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Abstract 
The critical properties of one-dimensional, probabilistic cellular automata with two absorbing 

states are presented. Size dependent values of critical exponents related to order parameter and its 
susceptibility is analyzed and some inconsistencies in classification of this model into universality 
class are discussed. 
 

Introduction 
The idea of cellular automata has been known since the pioneering ideas of 

Ulam, von Neumann and Burks which appeared in the early 50-th of XX century 
[1-2]. CA represents very interesting model for numerical investigations because 
of relative simplicity caused especially by its features like well defined 
configuration space usually denoted simply by the array – like system of indices 
and most often a very narrow set of states which may be assigned to the nodes of 
the system. However, contrary to their simplicity cellular automata can 
reproduce the properties of a great number of theoretical approximations used in 
physics for many years. The Ising model discovered about 100 years ago, solved 
by Onsager for the two-dimensional case about 50 years ago but today still 
intensively studied for many different configurations of nodes and spins is a very 
good example.  

Also outside physics cellular automata are used to model problems in such a 
wide range of areas like biology, sociology or transportation. One of the 
processes, which may be studied within the frame of CA approach, is the 
phenomenon of phase transition. The word “phase” may mean here as well the 
state which is well defined from the physical point of view (eg. ferro and 
paramagnet in the Ising model) as some global mathematical quantity calculated 
for the studied sample like the laminar flow or jam for traffic models.  
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In this work we will present some results concerning the phase transition in 
the mathematical model of one-dimensional CA with some characteristic 
properties. 

 
2. Cellular Automata 

Cellular automata are usually described as dynamical systems that are 
discrete in space and time, operating on a uniform, regular lattice and 
characterized by local interactions. In this description one should pay a special 
attention to the word “discrete”, because the most important idea proposed by 
this model is the discretization of the problem. It concerns first of all the two 
variables, which are usually, and phenomenologically treated as continuous, it 
means both space coordinates and time. The discretization of space is realized as 
defining N-dimensional set of nodes usually built as a regular network. Thus the 
space can be easily described by the n-dimensional array. In one dimension it 
may be presented simply as a chain, for three dimensions eg. it reproduces the 
structure of simple cubic crystal. This network is the first of three entities needed 
to define the cellular automaton constructing the set of “cells” which we will 
index in the N-dimensional space as i1 i2... iN. The second one is the set of 
values, which can be assigned to the cells. By analogy to spin let us denote the 
value of i1 i2... iN-th cel as si1 i2... iN. This value can be chosen only as the one from 
the unambiguously enumerated set of acceptable values. The third one describes 
the process of time evolution of the system. It is called the “rule”. The rule is a 
function si1i2... iN(t+1)=f({s j1j2... jN(t)}). It means that the value of i1 i2... iN-th cell 
in the time step (t+1) depends on the values of other cells, usually surrounding it, 
in time step (t). Most frequently only the nearest neighbours are taken into 
account. It should be emphasized that there are used two types of nearest 
neighbours configurations. In the von Neumann’s NN configuration only these 
cells for which exactly one index differs from the calculated cell index are 
considered. In Moore’s NN configuration all cells having indices differing not 
more than one are used. Certainly for one-dimensional CA these two 
configurations are undistinguished, but for higher dimensions there are four or 
eight NN respectively (two dimensions) or 6 and 26 in 3D. It is clear that except 
for the simplest one-dimensional models the results will be strongly dependent 
on the type of neighbourhood considered. From the numerical point of view it 
leads also to significant differences in the time of performing the system 
evolution.  

The typical, however not precise way of representing the CA is the (k,r) 
notation in which k represents the number of possible states of any cell and r is 
the number of neighbours taken into account when applying the rule. 

There are different ways to classify cellular automata. Here we want to 
mention only one, very general classification dependent on the type of rule. If 
the state of cell is unambiguously determined by the configuration of 
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neighbouring cells the automaton is called deterministic. If it is also dependent 
on a value of some random variable we call it probabilistic. A very special type 
of automaton is the totalistic one, called also the voting automaton. The final 
state of cell doesn’t on the configuration of NN, but depends on the sum of their 
spin states. 

