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Abstract 
In this paper a new fast fault simulation technique is presented for calculation of fault 

propagation through HLPs (High Level Primitives). ROTDDs (Reduced Ordered Ternary Decision 
Diagrams) are used to describe HLP modules. The technique is implemented in the HTDD RT-
level fault simulator. The simulator is evaluated with some ITC99 benchmarks. A hypothesis is 
proved that a test set coverage of physical failures can be anticipated with high accuracy when 
RTL fault model takes into account optimization strategies that are used in CAE system applied. 
 

1. Introduction 
Recent developments in the area of deep-submicron technology have 

challenged integrated circuit (IC) test methods as never before [1]. The 
increasing complexity of systems being designed makes test development more 
time-consuming. Moreover, nanometer technology has introduced new problems 
such as new types of defects or higher data rates. To reduce manufacturing cost 
and time-to-market, efficient fault detection and location should be used. One of 
the most essential tasks in fault diagnosis is fault simulation [2].  

Current Computer-Aided Engineering (CAE) tools must address the needs for 
new generation of ICs e.g., systems-on-a-chip (SOC). Recent works in this area 
have increased emphasis on new design techniques such as high-level synthesis, 
behavioral synthesis, design reuse and IP-based design. For this reason, new 
ATPG tools that reflect new design flows should be developed, especially tools 
working at higher level of abstraction than gate-level.  

Several approaches for High-Level Automatic Test Pattern Generation 
(HLATPG) have already been proposed. In Artist [3,4] a quality of generated 
test sequence is measured in terms of the number of blocks of statements in 
source description of a system activated during its true-value RT-level 
simulation. Artist accepts synthesizable functional register transfer level (RTL) 
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descriptions in VHDL. A genetic algorithm is used for computing test 
sequences. Fault coverage (FC) of test sequences generated by Artist is generally 
comparable with that obtained with the help of gate-level ATPG. But these 
sequences are significantly longer. HTest [5] uses an ADD (Assignment 
Decision Diagram) representation of functional RTL descriptions. Test 
generation is based on symbolic computations based on RTL algebra. HTest 
generates test sequences comparable or better than Arists or even gate-level 
ATPG methods. Moreover, it is significantly faster (up to 4 orders of 
magnitude). However, in comparison with other algorithms, test sequences are 
longer. This is due to the fact that HTest does not use fault simulation to find 
faults already detected and no fault dropping can be performed to reduce test 
sequence length. In BEHATE [6] behavioral fault-free and faulty VHDL 
descriptions are translated into BDD (Binary Decision Diagram) representation. 
Test generation is based on comparison of the fault-free and faulty BDDs. In this 
algorithm also no high-level fault simulation is used.   

Generally, recently developed HLATPG algorithms usually generate test 
sequences giving high stuck-at fault coverage, when simulated at the gate-level 
[3,5]. However, in some cases low quality test sequences are obtained despite 
high value of the high-level test metric. Such divergence indicates the lack of 
direct relationship between the high-level metrics and the gate-level stuck-at 
fault model. 

Most commonly used high-level test metrics are based on observability basic 
block coverage [3] or observability statement coverage [7]. These metrics 
indicate the percentage of statements (or RTL blocks) that are activated by a 
given test pattern. It has been experimentally proved that fault models based 
only on statement coverage are insufficient [8] and more sophisticated fault 
model including bit coverage and condition coverage [9] should be used. The 
main problem, which makes computing high-level fault coverage (HLFC) 
impossible for more advanced fault models is the lack of efficient high-level 
fault simulator [3]. Hence, developing an efficient high level fault simulation 
method is a key problem which should be solved to find efficient HLATPG [10].  

