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Abstract 
The classical adaptive control problem approach by Rishel [1,2] for the problems with fixed 

time horizon is extended to random cases. Necessary conditions are obtained and an algorithm for 
extremal control and stopping time is presented. Potential applications in artificial intelligence, in 
pattern recognition, data mining, self-learning and in information pricing are mentioned. 
 

1. Introduction 
We consider the optimal control problem for a discrete time stochastic system 

 11 i+iiii+ )w,y()+,u,y=f(y ξσξ ,  
wi are the system disturbances, and ξ represents the unknown parameters of the 
system. Control actions ui at time i can only base on observing the previous 
states of the system, i.e. y0,..., yi, and on the knowledge of the a priori 
distributions ( )0P dy  and ( )ξdP . However, controlling and observing the states 
of the system can increase information about the parameters ξ. The a posteriori 
distribution at time i, characterizing the knowledge about ξ obtained from the 
observations y0,..., yi, depends, however, on control actions undertaken before 
time i, i.e. on (u0,...,ui-1, because they influence the states being observed. To 
fulfill the purpose of control, which is usually to optimize performance criteria 
depending on the states of the system and the controls, an optimal control 
process must have a dual nature – it should yield both fast increase of 
information and optimization. Balancing these two distinct but interdependent 
tasks is the core of adaptive control. Due to its importance for applications, 
adaptive control problems have attracted attention for a long time. The first 
publications appeared half a century ago and are connected with the names of 
N. Wiener [3], A.A. Feldbaum [4,5], R. Bellman [6], R. Kulikowski [7], 
R. Rishel [1,2,8], V.E. Beneš, I. Karatzas and R.Rishel [9]. The relevant 

                                                 
*Corresponding author: e-mail address: t.banek@pollub.pl 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 02:38:46

UM
CS



Tadeusz Banek, Edward Kozłowski 6 

literature is very extensive (see the references in the cited papers). The practical 
aspects are described in hundreds of books and articles; some of them are listed 
in [10]. 
In classical setting the discrete time i = 0,...,N, where N is fixed but arbitrary (see 
R.Rishel [1,2] for instance) often called horizon, and the quality index is of the 
form 

 ( ) ( ) ( )
1

0
,

N

N i i i
i

J u E h y g y u
−

=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ , 

where gi represents costs of control, h estimates the final state, E is an operator 
of averaging with respect to a probability measure. However, there are problems 
in which assuming a fixed – and independent of control results horizon N, does 
not lead to an adequate model of situation. In problems of the self-learning type, 
or in problems of artificial intelligence a horizon of activity dependent on 
obtained results is just assumed and the process is stopped at the first moment of 
obtaining satisfactory results. We come across such cases, for example, when 
training a neural network, in image recognition problems, in data mining or 
when obtaining an a’posteriori distribution of parameter ξ with entropy (or 
amount of Fisher information) on satisfactory level – in self-learning problems 
(see eg. T.Banek, E.Kozłowski [11]). 

However, the optimal stopping of stochastic processes is a complicated 
mathematical problem being itself a challenge for the scientist. The approach 
proposed in mathematical monographs (discrete time) is based usually on 
construction of so-called Snell envelope, i.e., the smallest submartingale which 
dominates the stopped process. It is proved that the optimal stopping moment is 
the first moment when the dominating and stopped processes become equal. 
However, in the considered problem we stop not one process but a family of 
processes (indexed by the control). It means construction of not one Snell 
envelope only, but an entire family of them – of which one should only choose 
such one so that the stopping time determined by it would result in the optimal 
value of the performance criteria. So, the classical, purely probabilistic method 
is not practical in the considered problem. In this paper we use a simple trick 
coming from control theory ideas: stopping the process by using control. We 
extend the control vector ui with the additional coordinates θi and modify the 
performance criteria by using the properties of the hyperbolic tangent function; 
for large, positive values of control θ0,..,θi, the function 