As the example of CA the one-dimensional let see at the one of the most 
intensively studied one-dimensional, (2,1), deterministic cellular automaton 
presented by Wolfram [3]. The two possible spin states are {0,1}. For each of 8 
possible combinations of (i-1), i and i+1 spin states there must be defined a state 
which will be the result of application of the rule to the network. As an example 
consider the rule “90”: 

0
000

1
001

0
010

1
011

1
100

0
101

1
110

0
111)01011010(90 2 →= . 

Applying this rule to the network, initially characterized only by the one state 1 
leads to one of typical patterns: 

Fig. 1. Pattern produced by Wolfram’s “90” automaton 
  

3. Critical phenomena and universality classes 
The phase transitions are the physical processes commonly observed. Its 

theoretical description is related to the specific behaviour of values 
characterizing the some physical properties near the transition point. If we 
observed eg. the dependence of magnetization of ferromagnetic sample on 
temperature we would observe that for low temperatures it is constant and 
suddenly very rapidly vanishes to zero at the Curie point. The similar behaviour 
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is also characteristic for other quantities characterized the ferro- to paramagnetic 
transition (susceptibility) as other phase transition processes like gas-liquid. 
Generally the power law may describe this functional dependence. The set of 
typically used values of exponents may be presented as follows (see [4]):  

 
Table 1. The definitions of some critical exponents presented  

for the ferromagnet to paramagnet phase transition 
Exponent definition 

α cB∝((|T- Tkr |/Tkr)-α -1) 
β m∝(Tkr- T)β 
γ χT∝|T- Tkr |-γ 
δ m∝B1/ δ 
η G(2)(r)∝1/rd-2+η 
ν ξ∝|T- Tkr |-ν 

 
However, the values in Tab.1 are given for magnetic case they can be easily 

adopted to other phenomena. In general the exponent β concerns the dependence 
of order parameter on some temperature-like parameter. The susceptibility χ, for 
the magnetic case defined as 

 
0=









∂
∂

=
BB

m
χ , (1) 

may be understood as the derivative of order parameter over the external, order-
ing field. All the phase transitions have their own, specific set of values of 
critical exponents. The values of critical exponents for some well known theo-
retical models are presented in Tab.2. 
 

Tab.2 Values of critical exponents for some well recognized theoretical models [4-6] 

exponent Ising 2D Ising 3D DP (1+1) DP (2+1) 
α 0 (log) 0.109   
β 1 / 8 0.3258 0.276 0.584 
γ 7 / 4 1.2396 2.28 1.6 
δ 15  0.159 0.451 
η 1 / 4    
ν 1 0.6304 1.09/1.73 0.73/1.29 

 
Here are presented the values for the simplest Ising models (two and three 

dimensional, for one dimensional, transition does not occur), and so-called 
directed percolation. The notation (n+1) means that we consider the n-
dimensional model with time as an additional variable. The set of values of 
critical exponents constitutes the universality class in such a way that we can 
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attach the model studied into one of the existing classes comparing the values 
obtained for critical exponents with those characterizing a given class.  

4. Model 
In this work we took into account the model proposed by Bagnoli et al. [7-9]. 

It is defined as the totalistic, probabilistic (2,1) one-dimensional cellular 
automaton. In order to describe the rule, the function is defined: 
 ( ) ( ) ( ) ( )tistististi ,1,,1, +++−=θ . (2) 
Having the set of possible states equal to {0,1}, the set of values for θ  function 
is {0,1,2,3} and we can construct the rule in the following way:  

 ( ) 1

2

0 if ( , ) 0 
if ( , ) 1

, 1
if ( , ) 2

1 if ( , ) 3

i t
X i t

s i t
X i t

i t

θ
θ
θ
θ

=
 =+ =  =
 =

 (3) 

The variables X1 and X2 are the random Bernoulli variables equal to 1 (“active”) 
with probability pj and equal to 0 (“empty”) with probability 1- pj. So the prob-
abilities of transitions are equal to: 

 

1)111|1(
)101|1()110|1()011|1(
)100|1()010|1()001|1(

1)000|0(

2

1

=
===
===

=

P
pPPP
pPPP

P

 

The two absorbing states are characterized by this model, one of them corre-
sponds to the situation when all neighbouring states are empty and the second 
one takes place when all are active. 
 