In this paper a new deductive bit-parallel fault simulation technique is 
presented for calculation of fault propagation through High Level Primitives 
(HLPs). ROTDDs (Reduced Ordered Ternary Decision Diagrams) are used to 
describe HLP modules. The technique is implemented in the HTDD RT-level 
fault simulator [11]. The simulator is evaluated with the help of some ITC99 
benchmarks [4]. Besides high efficiency (in comparison with existing high–level 
fault simulators), it shows high accuracy (in terms of fault coverage) when RTL 
fault model takes into account optimization strategies that are used in CAE 
system applied.  
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2. High-level fault simulation 
In the past, research concerning fast fault simulation methods was primarily 

concerned with sequential algorithms based on the architectural descriptions on 
the gate-level and adopting a single stuck-at fault model. Main directions in 
developing fast fault simulators have been the following: 

1. acceleration of classic algorithms e.g. bit-parallel one: this can be achieved 
with reducing the number of simulated faults [12] or by using static and 
dynamic fault grouping [13], 

2. parallel processing: this can be done thanks to fault partitioning or circuit 
partitioning [14]. Efficient synchronization and communication between 
parallel processes is the main problem in those techniques, 

3. hierarchical fault simulation: in this technique some parts of the system are 
simulated on the gate-level while others on RT-level [15]. Gate-level fault 
simulation is performed only for the modules with internal faults (gate-
level faults) for which there are no equivalent faults on module pins. 

High-level fault simulators should accept descriptions of a system 
architecture consisting of HLP, like multiplexers, adders, registers, ALUs, etc., 
or, in the case of system level fault simulators, more complex modules like 
processors, controllers, memories and dedicated processing elements. The 
function of HLPs should be well defined while their gate-level structure may be 
not known. RT-level fault simulation can be applied for RT-level test generation, 
for optimizing DFT (Design For Testability) with full or partial scan path, and 
for testability analysis during behavioral synthesis (e.g., when testability is taken 
into consideration as a quality measure). 

RT-level fault simulation seems to be the most appropriate for HLATPG 
conforming to new trends in CAE. Moreover, for very large systems gate-level 
fault simulation can not be performed due to long runtime or large memory 
requirements. For such systems RT-level fault simulation may be the only 
alternative for estimation of quality of tests generated using HLATPG.  

Architectural fault simulators usually consider only stuck-at faults of all 
module inputs and outputs (the so called module-level faults). One of the faults 
is equivalent to many internal faults. A technique of fault effects propagation can 
be used here [15]. However, for functional descriptions usually stuck-at fault 
model is not sufficient. In such cases some additional functional or behavioral 
faults are defined. Examples of functional faults are as follows [16]: 

– stuck-at-then (stuck-at-else): this is a fault where the set of statements 
under the then (else) clause of an if statement is always executed 
regardless of the value of its condition expression, 

– dead-clause: this is a fault where a clause of a case statement is selected, 
but the set of statements under the clause is not executed, 

– assignment control fault: this is a fault where the value of the right-hand 
expression is not transferred to the left-hand signal, 
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– micro-operation fault: this is a fault where an operator in an expression is 
faulted to another one, 

– behavioral stuck-at: this is a stuck-at fault taking into consideration also so 
called virtual signals, i.e. unnamed signals formed by all possible sub-
expressions. 

Sometimes fault models for RTL modules are based on the functional 
analysis of their gate-level implementations [17]. In this way Clause-CORRUPT 
OR and Clause-CORRUPT AND faults for if statement (multiplexer) were 
defined. These faults cause that the multiplexer output is ored or anded with one 
of its inputs. Similar fault models were defined for adders and ALUs. 

Existing RT-level fault simulation methods are based on the commercial 
HDL simulators [18,19]. Faults are injected into the source description of a 
system and simulation is repeated for each fault from a fault list. Such an 
approach is very time consuming. Fault simulation, even for small circuits 
consisting of some hundreds of gates (about 100 RTL-VHDL lines), lasts 
hundreds or thousands seconds for 500 random tests [18]. 

 
3. TDD-based bit-parallel deductive fault simulation for RT modules 

One of the most efficient algorithms of fault simulation for the gate-level is 
the bit-parallel one. It is fast and can be easily implemented with small memory 
requirements. But it is difficult to apply this algorithm for higher levels of 
abstraction e.g. for RT-level. For this purpose the deductive fault simulation is 
much more convenient. 