 ( ) ( )0
0

,...,
i

i i j
j

thψ θ θ θ
∆

=

=∏ , 

is close to one. If 1 0iθ + ≤ , then ( )0 ,..., 0i kψ θ θ = , for all k greater than or equal 
to i+1. So, the modification of the performance criteria consisting in 
multiplication of each function gi by function ψi, and considering, for such 
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Adaptive control with random horizon 7 

modified performance criteria, a classical problem with a fixed horizon N, leads 
to the problem with adaptive control and stopping at a random moment (not 
greater than N). For such a problem we will present necessary conditions of 
optimality, and an algorithm leading to determine the optimal control and the 
stopping moment. 

The structure of the paper is the following. In section 2 we formulate the 
problem and present the necessary conditions of optimality obtained by making 
weak variations of the functional equal to zero. In section 3 we present a formula 
for evolution of the conditional distribution. In section 3 we use Ray Rishel’s 
idea of joining the necessary conditions and backward induction to obtain a 
computational algorithm. Interpretation of the conditions obtained in the 
algorithm allows to determine an extremal stopping moment. 

 
2. Adaptive control 

Let ( ),F ,PΩ  be a fixed probability space. On this space an n–dimensional 
random vector y0, a sequence of m–dimensional random vectors w1,...,wN with 
the normal distribution ( )0 mN ,I  and k–dimensional random vector ξ are 
defined. We assume stochastic independence of the object mentioned above: 

0 1 Ny ,w ,...,w ,ξ . We define { } ( ): 1k iF w i ,...,kσ σ ξ= = ∨  and put 

( )0 NF y Fσ= ∨ . We will consider a problem of adaptive control of the system 
with the equation of state 
 11 i+iiii+ )w,y()+,u,y=f(y ξσξ  (1) 

with the random initial condition 0y , where 0i ,...,N= , n
i Ry ∈ , 

: k n l nf R R R R× × →  and ( ): ,k nR R M n mσ × → , where ( ),M n m  is a set of 
matrices with n–rows and m–columns. We assume the functions f and σ to be 
continuous with respect to all their arguments. On ( ), ,F PΩ  we define a family 
of σ–subfields { }: 0j iY y i ,..., jσ= = . We name Yj measurable processes l

ju R∈ , 

j Rθ ∈  control activities, and 

 ( )
( )

0 1 1

0 1 1

, ,...,

, ,...,
N

N

u

u u u u

θ

θ θ θ θ −

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=

=

u

 

a feasible control. A class of feasible controls is denoted by U. In order to 
formulate the aim of control we introduce functions , 0,..., 1ig i N= − . We 
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assume that : n l
ig R R R× →  are continuous and bounded. The problem consists 

in determining 
 ( )sup

U
J

∈u
u , (2) 

where 

 ( ) ( ) ( )
1

0 0

,
iN

i i i l
i l

J E g y u th θ
−

= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∏u , (3) 

and in determining such a control 

 
* ** *

* 0 11
* ** *

0 11

, ,..., N

Nu uu u
θ θθ θ−

−

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= =⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

u , 

for which this supremum is attained. Weak differentiation and properties of the 
conditional expectation lead to necessary conditions presented in the theorem 
below. 
 
Theorem 1 If functions ig  are continuous and bounded and functions gi, f have 
continuous derivatives with respect to the variable u and 

( ) ( )( )det , , 0Ty yσ ξ σ ξ ≠  for ( ), k ny R Rξ ∈ × , then the necessary condition of 

control optimality *u  and *θ  is given below: 

 
( ) ( ) ( ) ( )

1
* * *

2 *
1 1

1 , , 0
iN

j j j i i i l j
i j l jj

g y u E g y u th Y
ch

θ
θ

−

= + = +

⎡ ⎤⎧ ⎫⎪ ⎪+ =⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∑ ∏  (4) 

