
Annales UMCS Informatica AI 2 (2004) 379-389
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI

http://www.annales.umcs.lublin.pl/

Evaluation of possibilities of java cryptography architecture

and java mail libraries usage to encrypt e-mail messages

Piotr Kopniak∗

Institute of Computer Science, Faculty of Electrical Engineering and Information Technology,
Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The following paper presents the possibilities of applying Java language to encrypt e-mail
messages. The introduction includes a short outline about symmetric and asymmetric cryptography
and how to build a safe electronic letter is discussed later. Finally, we would like to consider the
possibility of implementing the discussed Java model of the safe message creation.

1. Introduction
The most frequently used medium of electronic data interchange is e-mail.

A message, in a form of an electronic letter, is repeatedly passed among
numerous computers on its way from a sender to a receiver. It may also happen
that a message gets into the wrong hands, for instance of a mail server
administrator because of the wrong address. How should we protect ourselves
from the secret data disclosure? To make this transfer more secure we may pack
the message into “an electronic envelope” by taking advantage of cryptography.

Over the last few years we have been researching a wide range of possibilities
that Java language may possess and, therefore, we have decided to check and
evaluate the ability of applying Java Cryptography Architecture and Java Mail
libraries to the protection of electronic mail.

2. Data protection
The major task of present cryptography is to protect the data stored or

transported among various computer systems. Because of numerous forms of
attack on the message that is being sent, one can distinguish the following
subjects of protection [1]:

∗ E-mail address: copy@pluton.pol.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

Piotr Kopniak 380

1. Confidentiality – information should be secret and unreadable for
unauthorised people. In this case cryptography has a tool in the form of
cipher algorithms (ciphers). Ciphering enables the mathematical
transformation of a visible message into an unreadable string of bytes, the
reading of which is only possible when a decryption process has been
conducted. Scrambling and de-scrambling transformations make use of
additional sets of parameters, called keys, that are characteristic of a
specific transformation [2-4].

2. Integrity – it means that the data that are sent are not altered in any way.
Modification of an accidentally chosen part of encrypted information can
make us unable to decrypt it. Cryptography can offer us a solution called
shortcut or hash function that provides the integrity of data [5]. The
shortcut function calculates a special unique number called message digest
on the basis of the input data. MD5 and SHA-1 are the most common hash
functions nowadays.

3. Authenticity – it means that the sent data indisputably comes from a sender
who claims to be their author. Cryptography enables us to prove identity
by means of certificates or digital signatures. A certificate is a
confirmation of both: subject identity and his public key carried out and
digitally signed by one of Certificate Authorities (abbr. CA) such as
VeriSign [11], Thawte [12], Entrust [13]. Although there are numerous
examples of certificates used in Internet, the most common one is X.509
Standard on which Internet Engineering Task Force (IETF PKIX) group is
working [14].

A digital signature is a combination of encrypting with a shortcut
function. It enables us to verify the integrity and the authenticity of
a message at the same time.

3. Cryptographic architecture in java

To evaluate the possibilities of applying Java to data protection one needs to
get to know the cryptographic architecture that has been included in the standard
version of the language since JDK 1.1 version. The cryptographic architecture of
the Java language environment is based on the separation of a project from its
implementation. The structure of the Java Cryptography Architecture (JCA)
defines the whole process of creating cryptographic classes, which is something
like a design pattern. Conceptual, abstract classes that describe the architecture
core are included in the following packages: java.security and javax.crypto. The
implementation that complements JCA requires the creation of our own
inheritance classes from conceptual ones and it is later added taking advantage
of the conception of cryptographic providers. Java is distributed with two default
providers: SUN and SunJCE (which were previously distributed as an external
library in Java Cryptography Extension and became an integral part of JDK 1.4).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

 Evaluation of possibilities of java cryptography architecture … 381

It is possible to create one’s own provider and then to add it to Java
environment. Such attitude allows for an easy extension with new security
mechanisms, for instance one’s own implementations of existing or new
encrypting algorithms. More about Java security architecture can be found in the
language distribution documentation [6,7] as well as in paper [8].
SUN and SunJCE default providers offer us the implementation of
various cryptographic algorithms (see Table 1) [6,7].

