
Annales UMCS Informatica AI 2 (2004) 81-89
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

The implementation and analysis of parallel algorithm for finding

perfect matching in the bipartite graphs

Maciej Chróśniaka, Jakub Dworniczaka, Karol Ziarkoa,
Marcin Paprzyckiab∗

aDepartment of Mathematics and Computer Science, Adam Mickiewicz University,

Umultowska, 61-614 Poznań, Poland
bComputer Science Department, Oklahoma State Uniwersity, Tulsa, OK 74106, USA

Abstract

There exists a large number of theoretical results concerning parallel algorithms for the graph
problems. One of them is an algorithm for the perfect matching problem, which is also the central
part of the algorithm for finding a maximum flow in a net. We have attempted at implementing it
on a parallel computer with 12 processors (instead of the theoretical O(n3.5m) processors). When
pursuing this goal we have run into a number of practical problems. The aim of this paper is to
discuss them as well as the experimental results of our implementation.

1. Introduction
Development of parallel algorithms for the graph problems is a peculiar area.

On the one hand, there exists a large body of research (and literature) that
presents theoretical algorithms developed for a number of equally theoretical
models of parallel computers (see [1] and references listed there). On the other
hand, there exist almost no results where parallel graph algorithms have been
implemented on the existing parallel machines.

One of the sub-areas where such a situation is very clear is when the
algorithms for finding perfect matching in graphs are considered. This problem
has very well defined real-life applications. For instance, finding perfect
matching in the bipartite graphs is a core of an algorithm for finding a maximum
flow on the net [1,2]. Existing approaches to finding perfect matching in a graph
are mainly based on the RNC algorithms. Namely, these are probabilistic
algorithms computed in polilogarithmic time using a polynomial number of

∗ Corresponding author: e-mail address: marcin@cs.okstate.edu. The research at Adam
Mickiewicz University was sponsored by a scholarship from the Fulbright Commission. The
computer time grant from the Poznań Supercomputing and Networking Center is kindly
acknowledged.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

Maciej Chróśniak, Jakub Dworniczak … 82

processors [1-4]. Karp, Upfal and Widgerson were the first to propose an RNC
algorithm for solving this problem [3]. However, in our work we have decided to
follow a more elegant (and claimed to be simpler and more efficient) algorithm
of Mulmuley, Vazirani, and Vazirani [4], which can be summarized as follows
(for all the remaining details as well as theoretical background see [1,4-7]):

Let G be a graph with a set of vertices V and edges E: G = (V, E),
|V| = n, |E| = m

1. For each edge eij = (i,j)∈E select randomly a number wij ∈ [0,...,2*m].
2. Form the Tutte matrix of G (or Edmonds matrix for bipartite graphs),

assign weight 2wij for each eij ∈ E (a result of a new matrix A is created).
3. Compute in parallel the determinant det(A) and the adjoint D of A.

– the adjoint matrix D has the following form:

() ()

,

-1 det .

ij nxn
i j

ij ij

D d

d A+

⎡ ⎤= ⎣ ⎦

= ⋅

– Aij is a matrix obtained from A by deleting the i-th row and j-th column.
4. Let 2w be the highest power of 2 that divides det(A).
5. For each edge eij ∈ E compute (det(Aij)2wij)/ 2w.
6. If this value is odd then include eij in the matching.
In [4] it is shown that this algorithm is computed in O(log2n) steps using

O(n3.5m) processors. This result is based on the parallel integer matrix inversion
algorithm proposed by V. Pan in [8]. This result brings some interesting
consequences when one considers implementing this algorithm. Let us consider
a graph with |V| = n = 80 vertices and |E| = m = 156 edges. In this case the
proposed algorithm can be completed in (log280)2 ≈ 40 steps when implemented
on 714,396,886 processors. Obviously, these numbers are based on the bigO
complexity functions and thus do not provide us with exact values. However,
they are presented to show the practical absurdity of a perfectly reasonable
theoretical result. Not only the most powerful existing computer has fewer than
10000 processors and the largest number of processors existing ever in a single
machine was about 65000, but also one should ask how reasonable are
thecomplexity functions involving 714 million of processors as far as, for
instance, their connectivity and communication are concerned. Finally, observe
how small a graph how large a computer are required and try to extrapolate the
required computational power for realistic sizes of the networks for which flow
problems are considered in practice.