 
( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

1
* * * *

1 1

1
* *

1

, ,

, , , , , , 0

iN

j u j j j i i i l
i j l j

T
T

j j j j j u j j j

th g y u E g y u th

y f y u y y f y u Y

θ θ

ξ σ ξ σ ξ ξ

−

= + = +

−

+

⎡ ⎧⎛ ⎞⎪∇ +⎢ ⎜ ⎟⎨
⎢ ⎪⎝ ⎠⎩⎣

⎤⎫′× − =⎬⎥⎭⎦

∑ ∏
 (5) 

for { }0 1 1j , ,...,N∈ − , where the symbol { }jE Y⋅  denotes a conditional expected 

value (CEV). 
Proof: 
Let us denote by 

 ( )
( )

[ ] [ ]11 1, exp
22

T

n
x m Q x m Q x m

Q
γ

π
−⎛ ⎞− = − − −⎜ ⎟

⎝ ⎠
, 

densities of the normal distributions ( ),N m Q . Let us notice that 

 ( ) ( )( )1 1 1, , , ,k k k ky f y u yγ ξ ξ− − −− Σ , 
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is the density of conditional probability of passing from state yk-1, at the moment 
k-1, to state yk, at the moment k, where Fk-1 and uk-1 are known and 
( ) ( ) ( ), , ,Ty y yξ σ ξ σ ξΣ = , which we denote as 

 
( ) ( ) ( )( )

( ) ( )

1

1

1 1 1 1

1 1

1, ; , , , , ,

1, ; ,

k

k

u
k k k k k k

u
k k k k k

p k y k y y f y u y

P dy F p k y k y dy

γ ξ ξ−

−

− − − −

− −

− = − Σ

= −
 

For 0 j i N≤ ≤ ≤ , we define conditional measures and joint measures 

 ( ) ( )1,...,
i

j i k k
k j

P dy dy P dy F −
=

=∏ , (6) 

 ( ) ( ) ( ) ( )0 0 1, ,..., ,...,j jP d dy dy P d P dy P dy dyξ ξ= . (7) 

Later, let us notice that functional (4) can be written in the form 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

0 10 0

1

0
0 0 0

j i iN

i i i l i i i l j
i i jl l

jj i

i i i l j j j l j
i l l

J J ,u E g y ,u th E g y ,u th F

g y ,u th g y ,u th P d ,dy ,...,dy

θ θ θ

θ θ ξ

−

= = += =

−

= = =

⎡ ⎤⎛ ⎞
= = +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

∑ ∑∏ ∏

∑ ∏ ∏∫

u
 

( ) ( ) ( ) ( ) ( )
1

1 0
10 1

, ,..., , ,...,
j iN

l i i i l j N j
i jl l j

th g y u th P dy dy P d dy dyθ θ ξ
−

+
= += = +

⎛ ⎞⎛ ⎞
+ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ ∏∫ ∫ . (8) 

We can see that the control uk-1 acts directly on passing the system from state 
yk-1 to state yk, and, in the indirect way, to later states 1k Ny ,..., y+ . 

Let us fix the number { }0,..., 1j N∈ − . Let *u u vε= +  where *u  – optimal 

control of the system, 0ε > , instead ( )1: n j l Nv R R× + ×→ , 

( )0,...,0, ,0,...,0jv col v= , ( )0 0,...,0col=  where ( )1: n j l
jv R R× + → , 

( ),...,j j jv col v v=  and ( )0 ,...,j j jv v y y=  is an arbitrary Borel function. Also, let 
* sθ θ ε= +  where *θ – optimal control of the stopping, ( )1: n j Ns R R× + → , 

( )0,...,0, ,0,...,0js s= , where ( )0 ,...,j j js s y y=  is an arbitrary Borel function. 