Table 1. Algorithms implemented by SUN and SunJCE providers (JDK 1.4)

The name of the algorithm Assignment
Blowfish, DES, DESede, PBEwithMD5andDES,

PBEwithMD5andDESede Symmetric cipher

MD2, MD5, SHA-1, HMAC-MD5, HMAC-SHA1 Hash algorithm
Diffle-Hellman Key agreement algorithm

DSA, SHA1withDSA MD2withRSA, MD5withRSA,
SHA1withRSA Digital signature

Because of American export restrictions, Java environment contains the

implementation of only those algorithms that are either given access to export or
those that are free of charge. That is why the implementation of such algorithms
as RSA or IDEA is covered in the paper. The solution (that would make it likely
to offer endless cryptographic possibilities of Java) uses an additional provider,
for instance one of free packages: Cryptix JCE [15], Bouncy Castle Crypto API
[16] or ISNetworks JCE Provider [17]. All of them implement similar cipher
algorithm sets. We have chosen Criptix JCE for tests. This library contains the
implementation of all the algorithms that are included in Sun libraries and
numerous additional ones (see Table 2).

Table 2. Additional algorithms implemented in Cryptix JCE (17 Feb 2002 version)

The name of the algorithm Assignment
CAST5, IDEA, MARS, RC2, RC4, RC6, Rijndael, Serpent,

SKIPJACK, Square, Twofish Symmetric cipher

MD4, RIPEMD-128, RIPEMD-160, SHA-0, SHA-256/384/512,
Tiger Hash function

HMAC-MD2, HMAC-MD4, HMAC-RIPEMD-128, HMAC-
RIPEMD-160, HMAC-SHA-0, HMAC-Tiger Keyed hash function

RSAES-OAEP, RSA/PKCS#1, ElGamal/PKCS#1 Asymmetric function
RawDSA, RSASSA-PKCS1, RSASSA-PSS Digital signature

Java Cryptography Architecture is based on abstract classes as well as static
factory method [9]. Such construction allows for using recently added
algorithms and provides confidentiality, integrity and authenticity. The

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

Piotr Kopniak 382

successive steps of creating a message that will meet all these requirements are
described below.

4. Building a protected message
The right assessment of the possibilities of data protection when using Java

language can be carried out only when we put its cryptographic mechanisms into
practice, i.e. when building a secure message. When a secret message is to be
sent by an unprotected canal such as Internet, it should be built in a special way
that provides confidentiality, integrity and authenticity. There are two very
different and conflicting email encryption standards for creating secure e-mail
messages: S/MIME and OpenPGP [18]. Both of them are based on
multipart/signed and multipart/encrypted MIME encapsulations [19] but their
message formats are quite different. However, they use similar message building
algorithms and almost the same body parts generally. We describe body
construction method not compatible to the standards but built on such algorithm
(with blocks used in the two standards) and more distinctly showing JCA
abilities (Fig. 1).

Firstly, we need a written message; in this case the contents of an e-mail letter
that will be called plain message. Next, the message should be signed with a
digital signature, i.e. we need to generate a message shortcut (or digest) and
scramble it with one’s own private key. In a digital signature the SHA-1 short-
cut function (message digest) and RSA cipher, as it happens in the example
given, will enable us to verify the message as well as the authenticity of its
sender.

Java language environment gives us the possibility of keys and certificates
management with the help of key stores (objects of
java.security.KeyStore class) which are collected in the form of a file
(a default file - .keystore). When we want to sign a message, the system
needs to read the private sender’s key from the key store (by means of a
password from ourPassword parameter), which initialises the sign function.
Then, using the update() method, the plain text is added to the signing object
and the sign() method conducts the signing process:

KeyStore ks =
KeyStore.getInstance(KeyStore.getDefaultType());
ks.load(new FileInputStream("c:/windows/.keystore"),new

String("StoreStore").toCharArray());
byte[] plain_byte = plain_txt.getBytes();
PrivateKey privateKey =
(PrivateKey)ks.getKey(ourKeyAlias,ourPassword);
Signature sign = Signature.getInstance("SHA1withRSA");
sign.initSign(privateKey);
sign.update(plain_byte);
byte[] plainSign = sign.sign();

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

 Evaluation of possibilities of java cryptography architecture … 383

The next step is scrambling the contents of the message with a symmetric cipher
(in this case DESede) because the speed of symmetric cryptosystems is much
faster than that used for scrambling with an asymmetric cryptosystem (e.g. RSA)
[2,5]. The measurements of encrypting times that we have conducted also seem
to prove that fact (see Fig. 2 and Table 3).