In the HTDD fault simulator ROTDDs are used to describe HLP modules 
(Figure 1). A VHDL functional description is translated into corresponding RT-
level architecture (e.g., each if statement is replaced with a multiplexer). A new 
deductive bit-parallel fault simulation technique is applied for calculation fault 
propagation through HLPs. In Table 1, the method of calculation of fault lists 
propagated from inputs to the output O of a HLP is given.  
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Fig. 1. ROTDD for outputs y (a) and co (b) of a full-adder 
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Table 1. Procedure of fault propagation for HLP 

Propagate(O) 
{ 

 L0 (O)= [0..0]; 
 Lx (O)= [0..0]; 
 L1 (O)= [0..0]; 
 EvaluateLists(I0,[1...1]); 

} 
 
where: 
 I0 is a first node in TDD (a root), 

L0 (l)– fault list for which state of the line l is equal 0 
 Lx (l)– fault list for which state of the line l is equal x 

L1 (l)– fault list for which state of the line l is equal 1. 
           
 Function EvaluateLists is the following: 
 

EvaluateLists(I, L) 
  { 
   for(i in {0,x,1} ) { 
      if(Val(I)==i){ 
        if(i==0) Mask = !(Lx | L1) ; 
         else if(i==x) Mask = !(L0 | L1); 
              else  Mask = !(Lx | L0); 
        L' = L & Mask; 
      } 
     else L'=L & Li(I); 
     if(L'!=[0..0]) 
        if(Node(ei(I ))==leaf and Val(Node(ei(I )))!=Val(O)) LVal(Node(ei(I ))) 

(O)+=L'; 
           else  EvaluateLists(Node(ei(I )), L'); 
   }   
} 

      
where:   Val(I) – state of the line I in the fault free circuit, 

 Node(ei(I ))  - returns node ending edge corresponding to the value i and 
starting from the  
                        node I (leaf means that edge ends with leaf). 
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The following fault model was adopted in the HTDD fault simulator: 
– stuck-at-0 and stuck-at-1 faults for all signals and variables in a source 

description, 
– stuck-at-then and stuck-at-else faults for all if statements, 
– selection faults in case statements. 
The last two groups of faults correspond to stuck-at faults for selection inputs 

of corresponding multiplexers. Static and dynamic fault reduction (Figure 2) is 
used whenever it is possible. More information can be found in literature [11].  

 
4. Experimental results 

The HTDD RT-level fault simulator [11] was used for verifying the 
hypothesis that the HLFC evaluated using RT-level fault simulation can be used 
for estimation of FC for gate-level [4]. The experimental results obtained for 
RT-level were compared to those obtained for the gate-level for the same test 
sets. For this purpose a standard set of ITC99 RT-level benchmarks was used 
[4]. Test sequences were generated using RAGE77 [20], the RT-level ATPG 
system based on genetic algorithm. Gate-level FC was evaluated using Hope 
fault simulator [12] with the fault model built in this simulator (a collapsed set of 
all single stuck-at faults). All computations were done using 450 MHz PC. 
Memory requirements and CPU time (less than 0.05s) were negligible.  
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Fig. 2. Static and dynamic fault reduction for a multiplexer (a). Static fault reduction (fault 

collapsing) deletes all equivalent and implied faults from simulation (faults y/0 and y/1 for the 
multiplexer). Dynamic fault reduction drops faults that do not  propagate through the module for a 

given test (faults s/0 and i0/1 in this example) 
 
In the first group of experiments none of fault reducing techniques on RT-

level was applied. Figure 3 shows the relationships between HLFC calculated 
for RT-level and the gate-level of the benchmark descriptions. HLFC obtained 
on RT-level was comparable with that obtained with the help of gate-level fault 
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simulation (e.g., for B02, B04, B06, B09), but for some circuits HLFC is 
significantly smaller (e.g., B01, B03). This might be caused by several factors: 
an inadequate fault model adopted at the RT-level, no fault collapsing applied, 
benchmark characteristics (no resource sharing on RT, for example), or by a test 
pattern generation method (RAGE77 is based on statement activation in the 
source description during simulation and may activate faults of selected classes 
only). 
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Fig. 3. RTL-level and gate-level FCs for benchmark circuits 

 
Table 2. FC for B01 benchmark  

Test 
no. 

