

Annales UMCS Informatica AI 2 (2004) 237-241

# Superquadraticly convergent methods for minimization functions 

Stanisław M. Grzegórski*, Edyta Łukasik<br>Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland


#### Abstract

In the paper locally superquadraticly convergent methods for minimization functions are considered. Threefold symmetric approximations to partial derivatives of the third order are constructed.


## 1. Introduction

Let $f: D \subset R^{n} \rightarrow R, f \in C^{3}(D), D$ - open set. We want to find $x^{*} \in D$ such that $\nabla f\left(x^{*}\right)=0$. For a given $x_{0} \in D$ the Newton method defines the sequence $\left\{x_{k}\right\}$ in the following way

$$
\begin{equation*}
\nabla^{2} f\left(x_{k}\right) s_{k}=-\nabla f\left(x_{k}\right), x_{k+1}=x_{k}+s_{k}, k=0,1,2, \cdots \tag{1}
\end{equation*}
$$

If the matrix $\nabla^{2} f\left(x^{*}\right)$ is nonsingular then Newton method is locally quadraticly convergent to $x^{*}$, i.e. there exist $c>0$ and $\varepsilon>0$ such that, if $\left\|x^{*}-x_{0}\right\|<\varepsilon$, then

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\| \leq c\left\|x_{k}-x^{*}\right\|^{2} \tag{2}
\end{equation*}
$$

To assure global convergence of the method one should consider a sequence

$$
\begin{equation*}
x_{k+1}=x_{k}+t_{k} s_{k}, t_{k} \in R, k=0,1,2, \cdots \tag{3}
\end{equation*}
$$

and the parameter $t_{k}$ should satisfy the global convergence conditions. If the matrix $\nabla^{2} f\left(x^{*}\right)$ is singular, then the Newton method is divergent or at most linearly convergent to $x^{*}$. To assure a great speed of convergence for singular problems one applies the method of the third rate of convergence: for a given $x_{0} \in D$ the sequence $\left\{x_{k}\right\}$ is defined as

$$
\begin{equation*}
x_{k+1}=x_{k}+s_{k}, k=0,1,2, \cdots \tag{4}
\end{equation*}
$$

[^0]where $s_{k}$ is the solution of the system of quadratic equations
\[

$$
\begin{equation*}
\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right) s_{k}+\frac{1}{2}\left(\nabla^{3} f\left(x_{k}\right) s_{k}, s_{k}\right)=0 . \tag{5}
\end{equation*}
$$

\]

When the calculation of the operator $\nabla^{3} f\left(x_{k}\right)$ is too expensive or is not attainable for computation then we propose a new class of the methods which are locally superquadraticly convergent to $x^{*}$, i.e.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{2}}=0 . \tag{6}
\end{equation*}
$$

Let $B_{k}=\left(B_{k}^{1}, B_{k}^{2}, \cdots, B_{k}^{n}\right), B_{k}^{i} \in R^{n \times n}, B_{k}^{i}=\left(B_{k}^{i}\right)^{T}, i=1,2, \cdots, n$. The sequence $\left\{x_{k}\right\}$ is defined by (1.4) and

$$
\begin{equation*}
\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right) s_{k}+\frac{1}{2}\left(B_{k} s_{k}, s_{k}\right)=0 . \tag{7}
\end{equation*}
$$

If the problem $\min _{x \in D} f(x)$ is regularly singular at $x^{*}$, i.e.

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} f\left(x^{*}\right)\right)=0, \text { and }\|\nabla f(x)\| \geq c\left\|x-x^{*}\right\|^{2}, c>0, x \in D \tag{8}
\end{equation*}
$$

then the sequence $\left\{x_{k}\right\}$ defined by (1.4) and (1.7) is locally superlinearly convergent to $x^{*}$, if the operators $B_{k}$ are constructed in an adequate way. In this paper such algorithms are given.

## 2. The BFGS method

The DFP (Davidon [1], Fletcher and Powell [2]) method is very well known as the method of aproximation to the Hessian $\nabla^{2} f\left(x_{k}\right)$. This formula has the form

$$
\begin{equation*}
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}, y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right) . \tag{9}
\end{equation*}
$$

The DFP formula, for nonsingular problems, guarantees local superlinear convergence of the method

$$
\begin{equation*}
x_{k+1}=x_{k}+s_{k}, B_{k} s_{k}=-\nabla f\left(x_{k}\right), k=0,1,2, \cdots \tag{10}
\end{equation*}
$$