From formula (8) we compute 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1

0

1

12
1 1

0

1

j
* * *

l
l

iN
* * *

j j j i i i l j N*
i j l jj

j j

J s,u th

g y ,u g y ,u th P dy ,...,dy
ch

s P d ,dy ,...,dy

θ ε θ
ε

θ
θ

ξ

−

=

−

+
= + = +

∂
+ =

∂

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟× +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

∏∫

∑ ∏∫  (9) 

and 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

0

1

1 0
1 1

j
* * * * *

l u j j j j
l

iN
* * *
j i i i l u j N j j

i j l j

J ,u v th g y ,u th

th g y ,u th P dy ,...,dy v P d ,dy ,...,dy

θ ε θ θ
ε

θ θ ξ

−

=

−

+
= + = +

∂ ⎡+ = ∇⎣∂

⎤⎛ ⎞
+ ∇ ⎥⎜ ⎟

⎥⎝ ⎠ ⎦

∏∫

∑ ∏∫
 (10) 

Differentiation of the conditional measure results in the formula 

 
( ) ( )( )
( ) ( ) ( )

1 1

1
1

u j N j j j

j u j j j N

P dy ,...,dy y f , y ,u

, y f , y ,u P dy ,...,dy

ξ

ξ ξ

+ +

−
+

∇ = −

Σ ∇
 (11) 

which, after substituting to the expressions for weak variances (9)-(10)  and 
making them equal to zero 

 

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

1

0

1

1 1

1
1

1

1 1 01 0
*
i

j
* * *
l u j j j j

l

iN
* * *
j i i i l

i j l j

* *
j j j j u j j

N
u

i i j N j j
i j

th g y ,u th

th g y ,u th

y f , y ,u , y f , y ,u

p i, y ;i , y dy ...dy v P d ,dy ,...,dy

θ θ

θ θ

ξ ξ ξ

ξ

−

=

−

= + = +

−
+

−

+ +
=

⎡∇⎣

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

− Σ ∇

⎤
× + =⎥

⎦

∏∫

∑ ∏∫

∏

 (12) 

and 

 
( ) ( ) ( ) ( ) ( )

( ) ) ( )

1 1

2
10 1

1 0

1

0

j iN
* * * *
l j j j i i i l*

i jl l jj

j N j j

th g y ,u g y ,u th
ch

P dy ,...,dy s P d ,dy ,...,dy

θ θ
θ

ξ

− −

= += = +

+

⎛ ⎡
⎜ +⎢⎜ ⎣⎝

⎤× =⎦

∑∏ ∏∫ ∫
 (13) 

Because the conditions (12) and (13) must be satisfied for arbitrary σ – field Yj 
measurable Borel function νj and sj, so the standard argument from the measure 
theory implies that CEV occurring in the thesis of the theorem must disappear. 

□ 
 

3. Determining the optimal control 
In this section we will present Ray Rishel’s method of using backward 

induction and iterative values of CEV to determine the optimal control based on 
necessary conditions (4), (5). 

First, let us introduce necessary notations. Let 

 ( ) ( ) ( )
1

0, ,..., ,
iN

j j i i i l j
i j l j

V y y E g y u th Fξ θ
−

= =

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∏ . (14) 

By using properties of CEV we obtain 
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 ( ) ( ) ( )( ) ( )0 1 0 1, ,..., , , ,...,j j j j j j j j jV y y g y u E V y y F thξ ξ θ+ +
⎡ ⎤= +⎢ ⎥⎣ ⎦

 (15) 

and 
 ( )0, ,..., 0N NV y yξ = . 
So, by formulas (14), (15) we have 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1
1

1
1 1

1
1 0 1 1

iN T

u j j i i i l j j j j u j j j j
i j l j

T

j j j j j j j j j u j j j j

u j j j j u j j

E g y ,u g y ,u th y f , y ,u , y f , y ,u Y th

E E V ,y ,..., y , f , y ,u , y w ,y w ,y f , y ,u F Y

g y ,u th th g y ,u ..

