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Abstract 

The number of binary functions that can be defined on a set of L vectors in Nℜ  equals 2L . For 
L > N the total number of threshold functions in N-dimensional space grows polynomially 

, while the total number of Boolean functions, definable on N binary inputs, grows 

exponentially ( ), and as N increases a percentage of threshold functions in relation to the total 
number of Boolean functions – goes to zero. This means that for the realization of a majority of 
tasks a neural network must possess at least two or three layers. The examples of small 
computational problems are arithmetic functions, like multiplication, division, addition, 
exponentiation or comparison and sorting. This article analyses some aspects of two- and more 
than two layers of threshold and Boolean circuits (feedforward neural nets), connected with their 
computational power and node, edge and weight complexity. 

( )( N N-12 )

                                                

N22

 
1. Introduction 

A feedforward neural network is often modelled as a directed acyclic graph in 
which every directed edge represents a weighted net connection and each 
internal or output node (i.e. a gate) – reflects the net respective processing 
element. The terms feedforward networks and circuits – are in literature used 
interchangeably. The same can be said about the terms: Boolean, binary and 
logical (while specifying inputs, functions, circuits or nets). 

Functions most commonly computed by a gate – are nonlinear ones, like 
threshold functions (called also jump or linearly separable functions), sigmoidal, 
AND-OR or a parity (i.e. XOR) functions. 

A linear threshold function1 – is a binary (i.e. 
Boolean) function, such that: 

( ) { } { }: 0;1 0;1Nf X →

 
* Corresponding author: e-mail address: plborowi@cyf-kr.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:45

UM
CS



Barbara Borowik, Sophie Laird  136

 ( ) 1

1

1

1 0
sgn

0 0

N

j jN
j

j j N
j

j j
j

if w x
f w x

if w x

θ
θ

θ

=

=

=

⎧

,

+ − ≥⎪⎛ ⎞ ⎪= − = ⎨⎜ ⎟
⎝ ⎠ ⎪ − <

⎪⎩

∑
∑

∑

  
X

  
 (1) 

where ( 1,..., T
N )x x=X  is the binary input vector, the real-valued coefficients wj 

are the threshold function weights and θ - is the threshold value. 
A node that computes a linear threshold function is called an LTE element. 

Each LTE unit separates the input space into a closed positive and an open 
negative half-space. If for a given set of L input vectors there exists a 
hyperplane, such that each vector lies on a pre-assigned side of it, then the set of 
training input vectors is referred to as linearly separable. The number of 
Boolean functions2 that can be defined on a set of L vectors 

( ),..., Nin L Nℜ ≤1 LX X     equals 2L. (The dimension of the space to which the 
input vectors belong – is not important3.) If the L vectors 

( ),..., Nin L Nℜ ≤1 LX X     are in a general position4, then all Boolean-valued 
functions defined over these points are linearly separable (i.e. an N-input LTE is 
able to compute all 2L Boolean functions. For a linear threshold function it is 
difficult to decide, whether a set of points contains an even or an odd number of 
elements, and a single LTE element cannot compute some simple functions, like 
XOR or ~XOR function. 

If the number of input vectors L equals 2N, then an LTE unit can compute 
with probability ≥ 1/2 any randomly chosen Boolean function over the set of 
inputs. As L (L > 2N) increases, then this probability decreases sharply to zero. 
Because of this, the capacity of an N-input LTE is equal5 to 2(N+1) [1]. 

It can be concluded that the total number of threshold functions in an N-
dimensional space for L>N increases polynomially ( ( )N N-12 ), while the total 
number of Boolean functions, definable by N Boolean inputs, grows 

                                                                                                                         
( ) { } { }: 1;1 1;1NX − → −f1 (or equivalently ) 

2 i.e. a function of one of the forms: ( ) { } { }1;01;0: →Nf X   or  ( ) { } { 1;11;1: −→− Nf X }. 
3 This is equivalent to the problem when L cuts with (N-1) dimensional hyperplanes in N-
dimensional space define 2L different regions. 
4 A set of L vectors in Nℜ  is said to be in a general position if every subset of L or fewer points 
forms a linearly independent set. 
5 Very often in the literature the threshold value θ  is assumed to equal zero. This is achieved by 
increasing the dimension of every input vector by augmenting it with an entry that equals –1, and 
by increasing the dimension of the weight vector by augmenting it with θ . In such a case the 
capacity of an LTE equals 2N. 
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exponentially ( ), and as N increases a percentage of threshold functions in 
relation to the total number of Boolean functions – goes to zero. 

N22

A modern variant of Kolmogorov’s theorem states that for any continuous 
function [ ] [ ]: 0,1 0,1N →f  there exist functions of one argument g and Φq (for 
q = 1,...,2N+1), such that: 

 ( ) ( )
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In other words, any continuous function can be reproduced exactly by a finite 
network of processing elements, providing enough nodes to compute the 
necessary primitive functions. 