2. Proposed implementation
While the theoretical estimates presented in [4] are highly unrealistic, we

have decided to proceed with an attempt at an implementation of the proposed
algorithm on an existing parallel machine. Our goal here was to establish its

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

 The implementation and analysis of parallel algorithm … 83

realistic performance characteristics. To achieve this goal we have adjusted the
original algorithm. First, in step (2) it is necessary to compute det(A) and n2
determinants of det(Aij), i, j = 1...n. To achieve this goal we have used the matrix
inversion; namely: D =det(A)*(A-1)T and the Gaussian elimination (complexity
O(n3) [9]). Proceeding along this path we can compute A-1 and det(A) in a simple
way (after reducing the matrix to an upper triangular form). However, due to the
standard numerical “deficiencies” of operations on real numbers, the Gaussian
elimination calculates only approximate values of the solution. At the same time,
for the proposed algorithm to work, we need the exact values to know which
edges belong to the matching (step 6 of the algorithm). That is also the reason
why we could not use well-known libraries for linear algebra calculations (i.e.
BLAS, LAPACK) that are efficient in matrix inversion – they use floating point
numbers. To solve this problem we have decided to implement the Gaussian
elimination based on the rational numbers and for this purpose to utilize the
GMP (GNU Multiple Precision, [10]) library.

2.1 Details of parallelization
Our approach to parallelization follows the standard approach to

parallelization of matrix computations described in [9]. However, since our
approach involves rational numbers we cannot apply well-known blocking
techniques that became a staple of high-performance matrix algorithms [9].
Instead we proceed with a simple master-slave model, where the master is active
and takes part in the work of the whole group. In the main part of the algorithm,
where the differences between the execution time of individual jobs can be the
largest, we have used dynamic load balancing. The master tries to ensure
availability of tasks for the slaves. It “puts aside” next job before beginning his
part of computation. In this way, employees have next job in reserve and when
they finish current one, they can take next even though the manager is busy.

More precisely, in the algorithm we can distinguish two parts of computing
the inverse matrix (finding solution to the system of equations A*X = I where A,
X, I ∈ Rn×n, and I is the unit matrix). In the first part we apply Gaussian
elimination to reduce matrix representing a given graph to the upper triangular
form. Here, we perform independent simultaneous operations on rows
distributed by the manager. In the second part, we back solve in parallel n the
systems representing the n columns of the identity matrix obtaining the inverse
of A.

2. Experimental setup
We have implemented the proposed algorithm in C. In order to make the

algorithm work in parallel we used the POSIX threads. This solution was
“imposed” by utilization of rational numbers. With the POSIX threads we avoid

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

Maciej Chróśniak, Jakub Dworniczak … 84

moving around very large numbers (results of Gaussian elimination performed
on rational numbers, see below). On the other hand, this solution restricted our
implementation to parallel computers with shared memory (or virtual-shared
memory). Furthermore, we had to organize access to the shared data which is
somewhat more complicated by implementation of dynamic distribution of jobs.
This made us ensure appropriate synchronization of calculation units (master
and slaves) that was realized by using critical sections and special structures
such as flags of access and progress.

We have experimented with our code on a 12-processor SGI Power Challenge
XL. This computer has shared memory and MIPS R8000 processors and runs
IRIX version 6.2 operating system. Our code was compiled using MIPSPro C
compiler with the optimization level – O2. Because of usage of threads we had
to utilize clock based on daytime (we could not locate a special clock for
threads). To reduce the effect of machine workload we have run multiple
experiments (minimum of three) and in each case we report the best obtained
time.

5,7 number of
vertices (edges)

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12
number of processors

S(p)
80 (156)

120 (241)

160 (303)

S(p)=p

Fig. 1. Speedup of the solution process for p = 1, 2, …, 12 processors

Table 1. Times (in minutes) required for finding the perfect matching for the increasing

number of processors

|V|(|E|)\p 1 2 3 4 5 6 7 8 9 10 11 12
80 (156) 0.88 0.57 0.41 0.37 0.31 0.30 0.27 0.26 0.25 0.26 0.25 0.25
120 (241) 10.12 6.32 4.18 3.25 2.76 2.49 2.40 2.22 2.13 1.96 2.01 1.91
160 (303) 28.19 15.79 10.85 9.28 7.59 6.70 6.25 6.09 5.55 5.08 4.97 5.02

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

 The implementation and analysis of parallel algorithm … 85

3. Experimental results
The first series of experiments was devoted to finding perfect matching in the

bipartite graphs. Due to the relatively long time of computations (the SGI Power
Challenge is an almost 10 year old technology) we have experimented with
relatively sparse graphs (the first of them is exactly the graph mentioned in the
introduction to illustrate the purely theoretical value of some well-known
algorithms). In Table 1 and Figure 1 we present the time and speedup obtained
for three graphs and for p = 1, 2, …, 12 processors. Speedup is calculated using
a standard formula S(p) = T1/Tp, where T1 – time on one processor and Tp – time
on p processors; which is reasonable since we utilize all processors, including
the master.