5. Results and discussion 
Our special attention was put onto the process of phase transition. In the 

model considered both stable points (absorbing states) may be treated as 
different phases if the density is considered as an order parameter. The phase 
diagrams are presented in Fig.2. 

The plot shows that between two stable phases we can have both 
discontinuous and continuous phase transition. Going along the line p1+p2=1 
from the upper left corner to the bicritical point characterized by the p1 value 
about 0.55 a very sharp 0->1 transition may be observed but further there are 
two different phase transitions form 0 and to 1 state. In our calculations we use 
the parameter ε, which allows to determine the probabilities p1 and p2 in the 
way: 

 1

2

0.5*
0.5* 0.5.

p
p

ε
ε

=
= +

 (4) 
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Fig. 2. Phase diagram for the Bagnoli automaton. The lower plot is the contour plot  

with the levels distributed uniformly over (0.1) range 
 

Geometrically it is simply the diagonal of the lower right square in the phase 
diagram going from point (0.5,0.0) to (1.0,0.5). The two transitions mentioned 
above may be clearly seen on the plot of density dependence on ε parameter. 
The data presented in Fig.3 were obtained for the sample built of 100000 spins. 
All further presented results were calculated for the two types of sample: the 
smaller one containing one thousand cells (L=1k) and the bigger one as it was 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 15:03:23

UM
CS



written earlier having hundred thousand of spins (L=100k). We can assume that 
such a great sample may reproduce the behaviour of infinite automaton.  

 

 
Fig.3. Density plot along the line described in the text 

 
A very special feature of the model is the symmetry of both transitions from 

the absorbing states. Therefore we can consider more exactly only one of them 
and we choose the change of density from the zero state near p1=0.6 (ε=0.2). 
The crucial point is to find as well as it is possible the point of transition. In 
order to do this we use the plot of susceptibility 

Because the point of transition should correspond to the maximum value of 
susceptibility it may be observed that this point is different for both sample 
sizes. The values are presented in Tab.3. 

 
Table 3. Coordinates of phase transition point. 

 L=1k L=100k 
p1 0.635 0.628 

 
It should be pointed out that the points listed above are not the points where 

the value of density begins to deviate from zero. It is the point, as it is described 
by the theory of critical phenomena, where the left and right-sided derivatives of 
order parameter are not equal. Certainly the choice of critical point has strong 
influence on the value of critical exponents. The log-log plot which makes it 
possible to determine the exponent is shown in fig.5 

The values listed explicity on the plots differ from each other although this 
difference is almost not significant. The similar procedure may be applied to the 
plot of susceptibility. The results, critical exponents b and g as defined in tab.1. 
are presented in tab.4.  
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Table 4. Critical properties of Bagnoli automaton 

 L=1k L=100k 
β 0.145 0.125 
γ 0.46 0.6 

 

 
Fig. 4. The plot of susceptibility in the region of phase transition 

 
These results show some interesting features especially when compared with 

some conclusions presented by the authors of model [9]. In their work they 
determined some other characteristic critical exponents like the average number 
of active sites N(t), the survival probability P(t) and the average square distance 
from the origin R2(t). Their analysis showed that cellular automaton presented 
belongs to the universality class of (1+1) directed percolation. Our results lead, 
however, to different opinions. Comparing the values from tables 1 and 4 and 
taking into account the value of β parameter for the bigger sample one can say 
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that it reproduces with good accuracy the properties of two-dimensional Ising 
model. The problem is, however, with the γ exponent which is about two times 
smaller than the predicted one. 
 

 
Fig. 5. Log-log plot of order parameter (density) in the region of phase transition 

 
The results presented in our paper show some further needs and possibilities. 

First of all the other critical exponents should be calculated. The ν value 
describing the correlations may have a special role. Applying some equations 
connecting the values of different coefficients may give also the information 
about the correctness or errors in the fits made. 

In the situation when the model is suitable to represent the Ising universality 
class we can think about reusing it in the Ising calculations by simple change of 
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lower absorbing state 0->(-1). The density will become then the sense of 
magnetization with the linear formula m=2(ρ-0.5).  
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