We may use the DFP formula to approximate the operator $\nabla^{3} f\left(x_{k}\right)$. Namely, let

$$
\begin{equation*}
B_{k}=\left(B_{k}^{1}, B_{k}^{2}, \cdots, B_{k}^{n}\right), B_{k}^{i} \in R^{n \times n}, B_{k}^{i}=\left(B_{k}^{i}\right)^{T}, i=1,2, \cdots, n \tag{11}
\end{equation*}
$$

and let $\nabla_{i}^{2} f\left(x_{k}\right)$ denote i-th column of the matrix $\nabla^{2} f\left(x_{k}\right)$, $y_{k}^{i}=\nabla_{i}^{2} f\left(x_{k+1}\right)-\nabla_{i}^{2} f\left(x_{k}\right)$. Then

$$
\begin{equation*}
B_{k+1}^{i}=B_{k}^{i}-\frac{B_{k}^{i} s_{k} s_{k}^{T} B_{k}^{i}}{s_{k}^{T} B_{k}^{i} s_{k}}+\frac{y_{k}^{i}\left(y_{k}^{i}\right)^{T}}{\left(y_{k}^{i}\right)^{T} s_{k}}, i=1,2, \cdots, n \tag{12}
\end{equation*}
$$

Note that the operators $B_{k+1}$ satisfy the equation

$$
\begin{equation*}
B_{k+1} s_{k}=\nabla^{2} f\left(x_{k+1}\right)-\nabla^{2} f\left(x_{k}\right), k=0,1,2, \cdots \tag{13}
\end{equation*}
$$

Now, from the general theory for the systems of nonlinear equations [3], [4] local superquadratic convergence of the method results (4), (7) with the update (12). On the other hand, the DFP updates do not satisfy the following properties of the partial derivatives

$$
\begin{equation*}
\frac{\partial^{3} f(x)}{\partial x_{i} \partial x_{j} \partial x_{l}}=\frac{\partial^{3} f(x)}{\partial x_{i} \partial x_{l} \partial x_{j}}=\cdots=\frac{\partial^{3} f(x)}{\partial x_{l} \partial x_{j} \partial x_{i}}, i, j, l=1,2, \cdots, n \tag{14}
\end{equation*}
$$

In this case, we say the operator $\nabla^{3} f(x)$ is threefold symmetric (T-symmetric). It is worth remarking that the operator $\nabla^{3} f(x)$ has only $P(n)=\frac{1}{6} n(n+1)(n+2)$ different elements and the DFP aproximations have $Q(n)=\frac{1}{2} n^{2}(n+1)$ different elements, which means that the BFGS formula is not adequate for approximation to $\nabla^{3} f(x)$. In the next Section we give a new formula for the update of $B_{k}$ and $B_{k}$ will be T-symmetric.

## 3. New approximation to $\nabla^{3} f(x)$

The approximation $B_{k}$ to $\nabla^{3} f(x)$ satisfies secant equation (13) and operators $B_{k}$ should be threefold symmetric. If we take

$$
\begin{equation*}
B_{k+1}=B_{k}+E \tag{15}
\end{equation*}
$$

then

$$
\begin{equation*}
E s_{k}=\nabla^{2} f\left(x_{k+1}\right)-\nabla^{2} f\left(x_{k}\right)-B_{k} s_{k}=Y . \tag{16}
\end{equation*}
$$

In that case we have to solve the problem

$$
\begin{equation*}
\min \|E\|^{2},\|E\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} E_{i j k}^{2} \tag{17}
\end{equation*}
$$

under constraints

$$
\begin{equation*}
E s=Y, s \in R^{n}, Y \in R^{n \times n}, Y=Y^{T} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{i j k}=E_{i k j}=E_{j i k}=E_{j k i}=E_{k i j}=E_{k j i}, i, j, k=1,2, \cdots, n . \tag{19}
\end{equation*}
$$

Remark. If we take another norm of the operator $E$, then we get another formula for the update $B_{k}$.
Let $\Lambda \in R^{n x n}$. In our case the lagrangian has the form

$$
\begin{equation*}
L(E, \Lambda)=\frac{1}{2}\|E\|^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} \Lambda_{i j}\left(\sum_{k=1}^{n} E_{i j k} s_{k}-Y_{i j}\right) \tag{20}
\end{equation*}
$$

From this we have

$$
\begin{equation*}
\frac{\partial L(E, \Lambda)}{\partial E_{p q r}}=E_{p q r}+\Lambda_{p q} s_{r}=0 \tag{21}
\end{equation*}
$$

The fact $E_{p q r}=E_{q p r}$ implies $\Lambda=\Lambda^{T}$. Since the operator $E$ is threefold symmetric then equation (21) may be written as

$$
\begin{equation*}
E_{p q r}=-\frac{1}{3}\left(\Lambda_{p q} s_{r}+\Lambda_{p r} s_{q}+\Lambda_{q r} s_{p}\right) \text { for } 1 \leq p \leq q \leq r \leq n . \tag{22}
\end{equation*}
$$