P la in
m e s s a g e

P la in
m e s s a g e

S ig n a t u r e

C ip h e r
m e s s a g e

S ig n a t u r e

C ip h e r
m e s s a g e

S ig n a t u r e

C ip h e r
S e s s io n K e y

M e s s a g e d ig e s t

S y m m e t r ic C ip h e r

A s y m m e t r ic C ip h e r

S e n d e r ’s P r iv a te K e y

S e s s io n K e y

R e c e iv e r ’s P u b l ic K e y

S e s s io n K e y

Fig. 1. Secure message building process

Block ciphers, for instance DES, scramble a given portion of information

called a block. In the case of the DES algorithm a block consists of 64 bits [11].
Consecutive data blocks can be joined together in various ways. The rules of
joining the two consecutive blocks. More about that can be found in works [1,5].
Because there is no previous block for the first one that is scrambled, we need to
generate a random block which is called initialisation vector (IV in short).

Encrypting of a message starts with generating a key with the help of an
object of KeyGenerator class and a generateKey() method. Next, with
the use of a factory method an instance of a cipher is created in CBC mode and
with PKCS#5 padding scheme [20]. This padding scheme specifies how to fill
the remainder of the given plaintext block to the block quantity that is required
by the cipher. The cipher is initialised with the encrypt mode (unlike in the
decrypt mode) together with the sessionKey and finally the proper
scrambling or de-scrambling method (doFinal()) is executed. The code looks
like the following:

KeyGenerator kg = KeyGenerator.getInstance("DESede");
kg.init(new SecureRandom());
Key sessionKey = kg.generateKey();
Cipher cph =
Cipher.getInstance("DESede/CBC/PKCS5Padding");
cph.init(Cipher.ENCRYPT_MODE,sessionKey);

byte[] cipher_byte = cph.doFinal(plain_byte);
byte[] iv = cph.getIV();

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

Piotr Kopniak 384

In order to improve the safety, we need to use a certain scrambling key, called
session key, that has to be changed for every new message so it needs to be
added to the message and sent with it every time. Due to this the key must be
protected by scrambling so as not to be used for decrypting by an intruder.

The process of scrambling of a key (which is a much smaller set of data than
a message itself) can be executed by means of asymmetric RSA cipher that
comes from Cryptix JCE library. An asymmetric cipher allows the receiver to
de-scramble a session key without any problems only when his public key was
used for scrambling. Only then can we be sure that the right addressee will read
the message.

The encrypting process begins with downloading a receiver’s certificate that
is stored in a sender’s key store. Next, the instance of the cipher is created. After
initialising the cipher by means of a certificate, the proper encrypting method
(doFinal()) is executed, which looks like that:

java.security.cert.Certificate cert =
ks.getCertificate(cert_alias);
cph = Cipher.getInstance("RSA/ECB/PKCS#1");
cph.init(Cipher.ENCRYPT_MODE, cert);
cipherKey=cph.doFinal(sessionKey.getEncoded());

Additionally, one can attach the name of the sender to the message and this will
help the receiver to search for the right certificate and public key in his own key
store:

java.security.cert.Certificate cert =
ks.getCertificate(ourKeyAlias);
String ourDistName =
((X509Certificate)cert).getSubjectDN().toString();

The combination of all the parts of an encrypted message into one byte array
cipher_byte looks like that:

ByteArrayOutputStream byteOutput = new
ByteArrayOutputStream();
DataOutputStream dataOutput = new
DataOutputStream(byteOutput);
dataOutput.writeUTF(ourDistName);
dataOutput.writeInt(iv.length);
dataOutput.write(iv);
dataOutput.writeInt(cipherKey.length);
dataOutput.write(cipherKey);
dataOutput.writeInt(plainSign.length);
dataOutput.write(plainSign);

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

 Evaluation of possibilities of java cryptography architecture … 385

dataOutput.writeInt(cipher_byte.length);
dataOutput.write(cipher_byte);
byte[] cipher_byte = byteOutput.toByteArray();

A message, that has been prepared in such a way, can finally be sent. How

can Java Mail library be used for that will be described in the later section of the
paper.

The implementation of the message decrypting method is based on executing
the same set of activities when encrypting but in the reversed order.

