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Abstract 

The ground state properties of incommensurate films of domain wall structure formed on the 
(100) plane of face centered cubic crystals are studied by Monte Carlo simulation. The wall 
energies, wall structure and the wall-wall interaction are determined for domain walls occurring in 
films which form the c(2×2) registered structure. The systems characterized by different strength 
and corrugation of the surface potential and of different misfit between adsorbate and adsorbent 
are discussed. It is demonstrated that the structure with crossing heavy walls may have higher 
stability than a simple striped phase with parallel heavy walls.  
 

1. Introduction 
The structure of incommensurate phases (IC) and the incommensurate – 

commensurate (IC-C) transition in adsorbed layers have been a subject of 
intensive study over the last decades [1-4]. The most widely used theoretical 
approaches towards the incommensurate phases and the IC-C transition are 
based on the concept of domain walls. The domain wall theory of IC-C 
transitions [3-4] assumes that incommensurate phases are described as a 
collection of commensurate domains separated by different types of walls, which 
carry all the excess of density. Geometry of domain wall networks is closely 
related to the symmetry of the commensurate domains, which in turn results 
from the symmetry of the surface lattice. For the domain wall formalism to 
apply it is necessary that the commensurate state possesses positional 
degeneracy.  

Possible ground state structures of incommensurate monolayer films adsorbed 
on the (100) plane of fcc crystals have been recently studied by. Monte Carlo 
simulation method [5-7]. It has been demonstrated that incommensurate phases 
with a well developed domain-wall structure may appear in adsorbed films, even 
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when the corrugation of the surface potential is strong. That observation has 
been rather surprising, since it is commonly accepted [1,3] that in continuous 
space models the IC phases of domain wall structure are most likely to occur for 
weakly corrugated surfaces.  

In this work we discuss the problem of the domain – wall energies and the 
interaction between walls [1, 3, 8-9]. In particular, we consider the effects of the 
surface potential properties (its strength and corrugation) on the structure and 
energy of domain walls and the changes of the structure and properties of 
domain walls resulting from the changes in the misfit between the adsorbate and 
the surface lattice. 
 

2. The model and methods 
The model of adsorption system has been described in our previous papers  

[5-7]. Thus, we consider monolayer adsorption on the (100) plane of a perfect 
face centered cubic crystal and we use the length of the surface unit cell vector a 
as the unit of length. The adsorbate - substrate interaction potential is periodic 
along the x and y directions, and hence can be represented by the Fourier series 
[10] 

 ( ) ( ) ( ) ( )0, gs b q q
q

V z V z V V fzτ ε τ= +
 
 
 

∑ , (1) 

where z denotes the distance from the surface and τ is the two-dimensional 
vector τ = (x,y) which describes the position of an adsorbed atom over the 
surface lattice, the Fourier components 0 ( )V z  and ( )qV z  as well as the functions 

( )qf τ  can be found in Ref. [10], and bV is the corrugation parameter [4] which 
allows to vary the periodic part of the surface potential. 

Then the adsorbate - adsorbate interaction is represented by the truncated (12-
6) Lennard-Jones potential 
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with ε  used as the unit of energy and σ ∗  = / aσ  is a measure of the size of 
adsorbate atoms. Here we assume that σ ∗  is greater than unity and hence the 
commensurate phase is the c(2×2) structure of two-fold positional degeneracy. 
The model is studied using a standard Monte Carlo method in the canonical 
ensemble [7, 11], for the systems with adsorbate atoms of the size ( σ ∗ ) ranging 
between 1.1 and 1.3 and for the gas - solid potential of different strength 
(measured by the value of the parameter * /gs gsε ε ε=  and of different corrugation 
(determined by the magnitude of the parameter bV ). In both x and y directions we 
have applied periodic boundary conditions, while in the z direction the 
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simulation cell was closed by the reflecting wall placed at z* = 10. Since we have 
concentrated on the ground state properties of the systems studied, the adsorbed 
particles have been always confined to the region very close to the surface 
(monolayer region). The cutoff distance r*

max has been fixed and equal to 2.5 σ ∗ . 
In the case of incommensurate (striped) phases four types of domain walls 

can be defined (cf. Fig. 1 a-d). Another possible IC phase has the structure of 
rectangular commensurate domains separated by domain walls (cf. Fig. 1e), 
which in the case of heavy walls is called the CRHW structure. Therefore the 
number of particles in the system (N) has been determined by the assumed initial 
structure of the film, i.e., by the type and number of domain walls. In the case of 
striped phases, the starting configuration has been always chosen as the ideal 
lattice-like structure of the type shown in fig. 1 with specified type and number 
of walls, the distance between adjacent walls, lx and the wall length Ly. 
Similarly, in the calculations performed for IC phases with rectangular domains 
(CRHW structure) an ideal structure of the assumed lx, ly and number of the 
domains has been used as a starting configuration. Then the system was allowed 
to relax to the stable state, by monitoring the behavior of its energy. 

