\}^{-1} \cdot \left\{ F(x_k) + P^+_kF^-(x_k)h_k \right\},$$

where

$$P^+_k$$ - denotes orthogonal projection on $\left(\text{Im} \hat{F}^-(x_k)\right)^\perp$ in \mathbb{R}^n,

$$h_k \in \text{Ker} \hat{F}^-(x_k), \|h_k\| = 1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^-(x_k)$ obtained from $F^-(x_k)$ by replacing all elements, whose absolute values do not increase $v>0$, by zero, where $v = v_k = \|F(x_k)\|^{(1-\alpha)/2}$,

$0<\alpha<1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}^-(x_k) + P^+_kF^-(x_k)h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^-(x_k) + P^+_kF^-(x_k)h_k \right]^+$$

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x) = [f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*), \quad h \neq 0.$

$P = P_{H^+}$ denotes the orthogonal projection R^n on H^+

$f_i'(x) = P(f_i'(x))^T$ for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix},$$

(10)

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x)h, \quad h = [h_1, h_2, ..., h_t]^T,$$

(11)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k)\right]^- \cdot \Phi(x_k), \quad k=0,1,2,...$$

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k\right)^+ \cdot \Phi(x_k).$$

(13)

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,...$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k s_k^T} \quad \text{for} \ k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such, that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for} \ k = 0,1,2,... \quad (18) \]

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{ B_k \} \) satisfy the inequality:
\[\| B_{k+1} - \Phi' (x^*) \| \leq (1 + q_1 r_k) \| B_k - \Phi' (x^*) \| + q_2 r_k, \quad (20) \]

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi' (x^*) \| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi' (x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assmuptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^* \cdot \Phi (x_k), \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k s_k^T} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| = \|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*)\| \leq \]
\[\leq \|B_k - \Phi'(x^*)\| + \|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\| \leq \|B_k - \Phi'(x^*)\| + \]
\[+ \|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\} s_k^T}{s_k^T s_k}\| \leq \|B_k - \Phi'(x^*)\| + \]
\[+ \|\frac{\{\Phi(x_{k+1}) - \Phi'(x^*) (x_{k+1} - x^*)\} s_k^T}{s_k^T s_k}\| + \|\frac{\{\Phi(x_k) - \Phi'(x^*) (x_k - x^*)\} s_k^T}{s_k^T s_k}\| \]
\[+ \|\frac{(\Phi'(x^*) - B_k) s_k s_k^T}{s_k^T s_k}\| \leq \|\Phi'(x^*) - B_k\|(1 + q_1 r_k) + c_1 \|x_{k+1} - x^*\|^2 \|s_k\| + \]
\[+ c_2 \|x_k - x^*\|^2 \|s_k\| \leq \|\Phi'(x^*) - B_k\|(1 + q_1 r_k) + q_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k}^+ B_k \] (21)

where
\[L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\} \]

Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is \(Q \)-superlinearly convergent [6], which ends the proof. \(\Box \)

4. Summary

The proposed method is \(Q \)-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{(k)}(x_k) \).

References