Apart from that, after getting a message, one can also verify the authenticity
of a sender. The shortcut function is executed on the de-scrambled message. At
the same time the message digest that was sent together with a message is
decrypted using a sender’s public key. Both figures of message digest are
compared and only if they are identical it means that the sender is in fact the
person he claims to be:

X509Certificate xCert =
(X509Certificate)kstore.getCertificate(tmpAlias);
PublicKey theirPublic = xCert.getPublicKey();
Signature sign = Signature.getInstance("SHA1withRSA");
sign.initVerify(theirPublic);
sign.update(plain_byte);
boolean signOK = sign.verify(plainSign);

As it was shown above, Java Cryptography Architecture seems to be the right

solution for data protection due to the fact that Java possesses all the necessary
tools that provide the confidentiality, integrity and authenticity for information
exchange.

5. Java mail library
JavaMail API consists of a set of classes that are used for developing

applications that transport electronic messages via Internet. This library enables
us to create client or server side programs that are independent of the system
platform, an Internet provider or communication protocol. JavaMail is
distributed as an optional package of the Java Standard Edition (J2SE) and it is
an internal part of Java Enterprise Edition (J2EE).

In the discussed Java library there are implemented the following e-mail
standards [21,22]:

1. SMTP (Simple Mail Transfer Protocol) that is used for e-mail messages
sending,

2. POP (Post Office Protocol) used for downloading e-mails from a mail
server,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

Piotr Kopniak 386

3. IMAP (Internet Message Access Protocol) – an advanced protocol for
downloading e-mails,

4. MIME (Multipurpose Internet Mail Extension) that allows us to specify
the type of the contents of the data that are sent.

6. Sending e-mails

An e-mail message consists of essential parts: a header (in which one can
distinguish, among other things, the information about the sender, the receiver’s
address and the subject of a letter) and the main body of a letter. Sending a
message using Java Mail Library is based on constructing a Message object,
adding some content to it by means of setText() method and, finally,
sending it using the static send() method of Transport class. Creating a
message demands constructing a session object that contains the address of
SMTP server:

Properties props = System.getProperties();
props.put("mail.smtp.host", host);
Session session = Session.getDefaultInstance(props,
null);
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,new
InternetAddress(to));
message.setSubject("Cipher Mail");
message.setText(new String(cipher_byte));
Transport.send(message);

7. Receiving e-mails

When receiving a message, we need to connect to a specified e-mail box on
POP or IMAP server and download a letter. If we want to use Java Mail library
in this operation, we need to create a Store object that will manage the
connections and mail box folders. The Store object is equipped with the
connect() method (that makes it possible to get connected to the server) and
the getFolder() method (that returns the mail box folder, the default one is
INBOX). After opening the folder one can read all the messages that are there.
The following example shows the operation of getting e-mail messages and
displaying all of them on a system console:

Properties prop = new Properties();
Session session = Session.getDefaultInstance(prop, null);
Store store = session.getStore("pop3");
store.connect(host, username, password);
Folder folder = store.getFolder("INBOX");

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

 Evaluation of possibilities of java cryptography architecture … 387

folder.open(Folder.READ_ONLY);
Message message[] = folder.getMessages();
for (int i=0, n=message.length; i<n; i++) {

System.out.println(i + ": " + message[i].getFrom()[0]
+ "\t" + message[i].getSubject() + ”\n” +
message[i].writeTo(System.out);

)
folder.close(false);
store.close();

8. Conclusions and future works

The research that we carried out was to evaluate the cryptographic
possibilities of Java language. The analysis of its cryptographic architecture as
well as developing a sample mail application allowing for exchanging secure
messages proved that:

– Java is a language of outstanding cryptographic functionality. The standard
edition of the language is equipped with cryptographic mechanisms that
satisfy the requirements of data protection while extending the language
environment by means of extra cryptographic algorithms is quite easy due
to a well-thought-out architecture of cryptographic providers.

– In Java environment we can distinguish an advanced mechanism of key
and certificate management that is based on the key stores which is
physically represented by password protected files. There are also special
command line tools, for instance: keytool that is used for creating and
managing of keys and certificates, generating the keys, import, export,
creating one’s own certificates etc.

– Java Mail library is a convenient and easy-to-use set of classes that allow
us to build an e-mail client application which uses basic communication
protocols as well as password authentication.

While developing an e-mail encrypting application we have done some
research on the encrypting times with the use of symmetric and asymmetric
algorithms as well as on the time that is needed to carry out an effective brutal
attack on the DES cipher.

