
Annales UMCS Informatica AI 2 (2004) 301-308
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI

http://www.annales.umcs.lublin.pl/

Small clusters – MPI usage for solving MHD equations

with the FLASH code

Małgorzata Selwa∗, Krzysztof Murawski

Institute of Physics, Maria Curie-Skłodowska University,
Radziszewskiego 10, 20-031 Lublin, Poland

Abstract

Despite fast development of computer technology some numerical problems are still too
complex to be solved using personal computers. In such cases the use of supercomputers can be a
good choice. However, running jobs at computer centers involves necessity of queuing.
Additionally, problems with fast transmission may arise if output files are large enough. An
alternative solution is to build multiprocessor clusters of computers on which Message Passing
Interface is implemented. In this paper application of MPI is presented for the case of the FLASH
code which solves initial-value problems for magnetohydrodynamic equations.

1. Introduction
Construction of supercomputers is based on cooperation – the arrays of fast

processors that work together to solve complex tasks in the field of, e.g.
modeling of climate, controlled fusion, nanotechnology, medicine and biology,
advanced engineering or astronomical processes. These supercomputers are
usually too expensive for most research centers which have at their disposal
small amount of budget. For the past few years scientists used to link relatively
cheap personal computers and adapt their codes to be run on that kind of
platforms.

The idea of joining computers was put forward for the first time by the U.S.
Air Force to avoid Soviet nuclear attack in the 1950s and 1960s [1]. The first PC
cluster was made in 1994 at the NASA Goddard Space Flight Center and was
called Beowulf [1] to commemorate the of medieval hero who defeated a giant
monster called Grendel. Since then this name has been adopted to characterize
all clusters constructed from PCs.

The use of clusters is possible because of parallel computing strategy. A
parallel processing system can divide complexity of a problem into smaller and

∗ Corresponding author: e-mail address: mselwa@kft.umcs.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

Małgorzata Selwa, Krzysztof Murawski 302

simpler tasks which are assigned to nodes of a system that solve them
simultaneously. The efficiency of that kind of work depends on the nature and
complexity of a problem. An important consideration is frequency with which
the nodes must communicate and exchange data to coordinate the work of the
cluster. Problems which have to be divided into enormous number of simple
tasks requiring communication will not be well suited for parallel processing.

Another problem which can occur while using clusters is inefficient usage of
their speed. It occurs that the efficiency of the clusters can be reduced to a few
percent for some kind of applications. A good solution of this problem is to build
in processors which are constructed on the basis of hybrid technology
multithreaded (HTMT) [2].

In this paper the application of a cluster will be presented to simulate wave
processes in astrophysical plasma. This simulation is performed with the use of
the FLASH code which is developed at the Accelerated Strategic Computing
Initiative (ASCI) FLASH Center [3]. The SOLAR cluster that consists of two
SMP (symmetric multiprocessing) nodes with two multithreaded processors
Intel Xeon was tested with MPICH-1.2.5 version.

2. Numerical model

In order to check the properties of the cluster we solve the ideal MHD
equations:

()

() ()

() ()

()

0,

1 ,

1 ,

, 0.

t

p
t

p p p
t

t

ρ ρ

ρ ρ
µ

γ

∂
+∇ ⋅ =

∂
∂

+ ⋅∇ = −∇ + ∇× ×
∂

∂
+∇ ⋅ = − − ∇ ⋅

∂
∂

= ∇× × ∇ ⋅ =
∂

V

V V V B B

V V

B V B B

 (1)

Here ρ denotes the mass density, V is the plasma velocity vector, p is the gas
pressure, B denotes the magnetic field, 3/5=γ is the adiabatic index and µ is
magnetic permeability.

In our studies we consider two coronal loop models in cartesian geometry.
Since our aim is modelling of a straight coronal loop, the complexity of adequate
1d or 2d models is similar to chosen models.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

 Small clusters – MPI usage for solving MHD equations … 303

2.1. One-dimensional model
We consider first the problem of one-dimensional wave propagation in a

coronal loop which is anchored in much denser photosphere. The equilibrium
mass density profile is

 () ()0 () tanh 3
2

L
tr t tr trx c s x x x L xρρ ⎡ ⎤= ⋅ ⋅ ⎡ ⋅ − ⋅ − + ⎤ +⎣ ⎦⎣ ⎦ , (2)

where g/cm1510−=Lρ
3 denotes the mass density of the loop, is

the mass density contrast between the loop and the photosphere,

corresponds to the steepness of the density profile, cm is the loop
length and cm is the width of the transition region [4]. At
the equilibrium the gas pressure and magnetic field are constants. We
perturb this equilibrium by launching initially (at

