
Annales UMCS Informatica AI 2 (2004) 91-99 
Annales UMCS 

Informatica 
Lublin-Polonia  

Sectio AI 
http://www.annales.umcs.lublin.pl/ 

 
Parallel implementation of the k-connectivity test algorithm 

 
Przemysław Sokołowskia, Paweł Konieczkaa, Jakub Sochackia, 

Marcin Paprzyckiab∗

 
aDepartment of Mathematics and Computer Science, Adam Mickiewicz University,  

Umultowska, 61-614 Poznań, Poland 
bComputer Science Department, Oklahoma State University, Tulsa, OK 74106, USA 

 
Abstract 

There exists a large number of theoretical results concerning fast parallel algorithms for graph 
problems, however, scarcely one finds reports of their practical implementation. In an attempt at 
partial filling this gap we discuss implementation of an algorithm performing the pretest for  
k-connectivity. This test is based, first, on the Scan-First Search algorithm introduced in [1]. 
Utilizing this procedure we decrease the size of the input graph by removing selected edges so that 
the resulting graph (certificate of k-connectivity) has only O(kn) left. During this part of 
computations we can answer the question about k-connectivity negatively if a certificate cannot be 
generated. Afterwards, we can apply the test described in [2] to establish k-connectivity in the 
remaining cases. 
 

1. Introduction 
Let us start with defining the basic terms. An undirected graph G is defined as 

an ordered pair G=(V, E), where V is the set of n vertices (|V|=n) and E is the set 
of edges (|E|=m). Furthermore, for an edge e ∈ E, e = {a, b} is an unordered 
pair, where a, b are the vertices of G. We say that H is a spanning subgraph of G 
if V(H) = V(G) and E(H) is the subset of E(G). T is a spanning tree of G if T is a 
connected, acyclic subgraph of G (graph is connected iff any two vertices of G 
can be linked by a path). The certificate of k-connectivity C is a spanning 
subgraph of G such that C is k-connected iff G is k-connected. 

According to Menger’s theorem [3] graph is k-connected iff there exist k 
vertex-disjoint paths between any two vertices in V. This theorem gives an easy 
algorithm for checking k-connectivity. Unfortunately, this method is inefficient 

                                                 
∗Corresponding author: e-mail address: marcin@cs.okstate.edu. The research at Adam 

Mickiewicz University was sponsored by a scholarship from the Fulbright Commission. The 
computer time grant from the Poznań Supercomputing and Networking Center is kindly 
acknowledged. 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



Przemysław Sokołowski, Paweł Konieczka, … 92 

for any larger number of vertices and/or edges. As a part of the solution one can 
try to reduce the size of the graph by removing some edges (minimizing the 
degree of vertices) in such a way as to keep the k-connectivity unchanged. We 
will achieve this goal by trying to find the certificate of k-connectivity of G. If 
we are not able to generate certificate of k-connectivity we will establish that G 
is not k-connected (and our main problem is solved). However, it is still possible 
to find the certificate for a graph that is not k-connected so we need to check 
further the k-connectivity of the found certificate. 

Finally, let us note that while there exist many ways of representing graphs, 
we will utilize a matrix-based one. Here, a graph G is represented by a binary 
matrix M={aij} of size n*n (an incidence matrix of G), where aij = 1 iff there 
exists an edge {i, j} in E, otherwise aij = 0. Because G is undirected, matrix M is 
symmetric so the complete information about the structure of the graph is stored 
in the upper (lower) triangle of M. 

In our literature search we have not found any parallel implementation of any 
test for k-connectivity. There exists a number of theoretical results concerning 
parallel methods for establishing k-connectivity but they are based on rather 
unrealistic assumptions (for exapmle a polynomial number of processors). 

We proceed as follows. In the next section we introduce the Scan-First Search 
algorithm that is used to establish the certificate of k-connectivity. We follow 
with the description and analysis of experimental results obtained on the 12 
processor SGI Power Challenge parallel computer as well as on homogenous 
clusters of 17 PC’s.  
 