The obtained results are satisfactory. On 11 processors we have obtained a
speedup of 5.7 and thus efficiency above 50%. We also observe that as the size
of the graph increases, the overall parallel performance of the code improves.
Obviously, as the time of computation increases, synchronization has less impact
on the procedure in comparison with the time of independent calculation
performed independently by processors.

Note that the proposed algorithm is very sensitive to the density of the graph.
We have experimented with the increasing number of edges for a fixed number
of (80) vertices and found that the total time increases from less than a minute
for 83 edges to almost 30 minutes for 202 edges. This is directly related to the
fact that for the increasing number of vertices, (the magnitude of weights
assigned to edges is from the range [20,..., 22*m], where m = |E| (see below).

Separately, we have experimented with general, non-bipartite graphs (as the
proposed approach can find the perfect matching in any graph). Figure 2 and
Table 2 represent the time of computation and speedup for 80 vertices and 155
and 156 edge general and bipartite graphs and for p = 1, 2, …, 12 processors.

Time (80 vertices)
(number of

edges)

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10 11 12
number of processors

m
in

ut
es

general (155)

bipartite (156)

Fig. 2. Computation time (in minutes) for p = 1, 2, …, 12 processors

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

Maciej Chróśniak, Jakub Dworniczak … 86

Table 2. Speedup of finding perfect matching for general and bipartite graphs

 1 2 3 4 5 6 7 8 9 10 11 12
general (155) 1.00 1.50 2.12 2.51 2.81 3.17 3.48 3.63 3.64 3.74 3.88 4.05

bipartite
(156) 1.00 1.55 2.14 2.35 2.83 2.92 3.29 3.44 3.50 3.34 3.56 3.53

The results are similar to those obtained for the bipartite graphs. The only

difference is that the time is substantially longer. By the same token, the
obtained speedup is somewhat better for the general graphs.

3.1. Parallel versus sequential algorithm

While looking at the time required for solving the problem for relatively
small and sparse graphs we came to conclusion that they are rather large. We
have also observed the strong dependency of the algorithm on the length of the
random number (number of edges) as and thus decided to compare the
performance of our parallel code with that of a sequential method. We have
selected a well-known Hungarian method [11]. This method has theoretical
complexity O(n3) (similar to that of Gaussian elimination and computation of the
adjoint – the core of the parallel algorithm). In Table 3 we present the time to
find the perfect matching for the same three graphs as in Table 1. We report the
time of the parallel algorithm on 1 processor, the best time on 2-12 processors
and the time of the sequential algorithm (obtained on the same machine).

Table 3. Time for computing perfect matching of the parallel and sequential algorithms.

Times of parallel algorithm are reported in minutes, while those of the sequential
algorithm are reported in seconds

|V| parallel
(1 proc.)

parallel
(min) sequential

80 52.80 15.00 0.05
120 607.20 117.60 0.26
160 1691.2 303.60 0.91

The results are devastating as they show that, in spite of significant shortening

of time by distribution of work between processors, it is hard to talk about
competitiveness of parallel algorithm. We have therefore looked for the reason
for such an enormous difference in performance. Initially, we have directed our
attention to the fact that the processing time seems to be related to the number of
edges and thus the size of the random numbers filling the adjacency matrix. The
algorithm we have implemented, utilizes random numbers of size up to 22|E|.
Hence, to understand the effect of this fact, we decided to measure memory
utilization of our program. The results for the three graphs that we have

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

 The implementation and analysis of parallel algorithm … 87

experimented with are depicted in Figure 2 (these are approximate values gained
from a tool listing existing processes in the operating system).

The chart shows memory usage at the beginning of computation, when large
numbers were drawn and stored (min); and at the moment when the program
took up the most amount of memory (max), usually near the end of algorithms
execution. Let us observe that even the initial memory utilization is rather large,
but it explodes as the program progresses. This increase of total memory usage
between the initialization of computation and its completion is related to fast
increasing sizes of rational numbers during calculation of the adjoint matrix D.
This is an effect of utilizing rational numbers that increase in size as the
Gaussian elimination is carried out. To observe this effect more closely, we have
decided to study further the effect of application of rational numbers on
efficiency of the proposed algorithm.

0

10

20

30

40

50

MB

80 (156) 120 (241) 160 (303)

number of vertices (edges)

Memory usage min
max

Fig. 3. Memory utilization of the parallel algorithm; the results in Mbytes

3.2. Additional analysis of operation on rational numbers

In the first series of experiments we have established the times of basic
operations on rational numbers of size 60 Kb (typical size for our program) and
compared them with these of floating-point numbers (long double – 8B). We
have performed 10 thousand multiplications and subtractions. The total time for
the rational numbers was 183.4 seconds and for the floating-point numbers 0.014
seconds. We have thus decided to check efficiency of operations on rational
numbers while extending their size. These results determine the time (in sec.) of
10 thousand operations.