And if there is a need to approximate functions and no demand to reproduce 
them exactly, except for a bounded approximation error, then there is a 
possibility to look for the best possible approximation to a given6 function f. 
 

2. Node, edge and weights complexity of threshold circuits 
The complexity of a circuit (or a net) is usually expressed in terms of the 

input size (i.e. the number of input variables of the circuit), the size, depth or 
fan-in/fan-out of this circuit. A common objective is to minimize the depth and 
the size of a circuit. 

In analysing neural nets (circuits), the main difficulty lies in the nonlinearity 
of the nets functions. With regard to analysing threshold gates, especially 
suitable are geometric approaches, in which an N-input threshold function (gate) 
corresponds to a hyperplane in . This interpretation (as mentioned before) 
can be used to determine the functions that cannot be computed by an LTE unit 
or just to count the number of Boolean functions computable by it. But this is 
not easy if a threshold circuit has a depth of 2 or more, because the inputs to the 
gates in the second level are LTE units themselves and the linear combination 
computed in the second level is a nonlinear function of its inputs. 

Nℜ

One of the theorems that can be easily proved7 states that: 
Every N-variable Boolean function  can be 

computed by a depth-2 threshold

( ) { } {1 2, ,..., : 1;1 1;1N
Nx x x − → −f

8 (or AND-OR) circuit – with at most  ( )12 1N− +

 
6 This is a version of Kolmogorov’s (1957) and Sprecher (1965) theorem, extended by Hornik, 

Strinchcombe, White (1989) and other researchers. 
7 The proof follows from this that every Boolean function of N variables can be written in two 

forms: a) in a canonical Sum of Products notation, where each of k (k ≤ 2N) product-terms is a 
distinct AND function, where a subset of the variables are complemented; and b) in a canonical 
Product of Sums notation, where each of l (l ≤  2N) sum-terms is a distinct OR function, where a 
subsets of the variables are complemented [2]. 

8 The depth of a gate – is the maximum number of edges along any directed path from the input 
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LTE elements or by a depth-3 threshold circuit – with at most ( )22NO  LTE 

units. 
But the implementation of such a circuit would require too many resources, 

even for a small number of N. Therefore, the objective is to minimize the 
amount of hardware and computation time (i.e. a circuit size and depth). A 
circuit of smaller depth is a faster circuit. It is more difficult to implement an 
LTE element with exponentially large integer weights than an LTE with integer 
weights that are polynomially bounded. It has been proved that a polynomial-
size threshold circuit with polynomially bounded weights can be simulated by 
another polynomial-size threshold circuit with unit weights and the same depth, 
where only the edge complexity is increased by a polynomial factor [2]. By 
using sigmoidal functions instead of LTE elements - for some Boolean functions 
the size of the network can be reduced, at least by a logarithmic factor [2]. 

Most common arithmetic functions can be efficiently realized by small depth-
d polynomial size threshold circuit (represented by LTd). The Addition and 
Comparison functions can be computed by LT2 circuits [2]. A network that for a 
given set of L input vectors can compute all of the  possible Boolean 

functions (called a universal network) - must have at least 

2L

21 log
L

L+
 number of 

weights [2]. 
If the hidden layer of a net contains m units and the input vector is of the 

dimension N, then the maximum number of classification regions equals 

. If the number of input vectors is higher than their dimension, it 

may happen that there may not be enough classification regions to compute a 
given Boolean function, and there will be a need to increase the number of net 
input lines. 

1

0

1
2

N

i

m
i

−

=

−⎛ ⎞
⎜
⎝ ⎠

∑ ⎟

                                                                                                                        

 
3. Limitations of AND-OR circuits compared to threshold circuits 

Threshold circuits9 are especially valuable in an application in which we want 
to reduce the execution time of a circuit (net) to two or three layers of 
computational delay without employing a large number of gates [2]. The parity 
and majority functions cannot be implemented in a fixed number of layers 
without using an exponentially growing number of AND-OR gates, even when 
unbounded fan-in is used. The majority function k out of N can be built by a 
single LTE unit. On the other hand, instead of using AND-OR gates, we can use 

 
nodes to that gate. The depth of a circuit – is the maximum depth among all gates in the circuit. 
9 An AND-OR circuit is a Boolean circuit in which every gate is an AND gate, OR gate or an 
inverter. 
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a direct realization of Parity in depth-2 threshold circuit comprising of (N+1) 
LTE elements, which means that in this sense, an LTE gate is exponentially 
more powerful than an AND-OR gate. 