2. Scan-First Search algorithm 
The crucial part of the algorithm is able to generate the certificate of  

k-connectivity for a given graph G. We achieve this goal by iterating the Scan-
First Search (SFS) method (see [1] for its detailed description). In i-th round a 
spanning forest Fi of Gi is generated. Then every tree in Fi is numbered using the 
prenumber algorithm. Thanks to this numbering it is possible to generate a 
spanning forest Fi (for every vertex v we choose its neighbour u with the 
smallest number given by the prenumber algorithm). In the next iteration graph 
Gi+1 = (V, E(Gi) – E(Fi)) is obtained form Gi by removing edges of forest Fi. It 
can be shown that after k steps graph C = (V, ( )   

i

'
iE F∪ ) is the certificate of  

k-connectivity of G (where, G1 := G). 
 

2.1. Parallelization of the SFS algorithm 
Let us now describe the details of our parallel implementation of the SFS 

algorithm: 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



 Parallel implementation of the k-connectivity test algorithm 93 

1. To generate the spanning forest we use the Kruskal algorithm (description 
can be found in [3,4]; in [4] a distributed version of this algorithm 
somewhat similar to our approach is presented – we have not found any 
information about actual implementation of any of these algorithms). The 
idea of this algorithm is to build simultaneously trees from each vertex of 
G. If it is possible, trees are connected into larger trees so as a result we 
obtain a spanning forest (if graph G is connected, as a result we obtain a 
spanning tree). In order to parallelize the process, every processor is 
assigned some fraction of vertices of G (a given processor has knowledge 
only about the edges between the assigned vertices) and it is building “its” 
forest on those vertices. After each processor computes its forest, it 
exchanges results of computations with another processor and then both 
can generate larger forest using edges between their vertices. Because the 
algorithm is deterministic, after exchange both processors generate the 
same result. 

2. Preorder numbering is a standard procedure which is described, for 
instance, in [3]. The main problem is its parallelization. We used a simple 
load-balancing approach: all trees in the forest are sorted in a non-
decreasing order with regard to the number of vertices and the first 
(largest) tree is assigned to the first free processor, the second free 
processor receives the second tree and so on. 

 
2.2. Implementation details of Kruskal’s algorithm 

Let us now provide further details of our parallel implementation of the 
Kruskal algorithm: 

1. Our approach is based on the master-slave model of parallel computing 
(with the master only managing computations and the slaves performing 
all “useful” calculations). Initially, the master distributes parts of the 
coincidence matrix (in this paper we consider graphs with n = h*2m 
vertices) between p slave processors (p is a power of 2). Every slave 
receives n/p vertices – n/p rows of the coincidence matrix – so that every 
edge starting in a given vertex is known while other edges (between 
assigned vertices and others) cannot be used to grow the tree at first. Next 
all necessary computations are performed independently by slaves. 

2. Since the forest is built in an iterative fashion (see above), after each 
iteration appropriate parts of the coincidence matrix are exchanged 
between processors. Since at the end of the first run of Kruskal every 
processor has his own copy of the matrix, in subsequent steps of checking 
k-connectivity there is no need to send the complete matrix – master sends 
only information about the removed edges so that processors can update 
their matrices of interest. In i-th iteration processors exchange computed 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



Przemysław Sokołowski, Paweł Konieczka, … 94 

forests and parts of matrix (in every iteration the whole matrix is filled 
with missing rows). This exchange process is depicted in Figure 1.  

 
1

2

3

4

computations in the first iteration
computations in the second iteration
computations in the third iteration
exchange of data after the first iteration
exchange of data after the second iteration  

Fig. 1. Data exchange pattern for parallel Kruskal 
 
The formula presented below as a C pseudocode is used to find processor to 

contact and exchnage data with: 
 

if ( ( 0 <= (proc_nr - 1) % (count * 2) ) && ( (proc_nr - 1) % (count * 2) < count) )  
{with_who = proc_nr + count;}  

else  
{with_who = proc_nr - count;} 

 
where: count – iteration number, proc_nr – processor number, with_who 
– number of processor to contact. 
 