θ ξ ξ ξ θ

ξ ξ σ ξ σ ξ ξ ξ

θ θ

−
−

+
= + = +

−
+ + +

⎧ ⎫⎛ ⎞⎪ ⎪′′ + − Σ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
⎡ ⎧ ⎫′= + Σ⎨ ⎬⎢

⎩ ⎭⎣

⎤′ ′+ = +⎦

∑ ∏

( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 0

1                                           

j j j j j

T T
j j u j j m j

. V ,y ,..., y , f , y ,u , y x

x , y , y f , y ,u x,I dxP d Y

ξ ξ σ ξ

σ ξ ξ ξ γ ξ

+

−

⎡ +⎣
′ ⎤× Σ ⎥⎦

∫ ∫

where ( )jP d Yξ  denotes a conditional probability of the random variable ξ  

with respect to filtration Yj. We will compute the conditional distribution 
( )jP d Yξ  in the next section. 

 
3.1. Determining the conditional distribution of the random variable ξ 

Let ( )p ⋅  and ( )0p ⋅  – denote an a priori density of the random vector ξ and 
the state vector of y0, respectively. Obviously 
 ( ) ( ) ( )0 0 0 0, y p p yµ ξ ξ=  
and, because densities µn of the joint distribution ( )0, ,..., ny yξ  are expressed by 
µn-1 with the formula 
 ( ) ( ) ( ) ( )( )0 1 0 1 1 1 1, ,..., , ,..., , , , ,n n n n n n n ny y y y y f y u yµ ξ µ ξ γ ξ ξ− − − − −= − Σ , 
so 

 ( ) ( ) ( ) ( ) ( )( )0 0 0 1 1 1
1

, ,..., , , , ,
n

n n i i i i
i

y y p p y y f y u yµ ξ ξ γ ξ ξ− − −
=

= − Σ∏ . 

By the Bayes formula we have a conditional distribution of the random variable 
ξ with respect to σ-field nY  

 ( ) ( ) ( )
( )

0
0

0

, ,...,
,...,

, ,...,
n n

n n n
n n

y y
P d Y y y d d

x y y dx
µ ξ

ξ µ ξ ξ ξ
µ

= =
∫

, 

and finally 
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 ( )
( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1
1

1 1 1
1

, , , ,

, , , ,

n

i i i i
i

n n

i i i i
i

p y f y u y
P d Y d

p x y f x y u x y dx

ξ γ ξ ξ
ξ ξ

γ

− − −
=

− − −
=

− Σ
=

− Σ

∏

∏∫
. (16) 

 
3.2. The algorithm of determining the optimal control 

We will apply the results of previous sections to the construction of the 
algorithm using the backward induction 
1. We put 
 ( )0, ,..., 0N NV y yξ =  and j N= . 
2. We define 
 1j j= − . 
3. We put 
 ( ) ( ) ( )( )1 0 1 1 0 1, ,..., , , , ,..., , , , ,j j j j j j j j j jV y y u w V y y f y u y wξ ξ ξ σ ξ+ + + += + . 

4. We set  

 
( ) ( )

( ) ( ) ( )
0 0 1 0 1

1 0

,..., , ,..., , ,..., , ,

... , ,..., , , , .

j j j j j j j

j j j m j

W y y u u E V y y u w Y

V y y u x x I dxP d Y

ξ

ξ γ ξ

+ +

+

⎡ ⎤= ⎣ ⎦

= ∫ ∫
 

5. We compute 

   
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
0 0 1 0 1 1

1
1 0

T T
j j j j j j j j j u j j j

T T
j j j j j u j j m j

Z y ,..., y ,u ,...,u E V ,y ,..., y ,u ,w w ,y ,y f , y ,u Y

... V ,y ,..., y ,u ,x x , y , y f , y ,u x,I dxP d Y

ξ σ ξ ξ ξ

ξ σ ξ ξ ξ γ ξ

−
+ + +

−
+

′⎡ ⎤= Σ⎢ ⎥⎣ ⎦
′= Σ∫ ∫

 

6. We search for an optimal control 
*

*
j

ju
θ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 for which the system of equations 

(4), (5) 