Each Monte Carlo step (MCS) consisted in N attempts to displace a randomly 
selected particle by, also randomly chosen, displacement vector within a cube of 
the side equal to dmax The magnitude of dmax has been dynamically adjusted 
during the run to keep the acceptance ratio at the level of about 40%. 

The number of Monte Carlo steps required to attain steady state ranged 
between 106 and 107 The measured quantities have been obtained by averaging 
106 − 108 configurations spaced by 10 - 30 MCS's. 

The basic thermodynamic quantities recorded during the simulation run were 
the adsorbate - adsorbate and adsorbate - substrate contributions to the system 
energy, the total energy, te∗  and the density profiles n(z*). In the case of striped 
IC phases we have also recorded the average displacement fields ∆x*, ∆y* and 
∆z* as functions of the distance from the wall core and the energy profiles e(k) 
along the direction normal to the wall, so that k runs from 1 to Lx . The 
displacement fields as well as the energy profiles have been averaged over the 
one-dimensional stripes along the y axis. 

In the case of striped phases, the wall energy, 2, ( , )ex
w x ye l L (in what follows we 

neglect the dependence of all wall properties on temperature), can be calculated 
using the energy profile as 

 ( ) ( )
2

2,
1

,
xl

ex
w x y

i
ce l L e i e

=

=  −  ∑ , (3) 

where ec is the energy (per particle) of the perfect c(2×2) commensurate 
structure. 
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Fig. 1. Schematic representation of different domain walls that can appear in the system  

which orders into the c(2×2) registered structure 
 

Alternatively, the wall energy can be computed from the known average 
energy te∗ using the equation 

 2, 2ex
w x t ce l e e∗= −   . (4) 
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Then, a single wall energy as well as the wall − wall interaction energy can be 
estimated. 

In the case of the CRHW structures, the wall energy (per the unit of the wall 
length), eCRHW,w can be evaluated from the following equation 

 ,
x y

CRHW w t c
x y

l l
e e e

l l
∗= −

+
   . (5) 

Of course, eCRHW,w contains contributions due to a single wall energy, the wall -
 wall interaction energy as well as the energy due to the wall crossings, and a 
direct calculation of all those contributions is not possible. If, however, the wall 
energy and the wall - wall interaction energies are assumed to be the same as in 
the case of a striped phase, then it is possible to extract the information about the 
energy resulting from a single wall crossing, cre∗ , as 

 ( ) ( ) ( )2, 2,

,, 0.5
x w y w

cr x y CRHW w
x y

x yl e l e
e l l e

l l

l l
∗

+
= ∗ −

+
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 
  

. (6) 

Following the results of our previous works [5,7], where it has been shown 
that only heavy walls are stable, we restrict the calculations to the striped phases 
with heavy walls and the CRHW structure. In the case of striped phases, the 
distance between walls, lx, has been varied between 3 and 50, while in the case 
of CRHW phase both lx and ly have been changed between 4 and 16. 
 

3. Results and discussion 
At first the energies of single walls for the systems characterized by different 

surface field strength, gsε ∗ , the corrugation parameter Vb and the size of adsorbed 
atoms σ ∗  have been determined (see Tables 1).  

In the case of striped phases with heavy domain walls the stability region of 
the commensurate phase depends strongly on both the corrugation of surface 
potential and the diameter of adsorbed atoms. When the misfit between the size 
of adsorbate atoms and the substrate lattice increases, then a higher potential 
barrier between adsorption sites DV ∗  is needed to stabilize the commensurate 
phase.  

Whenever the wall energy becomes negative and the stable state is the IC 
phase the walls form spontaneously. 
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Table 1. Energies of HW for systems characterized by different size of adsorbate atoms and 
different corrugation of the surface potential ( gsε ∗ = 3) 

 σ ∗ =1.10 σ ∗ =1.15 σ ∗ =1.20 σ ∗ =1.25 σ ∗ =1.30 

Vb DV ∗  ex
we  DV ∗  ex

we  DV ∗  ex
we  DV ∗  ex

we  DV ∗  ex
we  

0.3 0.539 - 0.564 -1.537 0.585 -0.962 0.601 0.000 0.613 1.600 
0.4 0.776 -1.800 0.808 -1.337 0.833 -0.670 0.852 0.330 0.865 2.490 
0.5 1.055 -1.590 1.092 -1.111 1.121 -0.355 1.138 1.050 1.150 3.200 
0.6 1.390 -1.416 1.428 -0.858 1.454 -0.004 1.470 1.210 1.476 3.826 
0.7 1.802 -1.200 1.835 -0.553 1.853 0.405 1.858 1.700 1.854 4.490 
0.8 2.326 -0.918 2.341 -0.177 2.340 0.900 2.327 2.365 2.301 5.240 
0.9 3.029 -0.526 3.001 0.328 2.961 1.535 2.907 3.130 2.844 6.140 
1.0 4.070 -0.090 3.932 1.077 3.797 2.400 3.663 4.129 3.530 7.260 