3. Experimental results 
The above described approach to establishing k-connectivity was 

implemented in C with the MPI library used for parallelization. Tests were 
performed on two parallel machines. First, a shared memory SGI Power 
Challenge XL with 12 MIPS R8000 CPU’s, running at 90MHz and 1Gbyte of 
RAM. Here, regardless of the fact that this is a shared memory computer, we 
still proceeded with the MPI-based parallelization and the native SGI-provided 
MPI implementation was used. Since our approach required utilization of power 
of 2 slave processors we have used up to 9 processors of this machine (1 master 
and 8 slaves). Our experiments were executed while other programs were 
running. As a result we have observed a substantial variation in execution times. 
In each case the best result out of multiple runs is reported, however, it cannot be 
guaranteed that these are trully the best possible results. Second, a homogeneus 
cluster of 17 PCs. Each of them had an Intel Pentium 4 processor running at 1.5 
GHz and 256 Mbytes of RAM. PCs were connected by a Catalyst 6500 switch 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



 Parallel implementation of the k-connectivity test algorithm 95 

with full duplex 100Mbit/s switching capability. Open source versions of LAM 
and MPI have been used. Here the experiments were performed at night on an 
“empty” system, however, we have still observed a relatively large variation in 
execution times. As above, the best results out of multiple runs are reported. 
Finally, since we have used a master-slave approach in the results reported here 
the “single-processor” mode consists really of two processors; one master and 
one slave. Therefore, we have decided to compute speedup as a ratio between 
time on two processors and time on p+1 processors. 

On the SGI we tested our program using complete graphs on 1024, 2048 and 
3072 vertices (for bigger graphs lack of available memory caused page swapping 
which made our results practically useless). The results of our experiments are 
reported in Figures 2-4. On the cluster we used graphs of size 2048, through 
6144 vertices and reports are presented in Figures 6-7. 

We chose complete graphs because for the problem of establishing  
k–connectivity they constitute the worst case scenario. This is due to the fact that 
the preorder numbering takes a very long time (as shown in Figure 5). 
Furthermore, since the graph is connected, there is practically no parallelization 
available in this stage of the algorithm. This being the case, this constitutes a 
classical Amdahl-type bottleneck for the whole problem. We can therefore 
observe the overall worst possible scenario for the complete SFS algorithm. The 
parameter k was tested for two values: 20 and 30. Obviously, we made an 
assumption that for bigger k speedup would be greater. The choice was caused 
by the hardware characteristics of the SGI computer. 10-connectivity required 
“almost no time at all to complete” while 40-connectivity took “forever to 
complete.” 

First, in Figure 2 we present the speedup obtained for the Kruskal algorithm 
on the SGI computer for the graphs with 1024, 2048, 3072 vertices and for 1, 2, 
4, and 8 slave processors. We follow with Figures 3 and 4 that represent that 
speedup of the complete SFS algorithm for k = 20 and 30 respectively. 

 
Fig. 2. SGI Power Challenge; speedup of Kruskal algorithm for the graphs  

of sizes 1024, 2048, 3072 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



Przemysław Sokołowski, Paweł Konieczka, … 96 

1

1,1

1,2

1,3

1,4

1,5

1,6

2 3 5 9

number of processors

sp
ee

du
p

1024
2048
3072

 
Fig. 3. SGI Power Challenge; speedup in the whole program for generating certificate  

of 20-connectivity for the graphs of sizes 1024, 2048, 3072 

1
1,05
1,1

1,15
1,2

1,25
1,3

1,35
1,4

1,45
1,5

2 3 5 9

number of processors

sp
ee

du
p

1024
2048
3072

 
Fig. 4. SGI Power Challenge; speedup in the whole program for generating the certificate  

of 30-connectivity for the graphs of sizes 1024, 2048, 3072 
 
Three observations can be made. First, speedup of Kruskal algorithm is 

relatively good. The efficiency reaches almost 50% for 8 slave processors. 
Second, speedup for k = 20 and 30 is very similar but slightly worse for k = 30. 
Third, the speedup of the whole process is substantially worse than that of 
Kruskal algorithm. The latter two facts can be explained by the performance of 
the second phase of the algorithm, which is illustrated in Figure 5.  

Since we are experimenting with the worst case scenario of a complete graph 
the second phase of the algorithm is performed almost sequentially and is 
repeated as many times as the value of k (prenumbering is repeated in every 
iteration of the algorithm). This explains the superior performance of the  
20-connectivity case, where the Amdahl-bottleneck repeats only 20, instead of 
30 times. 

 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



 Parallel implementation of the k-connectivity test algorithm 97 

0
1
2
3
4
5
6
7
8

256 512 1024 2048 4096 8192

number of vertices

tim
e 

[s
]

 
Fig. 5. SGI Power Challenge; time of numbering trees specified size with prenumber  

algorithm by one processor 
 
The results of experiments on the described above homogeneous cluster of 17 

PC’s are depicted in Figures 6 and 7. First, the Kruskal algorithm and then the 
whole SFS algorithm for 30-connectivity. 