Now, the equation $E s=Y$ has the form

$$
\begin{equation*}
\sum_{l=1}^{n}\left(\Lambda_{i j} s_{l}+\Lambda_{i l} s_{j}+\Lambda_{j l} s_{i}\right) s_{l}=-3 Y_{i j} \quad 1 \leq i \leq j \leq n \tag{23}
\end{equation*}
$$

or is in the matrix form

$$
\begin{equation*}
\Lambda\|s\|^{2}+\Lambda s s^{T}+s s^{T} \Lambda=-3 Y \tag{24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
s^{T} \Lambda s=-\frac{1}{\|s\|^{2}} s^{T} Y s, u=\Lambda s=\frac{1}{2\|s\|^{2}}\left(-3 Y s+\frac{s^{T} Y s}{\|s\|^{2}} s\right) . \tag{25}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\Lambda=-\frac{1}{\|s\|^{2}}\left(3 Y+u s^{T}+s u^{T}\right) \tag{26}
\end{equation*}
$$

To calculate the new threefold symmetric update $B_{k+1}=B_{k}+E$ we use the formulae (22), (25) and (26).

## 4. Remarks on the local superquadratic convergence of the method

At first we describe the proposed algorithm:
a) Let $x_{0} \in R^{n}$ and $B_{0}=\left(B_{0}^{1}, B_{0}^{2}, \cdots, B_{0}^{n}\right)$ - threefold operator be given. Let $k=0$,
b) Solve, using for example the Newton method, the system of quadratic equations

$$
\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right) s_{k}+\frac{1}{2}\left(B_{k} s_{k}, s_{k}\right)=0
$$

c) Calculate $x_{k+1}=x_{k}+s_{k}, \nabla f\left(x_{k+1}\right), \nabla^{2} f\left(x_{k+1}\right)$,
d) Update the operator $B_{k}$ using the formulae from Section 3,
e) If a stop criterion is not satisfied, then $k:=k+1$ and return to point b .

To explain a character of convergence of the method we introduce some notations. Let

$$
\begin{gather*}
H_{k}=\int_{0}^{1} \nabla^{3} f\left(x_{k}+t\left(x_{k+1}-x_{k}\right)\right) d t  \tag{27}\\
L_{k}=\left\{X \in R^{n \times n \times n}: X s_{k}=\nabla^{2} f\left(x_{k+1}\right)-\nabla^{2} f\left(x_{k}\right)\right\},  \tag{28}\\
Q=\left\{X \in R^{n \times n \times n}: X \text { is threefold symmetric operator }\right\} . \tag{29}
\end{gather*}
$$

The set $Q$ is linear subspace in $R^{n \times n \times n}$ and $H_{k} \in Q$. Applying Theorem 3.2.7 [5] we have

$$
\begin{equation*}
H_{k} s_{k}=\nabla^{2} f\left(x_{k+1}\right)-\nabla^{2} f\left(x_{k}\right) \tag{30}
\end{equation*}
$$

which means that $Q \cap L_{k}$ is a nonempty linear set. The proposed norm is generated by inner product, so the operator $B_{k+1}$ is defined as the orthogonal projection of the operator $B_{k}$ onto the set $Q \cap L_{k}$, and from Pitagoras Theorem (see [3]) we get

$$
\begin{equation*}
\left\|B_{k+1}-H_{k}\right\|^{2}+\left\|B_{k}-B_{k+1}\right\|^{2}=\left\|B_{k}-H_{k}\right\|^{2} \quad k=0,1,2, \cdots \tag{31}
\end{equation*}
$$

The inequality $\left\|B_{k+1}-H_{k}\right\| \leq\left\|B_{k}-H_{k}\right\|$ implies local linear convergence of the sequence $\left\{x_{k}\right\}$. From equations (31) it results additionally

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\|B_{k+1}-B_{k}\right\|^{2}<\infty \tag{32}
\end{equation*}
$$

The last inequality and the secant equation (13) assure local superquadratic convergence of the proposed algorithm [4].

## References

[1] Davidon W.C.,Variable metric method for minimization, Report ANL-5990 Rev (1959), Argonne National Laboratories, Ill.
[2] Fletcher R., Powell M.J.D., A rapidly convergent descent method for minimization, Comput. J., 6 (1963) 163.
[3] Grzegórski S.M., Orthogonal projections on convex sets for Newton-like methods, SIAM J. on Numer. Anal., 22 (1985) 1208.
[4] Grzegórski S.M., Łukasik E., Theory of convergence for 2-rank iterative methods, prepared for publication.
[5] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Solution in Several Variables, Academic Press, New York, London, (1970).


[^0]:    * Corresponding author: e-mail address: s.grzegorski@pollub.pl