 
Calculations of the displacement fields (∆x*, ∆y* and ∆z*) have demonstrated 

that the walls are rather narrow, even when the surface potential corrugation 
becomes small and corresponds to the region of spontaneous formation of walls. 
Figure 2 presents the displacement fields ∆x* (part a) and ∆z* (part b) plotted 
against the distance from the wall core, for the systems with adsorbed atoms of 
the size σ ∗  = 1.2 and characterized by gsε ∗  = 3.0 and different corrugation 
parameter Vb. The displacement field ∆y* is not shown as it is practically equal 
to zero everywhere. It is quite evident that the decrease of the surface potential 
corrugation leads to a gradual widening of walls. From the results shown in Fig. 
2a we find that in the case of strongly corrugated (Vb= 1) surface potential the 
wall involves only three rows of adatoms at each side of the wall, while in the 
case of weakly corrugated surface potential (Vb = 0.3) the wall is two times 
wider. In the case of ∆z*, only the first two rows of atoms, at both sides of the 
wall, show visible deviations from zero (Fig. 2b). 
It follows from the fact that small shifts along the x axis induce still smaller 
changes in the location of the potential minimum along the z-axis. Quite similar 
results have been found for systems characterized by different σ ∗ . Strong 
localization of heavy walls leads to a very fast decay of the displacement field 
∆x* with the distance from the core of the wall. In fact, in systems of sufficiently 
small adsorbate atoms (large negative misfit) and characterized by strongly 
corrugated surface potential, only the first two, or three, rows of atoms adjacent 
to the wall core show nonzero displacement field ∆x*. In the systems of lower 
corrugation of the surface potential, we have found that the decay of ∆x* with x 
is exponential 
 exp / wx x ξ∗ ∗∆ ∝ −   , (7) 
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where the parameter wξ  can be treated as a measure of the wall thickness. For 
larger negative misfit ( 1.2σ ∗ ≤ ) the walls become very well localized and only 
the first two rows of atoms adjacent to the wall exhibit nonzero displacement 
field ∆x*. Exponential decay of ∆x* with the distance from the wall core agrees 
with the predictions stemming from the theory of Bak et al. [12] applied to a 
simple striped IC phase, when the wall-wall separation is sufficiently large and 
the displacement field ∆y* = 0. Also, the one-dimensional theories of Frankel 
and Kontorova [13] and of Frank and Van der Merwe [14] shows that over a 
certain range of the distance from the wall core, the displacement field ∆x* can 
be approximated by the exponential curve. 
 

  
Fig. 2. The displacement fields ∆x* (part a) and ∆z* (part b) versus the distance from the wall core 
for the striped phase with heavy walls, obtained for a series of systems characterized by σ ∗  = 1.2, 

gs
ε ∗  = 3.0, lx = 30 and different corrugation 

 
Since the walls are strongly localized, one expects that the wall − wall 

interaction energy 
 ( ) ( ) ( ), ,

ex ex
ww x w o x w og l e l e= − ∞    (8) 

should vanish for sufficiently large distances between walls ( xl ), and our 
calculations confirm that prediction very well. In general, the wall - wall 
interaction is repulsive and exponentially decays with the wall - wall separation 
 ( ) [ ]/ww x x wwg l exp l ξ∝ − , (9) 
where the constant wwξ  is interpreted as another measure of the wall width. 
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Fig. 3. Plots of the logarithm of the wall - wall energy versus the wall - wall separation for the 

striped phases with heavy walls, obtained for the systems with *σ = 1.27, Vb = 1.0 and different 

gs
ε ∗ (shown in the figure) 

 
Figure 3 presents the plots of log ( )ww xg l  versus xl  for a series of systems with 

a fixed values of σ ∗  = 1.27 and Vb = 1.0 and with different strength of the 
surface potential. Obviously, the above eq. (9) is satisfied and the wall thickness 
decreases with gsε ∗  as expected. Our results are in agreement with other 
theoretical predictions [2, 8-9]. Of course, the above relation holds only when 
the wall – wall interaction is repulsive and sufficiently long ranged. In some 
systems with strongly corrugated surface potential the wall - wall interaction 
drops to zero at very small wall – wall separations of four or five lattice 
spacings. In such cases, eq. (9) can not be used, quite the same as in the case of 
eq. (7) which describes the behavior of ∆x*.  