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

2 3 5 9 17

number of processors

sp
ee

du
p

2048
3072
4096
5120
6144

 
Fig. 6. PC Cluster; speedup in Kruskal implementation for the graphs of sizes 2048, …, 6144 
 
The results are very interesting and conforming to some of the earlier 

observations. The speedup of Kruskal’s algorithm is much smaller for the cluster 
than for the SGI parallel computer. This fact can be attributed to its information 
exchange phases (Section 2.2, point 2). While we have been using MPI based 
parallelization, the SGI is a shared memory computer and SGI provided native 
MPI can manage information exchanges as prescribed in our code very 
efficiently. At the same time the cluster, while connected by a relatively fast 
switch, cannot move data around fast enough to obtain satisfactory speedup. In 
this case even further increase in the graph size does not result in substantial 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



Przemysław Sokołowski, Paweł Konieczka, … 98 

gains in speedup as such gains are counterbalanced by the amount of data 
exchanged between processors. 

1

1,1

1,2

1,3

1,4

1,5

1,6

2 3 5 9 17

number of processors

sp
ee

du
p

2048
3072
4096
5120
6144

 
Fig. 7. PC Cluster; speedup in the whole program for generating certificate of 30-connectivity  

for the graphs of sizes 2048, …, 6144 
 
Overall the speedup of the SFS algorithm is similar on both computers, 

however an interesting trend can be observed. As the size of the graph increases, 
the overall speedup decreases. This is caused by the lack of parallelism in the 
second phase of the SFS algorithm. This can be related to the results presented in 
Figure 5. As the size of the graph increases, the time used by the prenumbering 
phase increases exponentially. This is combined with the iterative nature of the 
process thus further reducing any speedup gained in the Kruskal-phase of the 
SFS algorithm.  
 

7. Concluding remarks 
In this paper we have presented the results of our attempt at implementing 

parallel algorithm for establishing k-connectivity of the graph. We have 
implemented and tested the Scan-First Search algorithm. We have found that it 
is possible to implement the Kruskal’s algorithm quite efficiently. This is 
especially the case for fast connection between processors (for instance, a shared 
memory of an SGI Power Challenge). At the same time, on a cluster connected 
over 100 Mbit/s network it was almost impossible to obtain satisfactory 
performance. The situation is much worse as far as the second phase of the SFS 
algorithm is concerned. We have used a rather simplistic approach to its 
parallelization and combined it with the worst case input data (a fully connected 
graph). This combination turned to be lethal to the performance of the code and 
suggests one of the places where a different approach needs to be found. Overall, 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS



 Parallel implementation of the k-connectivity test algorithm 99 

however, the very fact that we were able to implement sucesfully parallel graph 
algorithm and obtain speedup in the worst case input data should be treated as a 
success. 

There exists a number of ways that the research reported here can be 
extended. First, from the results presented above one can conclude that the 
distributed model of computations is not the best for our problem (and possibly 
for most of the graph algorithms). Therefore it may be possible to improve 
performance of parallel Kruskal algorithm through a shared memory oriented 
implementation (for example using the OpenMP technology). The second 
research direction is an improvement in parallelization of the preorder algorithm, 
but for the time being we do not know how to do it. Finally, having this pretest 
for k-connectivity implemented we are now able to improve any k-connectivity 
test. Therefore, the next obvious step is to implement the algebraic algorithm for 
testing k-connectivity as described in [2].  
 

Acknowledgments 
We wish to thank Jerzy Jaworski, Jerzy Szymański and our families for help, 

patience and indulgence. 
 

References 
[1] Cheriyan J., Kao M.Y., Thurimella R., Scan-First Search and sparse certificates: an 

improved parallel algorithm for k-vertex connectivity, SIAM J. Comput., (1993). 
[2] Linial N., Lovász L., Widgerson A., Rubber bounds, convex embeddings and graph 

connectivity, Combinatorica, (1988). 
[3] Ross K.A., Wright C.R.B., Matematyka dyskretna, PWN, Warszawa, (1999), in Polish. 
[4] Peleg D., Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, 

(2000). 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 12:21:52

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

