Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F: D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ \hfill (1)

Definition 1

A linear operator $\Psi_2(h): \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factoroperator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,$$ \hfill (2)

where

P^\perp - denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*) \backslash \{0\} \), where
\[
K_2(x^*) = \text{Ker} F^-(x^*) \cap \text{Ker}^2 P^\perp F^-(x^*),
\]
(3)
\[
\text{Ker}^2 P^\perp F^-(x^*) = \{ h \in R^n : P^\perp F^-(x^*) [h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F^-(x^*) = 0.
\]
(4)
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F^-(x^*) h = R^n \enspace \text{for} \enspace h \in K_2(x^*), \enspace h \neq 0.
\]
(5)
A3)
\[
\text{Ker} F^-(x^*) \neq \{0\}.
\]
(6)
If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \text{Ker}^2 P^\perp F^-(x^*) = \{ h \in R^n : F^-(x^*) [h]^2 = 0 \}.
\]
(7)
In [1] it was proved, that if \(n=m \), then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}^-(x_k) + P^\perp_k F^-(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P^\perp_k F^-(x_k) h_k \right\},
\]
(8)
where
\[
P^\perp_k \text{ - denotes orthogonal projection on } \left(\text{Im} \hat{F}^-(x_k) \right)^\perp \text{ in } R^n,
\]
\[
h_k \in \text{Ker} \hat{F}^-(x_k), \quad \| h_k \| = 1
\]
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}^-(x_k) \) obtained from \(F^-(x_k) \) by replacing all elements, whose absolute values do not increase \(\nu>0 \), by zero, where \(\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2} \), \(0<\alpha<1 \).
In the case \(n = m+1 \) the operator
\[
\left\{ \hat{F}^-(x_k) + P^\perp_k F^-(x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^-(x_k) + P^\perp_k F^-(x_k) h_k \right]^\perp
\]
and then the method converges Q-linearly to the set of solutions [2].
Under the assumptions A1-A3, the system of equation (1) is undetermined \((n>m) \) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H=\text{lin}\{h\}$ for $h \in \text{Ker}^2F'(x^*), h \neq 0$.

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp.

$j_i^q(x) = P(f_i'(x))^T$ for $i=1, 2, \ldots, m$.

For each system of indices $i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\}$ and vectors $h_1, h_2, \ldots, h_{n-m-1} \subset R^n$ we define

$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}$, (10)

where

$\varphi(x) : R^n \rightarrow R^r$, $r=n-m-1$,

$\Phi(x) = PF'(x)\bar{P}$, $\bar{P}^T[h_1, h_2, \ldots, h_r]^T$,

$\varphi(x) = \begin{bmatrix} \bar{P}f_i'(x)h_1 \\ \bar{P}f_i'(x)h_r \end{bmatrix}$.

(11)

In [2] it was proved, that the sequence

$x_{k+1} = x_k - \left[\Phi'(x_k)\right]^+ \cdot \Phi(x_k)$, \hspace{0.5cm} $k=0, 1, 2, \ldots$

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$x_{k+1} = x_k - \left(B_k\right)^+ \cdot \Phi(x_k)$.

(13)

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$s_k = x_{k+1} - x_k$.

(14)

We propose matrices B_k which satisfy the secant equation:

$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k)$ for $k=0, 1, 2, \ldots$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for} \ k = 0, 1, 2, \ldots \] (18)
and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)
Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi'(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \] (20)
then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)
Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T \]
locally and Q-linearly converges to \(x^* \).

Proof.
To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\| B_{k+1} - \Phi' (x^*) \| = \Bigg\| B_k - \frac{\{ \Phi (x_{k+1}) - \Phi (x_k) - B_k s_k \} s_k^T}{s_k^T s_k} - \Phi' (x^*) \Bigg\| \leq \]
\[\leq \| B_k - \Phi' (x^*) \| + \left\| \frac{\{ \Phi (x_{k+1}) - \Phi (x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \right\| \leq \| B_k - \Phi' (x^*) \| + \]
\[+ \left\| \frac{\{ \Phi (x_{k+1}) - \Phi (x_k) - \Phi' (x^*) s_k + \Phi' (x^*) s_k - B_k s_k \} s_k^T}{s_k^T s_k} \right\| \leq \| B_k - \Phi' (x^*) \| + \]
\[+ \left\| \frac{(\Phi (x_{k+1}) - \Phi' (x^*) (x_{k+1} - x^*)) s_k^T}{s_k^T s_k} \right\| + \left\| \frac{(\Phi (x_k) - \Phi' (x^*) (x_k - x^*)) s_k^T}{s_k^T s_k} \right\| \]
\[+ \left\| \frac{(\Phi (x^*) - B_k) s_k^T s_k^T}{s_k^T s_k} \right\| \leq \| \Phi' (x^*) - B_k \| (1 + q_1 r_k) + c_1 \| x_{k+1} - x^* \|^2 \| s_k \| + \]
\[+ c_2 \| x_k - x^* \|^2 \| s_k \| \leq \| \Phi' (x^*) - B_k \| (1 + q_1 r_k) + q_2 r_k , \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ ||x_{k+1} - x^*||, ||x_k - x^*|| \} \). \(\square \)

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \{ B_k \}^{-1} \cdot \Phi (x_k) , \]
\[B_{k+1} = B_k - \frac{\{ \Phi (x_{k+1}) - \Phi (x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k}^+ B_k \] (21)

where
\[L_k = \{ X : X s_k = y_k , \text{ where } y_k = \Phi' (x_{k+1}) - \Phi' (x_k) \} \] (22)

Denote
\[H_k = H (x_k, x_{k+1}) = \int_0^1 \Phi' (x_k + t (x_{k+1} - x_k)) \ dt . \]

We have \(H_k \in L_k [4] \).
From (21) and [3] it follows:

\[\| B_{k+1} - B_k \|^2 = \| B_k - H_k \|^2 \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \| B_{k+1} - B_k \|^2 < \infty \), thus we obtain

\[\| B_{k+1} - B_k \| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{\prime\prime}(x_k) \).

References