410=trc
17105.0 −⋅=ts

81050 ⋅=L
8102842.0 ⋅=trx

0p 0B
0=t) pulses in the mass

density and pressure:

2

0(, 0) expd
x xx t A

w
ρ

⎡ ⎤−⎛ ⎞= = ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

, (3)

2

0(, 0) expp
x xp x t A

w
⎡ ⎤−⎛ ⎞= = ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

. (4)

Here is the width of the pulse, denotes its initial
position,

81025.1 ⋅=w 9
0 10=x

125.0=dA and are relative amplitudes of the pulses
which excite a packet of slow magnetosonic waves.

25.0=pA

2.2. Two-dimensional model

We discuss a two-dimensional coronal loop model with the mass density
given by:

 0 4

2.89() 1
cosh ()

x
x

ρ = + . (5)

All quantities are expressed in the units of the ambient plasma. The
equilibrium magnetic field had only y component:

 4

1.97() 1
cosh ()yB x

x
= + . (6)

Waves are excited impulsively by launching the pulse:

()2 2

0.1(, , 0)
cosh (10)

xV x y t
2x y

= =
+ +

. (7)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

Małgorzata Selwa, Krzysztof Murawski 304

3. Numerical tests
3.1. One-dimensional computations

We consider the one-dimensional model which is described in Sect. 2.1. Our
aim is to show that for such a simple case there is no need to run in a parallel
mode. This is a consequence of the fact that communication between different
nodes makes the computational time longer (Fig. 1, Tab. 1). The running option
with eight processes on the cluster containing four processors is checked because
of the use of the multithreaded processors. All numerical computations were
carried up to time 50=t s. The FLASH code was run with the grid of 500
blocks.

The standard device for which MPI is compiled is ch_p4 which works at
workstations or Beowulf clusters and supports SMP nodes [5]. After running
tstmachines which check the available nodes and choose a remote shell for the
sake of the level of security the cluster is properly configured. In the case of the
systems with symmetric multiprocessors SMPs we can use the compile option –
comm=shared which gives us the chance to control the number of processes that
communicate on each node. By default the system reserves 4 MB of shared
memory but the quantity of reserved memory in which messages are transferred
can be increased. Long messages are transferred into pieces so that 4 MB does
not pose any problem.

If we possess a multiprocessor computer which is not a part of a cluster we
can compile MPI with the device option ch_shmem that is appropriate for a
single shared memory system which uses shared memory to pass messages
between different processes.

From the performed test we can conclude that in the case of both 2 processors
and in 4 processors the most favourable option of compilation for the FLASH
code is ch_shmem device. We must notice that running an application on four
processors in that case means running four processes on two processors because
that device is not adopted to share tasks by a network. The less favourable option
for the SMP cluster is using ch_p4 device without sharing memory (Fig. 2,
Table 2). That fact results from the difficulties in communication between
processors.

Table 1. The execution time as a function of a number of processors used by MPI: 0 means
running without the usage of MPI on 1 processor

Number of
processors 0 1 2 4 8

Execution
time 312.647s 333.363s 335.939s 339.920s 347.570s

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

 Small clusters – MPI usage for solving MHD equations … 305

Number of processors

0

100

200

300

400

Ex
ec

ut
io

n
tim

e
[s

]

0 1 2 4 8

Fig. 1. The execution time as a function of a number of processors used

by MPI: 0 means running without the usage of MPI on 1 processor

MPI device

0

100

200

300

400

Ex
ec

ut
io

n
tim

e
[s

]

ch_p4 ch_p4 -comm=shared ch_shmem

Number of processes

2

4

Fig. 2. The execution time as a function of different compilation options

for MPI in the case of 2 or 4 running processes

Table 2. The execution time as a function of different compilation options
for MPI in the case of 2 or 4 running processes

Number of processes 2
Device compilation option for MPI ch_p4 ch_p4 –comm=shared ch-shmem

Execution time 335.939s 335.264s 274.375s
Number of processes 4

Device compilation option for MPI ch_p4 ch_p4 –comm=shared ch-shmem
Execution time 339.920s 339.132s 278.909s