The main difference between conventional AND-OR and threshold circuits – 
is that AND-OR circuits cannot guarantee a constant delay. An LTE unit can be 
used to build multiplication or division circuits that guarantee a constant delay 
for 32 or 64 bit operands [3]. 

 
4. The Exponential or polynomial number of threshold input function 

When the input patterns are linearly nonseparable, the behaviour of two or 
more deep circuits (nets) is not well understood. An analysis of the relation 
between the output function of a threshold gate and its arbitrary set of input 
functions, using geometrical and linear algebraic tools allows to derive a variety 
of lower bound results. In this approach an N-variable Boolean function is 
represented as a vector in Nℜ . Below is shown a method of correlations which 
allows to use procedures for decomposing10 a given Boolean function f, which 
together show, that every N-variable Boolean function is a threshold function of 
polynomially many input functions, none of which is significantly correlated 
with f [2].  

A Boolean function  can be considered as a 

(column) vector in . In this case each of f’s 2

( ) { } {1 2, ,..., : 1;1 1;1N
Nx x x − → −f }

s

N22 N components represents f(x) 
for a distinct value assignment  of the N Boolean variables of x. { }1,1 Nx∈ −

Let the Boolean functions ,...,1f f  be the inputs of a threshold gate with the 

weight vector ( ) ( )1,...,
T S

sw w= ∈ℜw  w . We say that a gate computes a 

Boolean function if the following vector equation holds: 

 
1

sgn
S

j j
j

w
=

⎛ ⎞
= ⎜

⎝ ⎠
∑f f ⎟

)w

, (3) 

or in a matrix form: , where the input matrix  is a (sgn=f Φ [ ],...,= 1 Sf fΦ

( )2N S×  - dimensional matrix, whose columns are the input functions. The 

Boolean function f is a threshold function of ,...,1 Sf f , if there exists a threshold 

gate with the weights11 and with inputs ( 1,...,
T

sw w=w ) S,...,1f f  that computes 
f. 

                                                 
10 called threshold decomposing procedures. 
11 The dimension of the weight vector has been increased by augmenting it with this gate 

threshold value θ . 
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At the same time the Boolean function is the output of a threshold gate, 
whose input functions are ,...,1 Sf f  if, and only if the linear combination 

1

S

j
j

w
=

=∑ jw fΦ , defined by the gate, lies in the interior of f’s orthant. (The inner 

product of two vectors is non-negative if they lie in the same orthant.) 
If this function f is orthogonal to  (i.e. the correlation between 

f and 
[ ,...,= 1 Sf fΦ ]

Φ  is zero), then f is not a threshold function of Φ . 
The correlation  between two N-variable Boolean functions f

21 ffC 1 and f2 is 
equal to [2]: 

 
( ) ( )

1 2
1 2 , 2

2
N

f f HNC d⎡ ⎤= = − ⎣ ⎦

T
1 2

1 2

f f
f f , (4) 

where  is the Hamming distance. This allows to interpret it as a measure of 
how ’close’ the two Boolean functions are. This correlation is a multiple of 

. The correlation vector of a function f with its input functions is 
defined as: 

( )⋅Hd

( ) [12 N− − ∈ − ]1,1

 
( )

1 2
, ,...,

2 S

T

ff ff ffN C C C⎡ ⎤= = ⎣ ⎦

T

f

f
C Φ

Φ
. (5) 

and it may take 2N 1+  values. This means that for a given ,...,1 Sf f  functions 

the correlation vector  may assume at most 
1 2
, ,...,

S

T

ff ff ffC C C⎡= ⎣fC Φ ⎤⎦ ( )2 1
SN +  

different values over all  Boolean functions of N variables. 
N22

This implies that many Boolean functions share the same correlation vector 
, but at the same time the Boolean threshold function f with fC Φ [ ],...,= 1 Sf fΦ  

input Boolean functions does not share its correlation vector (i.e. ≠g fC CΦ Φ ) 

with any other Boolean function g ( ) [2]. This implies that there are at 

most  threshold functions of any set of S input functions. It may be 

further deduced that every Boolean function of N variables (N-even) may be 
expressed as a Boolean threshold function of 2N Boolean input functions 

fg ≠

(2 1
SN + )

, ,...,1 2 2Nf f f , such that [2]: 1) 0=
iffC  for { }1,...,2 1i N∈ − , 4≠i , and 2) 

. ( )12 N− −=
4ffC

 
5. Conclusions 

The above approach was possible owing to the integration of the above 
mentioned geometric interpretations of the Boolean function, with some tools 
borrowed from linear programming.  
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The geometric framework is often integrated with the theory of linear 
programming, e.g. linear programming algorithms are used to determine the 
LTE’s weights. Linear programming concepts, like duality or Farkas’ lemma can 
be used to describe functions that cannot be computed by a single LTE or when 
the training set is linearly nonseparable [2]. 
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