We used n Kb to denote random numbers from the range of [1..21000n]. Based
on the results presented in Figure 4 we can conclude that the time required to
complete operations depend linearly on the size of rational numbers. Thus, while
the size itself is not a problem in the early stages of the algorithm, it becomes so

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

Maciej Chróśniak, Jakub Dworniczak … 88

as the size of the numbers increases, while the total number of arithmetical
operations behaves like O(n3) magnifying the effect of increasing size of
numbers.

Time (10 thousand operations)

0
20
40
60
80

100
120

1 2 3 4 5 6 7 8 9 10

size of numbers (Kb)

se
co

nd
s

addition

multiplication

Fig. 4. Time of 10000 operations for the increasing size of rational numbers

3.3. The attempt at applying algorithm to the solution of the maximal flow problem

As we mentioned in the introduction, algorithm for finding perfect matching
can be an intermediate step to find a maximum flow in a net. Since this is a
randomized algorithm, it requires multiple steps. More precisely, in order to
handle this problem we have to perform about log2|V| intermediate steps of
finding perfect matching. Besides, each procedure finds matching with
probability greater than 1/2 (if perfect matching does not exist algorithm always
gives a correct answer). Thus, theoretically, we have a guarantee that the
procedure of searching for maximum flow works correctly with probability
greater than 1/|V|.

However, during our experiments we noticed that the algorithm gives correct
answers more often than it could be concluded form the theoretical estimation
(P>1/2 for C=2). We have made 100 tests and gained the following results:

Table 4. Actual results of finding perfect matching for varying value of C; based on 100 test

C 2 ¼ 1/16
P 0.98 0.81 0.51

There is some optimistic accent here, because we have obtained the actual

probability P ≈ 1/2 for much smaller C (≈1/16) than expected from the
theoretical analysis. But it does not mean, of course, that we could actually use
the algorithm with this value of C. There exists a technique of improving the
probability of correct answer. If we want to do this we have to repeat the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

 The implementation and analysis of parallel algorithm … 89

algorithm for perfect matching several times or use larger numbers as the
weights for edges at the beginning of the procedure. Both methods lead to an
extension of the time of work.

Overall, these results are unsatisfactory taking into account the overall time
that the proposed algorithm takes. That is why we have decided not to pursue the
implementation of finding the maximum flow algorithm.

4. Summary
We have seen a large number of results concerning development of fast

parallel algorithm for graph problems, in particular, for perfect matching. What
is more, these algorithms, being probabilistic in nature, thanks to resignation
from certainty of getting correct result, are usually more time-efficient.
Unfortunately, to implement one of such algorithms, we had to modify the
original algorithm and apply a method from linear algebra and utilize rational
numbers. As it turned out, despite significant parallelization, our algorithm is not
able to compete with a sequential one.

Graph algorithms are a domain in which it is not easy to find parallel
solutions. Existence of good optimized sequential procedures makes it even
more difficult to create competitive algorithms. Many attempts giving
theoretically optimistic results do not take into account practical realization.
They do not bring up such problems as ability of communication between
processing units and performance that can be achieved in the required
architecture.

References
[1] Karp R.M., Upfal E., Widgerson A., Constructing a perfect matching in Random NC,

Combinatorica, 6 (1986) 35.
[2] Mulmuley K., Vazirani U., Vazirani V., Matching is as easy as matrix inversion, In 19th

ACM Symposium on Theory on Computing, 355-365, ACM Press, (1987).
[3] Karpiński M., Rytter W., Fast Parallel Algorithms for Graph Matching Problems, Oxford

University Press, (1998).
[4] Diaz J., Serna M.J., Spirakis P., Toran J., Paradigms for fast parallel approximability,

Cambridge University Press, (1997).
[5] Preparata F.P., Sarvate D.V., An improved parallel processor bound in fast matrix inversion,

Inf. Process. Lett., 7 (1978) 148.
[6] Mahajan M., Vinay V., A combinatorial algorithm for the determinant, SODA97, (1997) 730.
[7] Galil Z., Pan V., Parallel evaluation of the determinant and inverse of a matrix, Inf. Process.

Lett., 30 (1987) 41.
[8] Pan V., Fast and Efficient Algorithms for the Exact Inversion of Integer Matrices, Fifth

Annual Foundations of Software Technology and Theoretical Computer Science Conference,
(1985) 504.

[9] Golub G.H., Van Loan C.F., Matrix Computations, The Johns Hopkins University Press,
(1997).

[10] www.swox.com/gmp – GNU Multiple Precision Arithmetic Library (GMP)
[11] Kuhn H.W., The Hungarian method for the assignment problem, Naval Research Logistics

Quarterly, (1955).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 08:26:50

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