Test 
length 

Gate-level FC 
(131 collapsed 

faults) 

RT-level FC  
(198 faults) 

RT-level FC  
(118 collapsed 

faults) 

RT-level FC, with 
resource sharing 

(85 collapsed faults) 
1 16 85.50 66.67 67.80 92.94 
2 10 47.33 27.78 31.36 40.00 
3 18 87.78 62.63 62.71 89.41 
4 18 92.37 74.75 72.03 94.12 
5 18 90.08 74.24 67.80 91.77 
6 18 83.21 65.15 68.64 85.88 
7 18 93.13 71.72 69.50 94.12 
8 38 84.73 73.74 77.97 91.77 
9 18 83.21 54.04 55.09 83.53 
10 18 84.73 68.69 66.95 88.24 
11 18 89.31 68.18 65.25 91.77 
12 18 95.42 71.21 70.34 91.77 
13 18 72.52 53.03 52.54 76.47 
 
The next group of experiments revealed the reason for this phenomenon. A 

representative example is shown in Table 2. Fault collapsing made the 
calculations shorter but did not change the relationships between FC on RT and 
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gate levels. On the contrary, a better fault model due to resource sharing 
appropriate to the strategy of CAE system used (Design Compiler by Synopsys 
in this case) did well.  

 
5. Conclusions 

In our experiments the HTDD fault simulator was used. In this simulator, 
functions of all modules have to be described using TDD. It is possible to 
generate such descriptions directly from any standard VHDL or Verilog 
specification. It is also possible to define different functional fault models. This 
can be done simply by modifying TDD. 

A new TDD-based fault simulation technique was developed. It combines 
advantages of both bit-parallel and deductive fault simulation. It is fast and easy 
for implementation. It can be used for evaluation of high-level fault models [21] 
and in simulation based test generation methods [22]. It can also be built into 
existing HLATPG algorithms to enable fault dropping. 

RT-level fault simulation can not evaluate accurate value of FC, yet. It gives 
us only the estimation of FC. Precise value of FC can only be computed using 
gate-level or hierarchical fault simulators. Sometimes high-level fault simulators 
can not be useful. The lack of information about the structure of some modules 
may cause that some physical defects can not be modeled.  

However, high-level fault simulation, particularly RT-level one, has many 
advantages making this approach very attractive and useful. First, test set 
coverage of physical failures can be anticipated with high accuracy when RTL 
fault model takes into account optimization strategies that are used in a CAE 
system applied. The possibility of simulating modules for which corresponding 
gate-level structure is not known, e.g., embedded cores, is guaranteed. HTDD 
representation enables evaluation of different high-level fault models and 
metrics. Each TDD corresponds to one RTL block or VHDL statement, so block 
coverage or statement coverage metrics can be computed simply by tracing TDD 
activities. Moreover, all metrics commonly used in software engineering (e.g. 
branch coverage, condition coverage, path coverage) [9] can be calculated in the 
similar way. Hence, our HTDD fault simulator can also be used for software test 
generation. Lower memory requirements and greater speed (simulated systems 
have fewer components and hence fewer faults collapsed) can be achieved 
through static and dynamic fault reduction. This does not seem to be as efficient 
as in the case of gate-level. Information about test quality and about expected 
testability of the designed system can be obtained before logic synthesis. If 
untestable components of the system can be located in the corresponding 
functional description, then the system can be easily redesigned for increased 
testability. 
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