Table 3. Encryption times (ms) for different algorithms

Size (byte) 7 000 14 000 100 000 1 000 000
DES (56 bit) 0 0 50 300

DESede (168 bit) 0 0 120 800
RSA (512 bit) 150 200 1 100 40 000
RSA (1024 bit) 110 250 1 500 85 000

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

Piotr Kopniak 388

The efficiency tests of such encrypting algorithms as DES, DESede, and RSA
carried out for the differentiated lengths of messages proved that the encrypting
time grows together with the key length and it is about ten times longer for the
asymmetric ciphers than for symmetric ones.

It confirms that the choice of the symmetric algorithm for encrypting longer
data (e.g. a message) is the right solution, just as deciding on an asymmetric
algorithm when encrypting considerably shorter figures (like a key). Long
encryption times for RSA algorithms are observable especially with a
considerable amount of scrambled data. In the case of the text that is of about
1MB size and using a 1024 bites key the scrambling lasts as long as 85 seconds.

The study of the time needed for the brutal breaking of the DES cipher (by
searching the key space), and supposing that the right solution would be found
after searching half of the possible keys (36 028 797 018 963 968), proves that
the time needed to complete the task by means of a one-thread Java application
on a 1GHz processor machine would take 3 238 506 years. The results turned
out too long in comparison to the solution times published in the Internet [23]. It
is due to the reason that Java is an interpreted language that cannot be used for
cryptoanalytic purposes. The best results are achieved thanks to hardware
implementation [2].

Encryption times

0

500

1000

1500

2000

2500

3000

0 50000 100000 150000 200000

Size (byte)

Ti
m

e
(m

s)

DES 56 bit DESede 168 bit RSA 512 bit RSA 1024 bit
Fig. 2. Symmetric and asymmetric ciphers encryption times

In the research that will follow we will conduct the studies of the abilities of

using Java implementation standards S/MIME in Bouncy Castle Crypto API,
OpenPGP in Criptix as well as the Free cryptographic extension to JavaMail that
currently undergoes some tests, that is JavaMail-Crypto API [24].

References
[1] Robling Denning D. E., Kryptografia i ochrona danych, WNT, Warszawa, (1992) (1993), in

Polish.
[2] Levy S., Rewolucja w kryptografii, WNT, Warszawa, (2002), in Polish.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

 Evaluation of possibilities of java cryptography architecture … 389

[3] Koblitz N., Algebraiczne aspekty kryptografii, WNT, Warszawa, (2000), in Polish.
[4] Koblitz N., Wykład z teorii liczb i kryptografii, WNT, Warszawa, (1995), in Polish.
[5] Knudsen J. B., Java Cryptography, O’Reilly, (1998).
[6] Java Cryptography Architecture API Specification & Reference, Sun Microsystems, Inc.,

4 August 2002.
[7] Java Cryptography Extension (JCE) Reference Guide for the Java 2 SDK, Standard Edition,

v 1.4, Sun Microsystems, Inc, 10 Jan 2002.
[8] Matusiewicz M., Mechanizmy ochrony danych w języku Java, Materiały VII Krajowej

Konferencji Zastosowań Kryptografii ENIGMA’2003, Warszawa, 545, in Polish.
[9] Eckel B., Thinking in Java, Helion, Gliwice, (2001).
[10] Loudon K., Algorytmy w C, Helion, Gliwice, (2003), in Polish.
[11] http://www.verisign.com/ - VeriSign
[12] http://www.thawte.com/ - Thawte
[13] http://www.entrust.com/ - Entrust
[14] http://www.ietf.org/ – The Internet Engineering Task Force
[15] http://www.cryptix.org/ – The Cryptix Foundation Limited
[16] http://www.bouncycastle.org/ - Legion of the Bouncy Castle
[17] http://www.isnetworks.com/ - ISNetworks
[18] http://www.imc.org/smime-pgpmime.html - S/MIME and OpenPGP
[19] http://www.ietf.org/rfc/rfc1847 – RFC 1847: Security Multiparts for MIME
[20] http://www.rsasecurity.com/rsalabs/pkcs/ - RSA Security PKCS Workshop
[21] http://java.sun.com/products/javamail/ - JavaMail homepage, Sun Microsystems, Inc.
[22] http://www.imc.org/ – Internet Mail Consortium
[23] http://www.bezpieczenstwoit.pl/Kryptografia.html – Bezpieczeństwo IT
[24] http://javamail-crypto.sourceforge.net/ - JavaMail-Crypto API Homepage

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:42

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