 ( ) ( ) ( )

( ) ( ) ( )

0 02

0 0

1 , ,..., , ,..., 0

, ,..., , ,..., 0

j j j j
j

j u j j j j

g y u W y y u u
ch

th g y u Z y y u u

θ

θ

⎧ ⎡ ⎤+ =⎪ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤′ + =⎪ ⎣ ⎦⎩

 

is satisfied. 
7. Next, we use equation (15) and determine 

 
( ) ( ) ( )

( ) ( )( ) ( )
0

1 0

j j j j j j

j j j j j m

V , y ,..., y th g y ,u

V , y ,..., y , f , y ,u , y x x,I dx .

ξ θ

ξ ξ σ ξ γ+

⎡= ⎣
⎤+ + ⎦∫

 

8. If 0j =  then we stop computations, otherwise we return to step 2. 
□ 
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Remark 2. We consider the following three cases of solutions ( )* *,uθ  of the 

system of equations  

 ( ) ( )

( ) ( )

2

1 0

0

u
ch
th u

κ
θ
θ χ

⎧ =⎪
⎨
⎪ =⎩

 

1. ( )* 0uχ = , ( )* 0uκ ≠  then *θ = ∞ ,  

2. ( ) ( )* * 0u uχ κ= =  then *θ can be arbitrary,  

3. ( )* 0uχ ≠ , ( )* 0uκ =  then * 0θ = . 

 
Remark 3. If *

ju  satisfies equation 

 ( ) ( ) ( )0 0, ,..., , ,..., 0j u j j j ju g y u Z y y u uχ
∆

′= + = . (17) 

And if * * *
1 2 1...j j Nθ θ θ+ + −= = = = ∞  holds, then we also set *

jθ = ∞ . 
 
Remark 4. If *

ju  determined from condition (17) also satisfies equation 

 ( ) ( ) ( ) ( )
1

* *

1 1

, , 0
iN

j j j j i i i l j
i j l j

u g y u E g y u th Yκ θ
−∆

= + = +

⎡ ⎤
= + =⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∏ , (18) 

then expected increase of the functional ( )J ⋅  in later moments is equal to zero 
because 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

0 10 0 1

1

0 0

        

jj i iN
* * * * * *

i i i l l j j j i i i l j
i i jl l l j

j i
* *

i i i l
i l

J E g y ,u th th g y ,u E g y ,u th Y

E g y ,u th

θ θ θ

θ

− −

= = += = = +

−

= =

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟= + + ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∑ ∑∏ ∏ ∏

∑ ∏

u
 

So we set 0*
jθ =  which means that we stop the process. 

Following the above remarks we modify the step (6) of the algorithm in the 
following way 
6. We determine *

ju  from the condition 

 ( ) ( )0 0, ,..., , ,..., 0u j j j jg y u Z y y u u′ + = . 

If  
 ( ) ( )0 0, ,..., , ,..., 0u j j j jg y u W y y u u+ = , 

then we put * 0jθ = , *
jθ = ∞ otherwise. 
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4. Conclusions 
We presented a solution of the adaptive control problem with random horizon 

not longer than N, where N is an arbitrary integer. The proposed method uses the 
idea of control and has the analytic character – in this sense that it transforms the 
problem of construction of the Snell envelope for the original problem to the 
problem of differentiation of a functional more complicated. The conditions 
obtained in this way are readable however and enable to present an algorithm to 
compute consecutive controls. The algorithm contains expressions easy for 
interpretation. In particular it is possible to determine the optimal stopping 
moment. Investigating the case when N →∞  requires to present conditions for 
which the stopping moment is finite with P-probability equal to 1. Then usage of 
the proposed method is immediate. We begin computations starting from an 
arbitrary horizon N0. We continue for N1 = 1+N0,...,Nk+1 =1+Nk. Because, by 
assumption, the stopping moment is finite, so there exists a finite K such that the 
quality index stops growing for k K≥ . 
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