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

Małgorzata Selwa, Krzysztof Murawski 306

3.2. Two-dimensional computations
The aim of the first test we perform for the two-dimensional plasma that is

described in Sect. 2.2. is to evaluate the execution time for a different number of
processes (Fig. 3, Tab. 3). A comparison of execution times of this model and
simple models (Fig. 1, Tab. 1) leads to a conclusion that only for complex
problems the usage of MPI and parallel computing is justified. All computations
were done with the grid of 9000 blocks. We stop these computations at s. 10=t

The next test was similar to the test shown in Tab. 2 and Fig. 2 that checked
the efficiency of different compilation devices for MPI. As we can see in Fig. 4
and Tab. 4 while running codes on different amount of processors the tendency
observed on Fig. 2 (Tab. 2) is not retained. However, for two processors the
tendency changes and our statement is no longer valid. Increasing the execution
time for the ch_shmem device for large number of processes is caused by almost
complete memory fulfillment. Slowing down the speed of computations brings
about the necessity of the use of swap partition.

Depending on the aim of research the cluster can be configured in two
different ways. If we intend to run parametric studies for complex cases like the
problem which is modeled by Eqs. (6)-(8) the more efficient option could be
configuration of a few unlinked SMP computers working with the maximum of
efficiency (the number of processors = the number of processes). However, if
the aim of the computations is a model development evolution, e.g. by making it
more difficult more favourable option as regards the efficiency is configuring the
typical Beowulf cluster and making computations on more than one node for one
problem. The maximum of efficiency would be obtained for the case in which
the number of processors equals the number of processes.

Number of processors

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
tim

e
[s

]

0 1 2 4

Fig.3. The execution time as a function of a number of processors used by MPI

(0 means running without the usage of MPI on 1 processor)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

 Small clusters – MPI usage for solving MHD equations … 307

Table 3. The execution time as a function of a number of processors used by MPI: 0 means
running without the usage of MPI on 1 processor

Number of processors 0 1 2 4
Execution time 35m 14.099s 33m 54.335s 28m 29.153s 22m 23.061s

Table 4. The execution time as a function of different compilation options

for MPI in the case of 1, 2 or 4 running processes

Number of processes 1
Device compilation option for MPI ch_p4 ch_p4 –comm=shared ch-shmem

Execution time 33m 54.335s 34m 15.180s 34m 4.218s
Number of processes 2

Device compilation option for MPI ch_p4 ch-shmem
Execution time 28m 29.153s 19m 38.073s

Number of processes 4
Device compilation option for MPI ch_p4 ch-shmem

Execution time 22m 23.061s 34m 53.505s

MPI device

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
tim

e
[s

]

ch_p4 ch_shmem

Number of processes

1

4

2

Fig. 4. The execution time as a function of different compilation options

for MPI in the case of 1, 2 or 4 running processes

4. Summary
The concept of using multiprocessor computers or linking them into a

Beowulf cluster can speed up computations significantly. However, before
running numerical codes we should choose the most optimized compilation
option which leads to maximum efficiency for the problem.

For simple cases the increase of efficiency with using MPI is low or does not
exist. The advantages of MPI interface can be appreciated for the computations
of complex problems which require more memory and processor time. In that
case the owners of a few SMP computers should consider the basic dillema if it

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

Małgorzata Selwa, Krzysztof Murawski 308

is better to configure them as a cluster and run multiprocessor applications or use
them in parametric studies as separate shared memory systems. The only
verification of this conclusion can be done by testing various compilation
options of MPI for the planned problems. Such tests we performed with the
FLASH code adopted for coronal loop problems.

This work was financially supported by the grant from the State Committee
for Scientific Research, Republic of Poland, KBN grant no. 2 PO3D 016 25. The
software used in this work was in part developed by the DOE-supported
ASCI/Alliance Center for Astrophysical Thermonuclear Flashes at the
University of Chicago.

References
[1] Hargrove W.W., Hoffman F.M., Sterling T., The Do-It-Yourself Supercomputer, Scientific

American, August (2001).
[2] Sterling T., How to Build a Hypercomputer, Scientific American, July (2001).
[3] http://flash.uchicago.edu/flashcode/
[4] Ofman L., Chromospheric leakage of Alfvén waves in coronal loops, Astrophysical Journal,

568;L135-L138 (2002).
[5] http://www-unix.mcs.anl.gov/mpi/

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 04:30:50

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