The results of our study have clearly demonstrated that in the case of strongly 
corrugated surface potential the adsorbed layer forms the incommensurate 
structures with rectangular domains separated by heavy walls (Fig. 4). Therefore 
it is of interest to estimate the contributions to the system energy resulting from 
the wall crossings, cre∗ . The calculations have been performed for square 
domains of different size ( xl , xl ) for a series of systems with different size of the 
adsorbate atoms and with the fixed values of gsε ∗  = 3.0 and Vb = 1.0. The results 
are presented in figure 5, which shows the plots of cre∗  against 1

xl
− . For the 

systems with σ ∗  ≥ 1.20 the energy due to the wall crossing is negative and 
hence the formation of domains with crossing walls is energetically favored with 
respect to the striped phase with parallel orientation of walls. Of course, when 
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the domain size increases the energy ( , )cr x xe l l∗  decays to zero proportionally to 
1

xl
− . Therefore, we can write 

 ( ) ,, 0.5 /cr x x cr o xc l l c l∗ ∗= ⋅  (10) 

and consider ,cr oc∗  as the energy due to a single wall crossing. The multiplier 0.5 
results from the fact that cre∗  represents the energy due to a pair of walls 
crossings. The inset to fig. 5 shows the plot of ,cr oc∗  against σ ∗ .  
 

 
Fig. 4. A typical low temperature configuration obtained for the system characterized by 

gs
ε ∗  = 2.0 

and the density ρ = 0.6. The configuration shown in the figure has been recorded during the 
canonical ensemble simulation at T* = 0.05 for the system of the size 30×30×10. The particles 

which belong to the commensurate domains are represented as white circles and those which form 
walls are shown as black circles. The distinction between the particles belonging to the 

commensurate domains and to the walls has been possible owing to the bimodal character of the 
density profile ( )n z ∗

⊥
. The low-lying particles belong to the commensurate domains while the 

particles in the walls exhibit a larger distance from the surface 
 

One readily notes that for small domains the relation (10) is not satisfied. In 
such systems the wall − wall interaction between parallel and perpendicular 
walls is nonnegligible and contributes to the total energy. The procedure used to 
extract the energy of the wall crossing neglected those terms and hence it is not 
surprising that large deviations from eqn. (10) occur. 

The demonstration that the energy due to wall crossings for the adsorbed 
layers formed by atoms of σ ∗  = 1.2 and larger is negative is surely the most 
interesting result of our study. It cofirms that the CRHW structure has higher 
stability than the striped structure with parallel heavy walls in agreement with 
our earlier Monte Carlo studies [5-6], where it was shown that the CRHW 
structures of different domain sizes form spontaneously during a slow cooling of 
an initially disordered adsorbed film. It is noteworthy that the negative 
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contribution to the energy, resulting from the wall intersection has been also 
found by Schöbinger and Abraham [16], who performed molecular dynamics 
study of incommensurate phases of krypton adsorbed on graphite. At this point 
we should note that the stability of the CRHW IC phase can not be attributed to 
entropic effects, as it occurs in the case of honeycomb wall networks [16-17]. 
Rectangular wall networks can not 'breathe' and hence the corresponding 
entropic contribution (breathing entropy) [3] is not present. In the case of a 
rectangular wall network an attempted breathing of a single domain inevitably 
leads to the development of dislocations followed by coalescence of different 
domains. In order to preserve the domain structure, in particular the total length 
of walls and the number of wall crossings, the system would have to exhibit a 
sort of “collective breathing”, which involves all domains along a given wall. 

 

 
Fig. 5. The energy contribution due to the crossing of heavy walls as a function of 1

x
l −  for a series 

of systems characterized by 
gs

ε  = 1.0, Vb = 1.0 and different size of adsorbate atoms (shown in the 

figure). The inset shows the plot of ,cr oe∗  versus σ ∗  

 
Such a process may occur at elevated temperatures, as a consequence of wall 

meandering, but only if the wall-wall distance is sufficiently large. Note that for 
the systems with σ ∗ ≥ 1.2 the energy contribution due to wall crossing is 
negative and it may be energetically expensive to change its position. Whenever 
the energy of wall crossing is negative, the network is stabilized and hence 
prevents meandering. In particular, the system can be expected to preserve the 
number of wall crossings, which is determined by the density of the adsorbed 
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monolayer. Since, in most cases, the wall-wall interaction is very small and 
rapidly decays with the wall-wall distance, the CRHW structure of a given 
density is expected to show large degeneracy due to the presence of 
commensurate domains of different size, while the total length and the number 
of wall crossings in the system remain fixed. On the other hand, in the systems 
which show attractive wall-wall interaction a regular pattern of domains is likely 
to produce the state of the lowest energy at the ground state, which may be 
rather difficult to detect in simulations due to metastability and finite size 
effects.  
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