A new method for counting chromatic coefficients

Halina Bielak*

Institute of Mathematics, M.Curie-Skłodowska University, pl. M.Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

In this paper, Proper-Broken-Cycle Formula is presented. The explicit expression in terms of induced subgraphs for the sixth coefficient of chromatic polynomial of a graph is presented. Also a new proof of Farrell's theorems is given.

1. Introduction

A very interesting relation between zeros of chromatic polynomials and some phenomena in theoretical physics is discovered (see [1,2] with references). It is well known that counting chromatic coefficients (i.e., coefficients of a chromatic polynomial) is important for location of chromatic zeros of graphs.

In this paper we propose a new method for counting chromatic coefficients. This method, called the Proper-Broken-Cycle Formula, is easier than the methods in [3-5]. The Proper-Broken-Cycle Formula can be simply applied for counting the explicit expression for the 4-th, 5-th and 6-th coefficients of the chromatic polynomial of a graph. We consider only simple graphs G with the vertex set $V(G)$ and the edge set $E(G)$. Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Let $\delta(G)$ be the minimum vertex degree of G. Whitney [5] gave an interpretation of chromatic coefficients of a graph using the concept of a broken cycle. Let $\beta : E(G) \rightarrow \{1,2,...,q\}$ be a bijection where q is the size of G. Let C be a cycle of G. Suppose that e is an edge of the cycle C such that $\beta'(e) > \beta'(x)$ for any other edge x in C. Then the path $C-e$ is called a broken cycle in G induced by β.

Theorem 1 (Broken-Cycles Theorem [5]). Let G be a graph of order n and size q, and let $\beta : E(G) \rightarrow \{1,2,...,q\}$ be a bijection. Then

*E-mail address: hbiel@golem.umcs.lublin.pl
where h_i is the number of spanning subgraphs of G that have exactly i edges and that contain no broken cycles induced by β.

Let G be an edge-labelled graph and let $\{B_1, B_2, \ldots, B_\sigma\}$ be the set of broken cycles of G. Let $B_{i_1, i_2, \ldots, i_\sigma}$ be the spanning subgraph of G whose edges are precisely those of G that belong to at least one of the broken cycles $B_{i_1}, B_{i_2}, \ldots, B_{i_\sigma}$. Then $B_{i_1, i_2, \ldots, i_\sigma}$ is called a minimal spanning subgraph of G containing s broken cycles. Bari and Hall [3] using the principle of inclusion and exclusion and the concept of minimal spanning subgraph of G containing a number of broken cycles derived the following formula for coefficients of chromatic polynomial of a graph.

Theorem 2 (Bari-Hall Broken-Cycle Formula [3]). Let G be an edge-labeled graph of order n and size q, and let $\{B_1, B_2, \ldots, B_\sigma\}$ be the set of broken cycles of G induced by the given labeling. Then

$$P(G, \lambda) = \sum_{i=0}^{n-1} (-1)^i h_i \lambda^{n-i},$$

(1)

and

$$h_i = \binom{q}{i} + \sum_{j=2}^{i} \binom{q-j}{i-j} \sum_{s=1}^{\sigma} (-1)^s n_{j,s},$$

(2)

where σ is the number of broken cycles of G, and $n_{j,s}$ is the number of minimal spanning subgraphs of G with j edges and containing s broken cycles.

2. Proper-Broken-Cycle Formula. An application

Using the same method as that of Bari and Hall, we prove (in Theorem 3 below) that the set of proper broken cycles of G induced by the given labelling can be considered instead of the set of all broken cycles of G. Moreover, a family of edge-induced subgraphs can be considered instead of the family of minimal spanning subgraphs. These two facts reduce the number and order of subgraphs studied in the formula for chromatic coefficients of a given graph.

Let $\{B_1, B_2, \ldots, B_\phi\}$ be the set of all proper broken cycles of G, where $\phi \leq \sigma$ and σ is the number of all broken cycles of G. Let $P_{i_1, i_2, \ldots, i_\phi}$ be an edge-induced subgraph of G generated by the set of all edges of proper broken cycles $B_{i_1}, B_{i_2}, \ldots, B_{i_\phi}$, $\left(i_k \leq \phi, k = 1, \ldots, s\right)$. So $P_{i_1, i_2, \ldots, i_\phi}$ contains only the vertices of G that belong to an edge of at least one of $B_{i_1}, B_{i_2}, \ldots, B_{i_\phi}$. Evidently, each vertex of $P_{i_1, i_2, \ldots, i_\phi}$ is incident to an edge of a proper broken cycle. For each $s=1, 2, \ldots, \phi$, we...
A new method for counting chromatic coefficients

create the family of \(\left(^\phi_s \right) \) edge-induced subgraphs of the type \(P_{i_1,i_2,...,i_p} \). Each graph \(P_{i_1,i_2,...,i_p} \) of the family we call a minimal subgraph containing \(s \) proper broken cycles. We can formulate the following theorem.

Theorem 3 (Proper-Broken-Cycle Formula). Let \(G \) be an edge-labelled graph of the order \(n \) and the size \(q \), and let \(\{ B_1, B_2, ..., B_\phi \} \) be the set of all proper broken cycles of \(G \) induced by the given labeling. Then

\[
P(G, \lambda) = \sum_{i=0}^{n-1} (-1)^i h_i \lambda^{n-i},
\]

and

\[
h_i = \left(\begin{array}{c} q \\ i \end{array} \right) + \sum_{j=2}^{i} \left(\begin{array}{c} q-j \\ i-j \end{array} \right) \sum_{s=1}^{d} (-1)^s g_{j,s},
\]

where \(\phi \) is the number of proper broken cycles of \(G \), and \(g_{j,s} \) is the number of minimal subgraphs of \(G \) with \(j \) edges and containing \(s \) proper broken cycles of \(G \).

Proof: First we introduce some notations. Let \(S \) be the family of all spanning subgraphs with \(i \) edges of \(G \), and let \(B \) be the family of \(i \)-edge spanning subgraphs of \(G \) without broken cycles. Notice that \(B \) is created from \(S \) by deleting all elements containing a proper broken cycle. Let \(S' \) be the family of graphs created from \(S \) by deleting all isolated vertices from each graph of \(S \). (Evidently, if \(i=0 \) then \(S' \) consists of the null graph \((\emptyset,\emptyset)\)). Let \(B' \) be the subfamily of \(S' \) containing elements without proper broken cycles. Let \(N_i \) be the cardinality of \(S \) and \(N'_i \) be the cardinality of \(S' \). Notice that \(N_i = N'_i = \left(\begin{array}{c} q \\ i \end{array} \right) \). From Theorem 1 we have that \(h_i \) is the number of spanning subgraphs of \(G \) with \(i \) edges that contain no broken cycle. So \(h_i = |B| = |B'| \). Let for a subgraph \(F \) of \(G \), \(b_r \) be the property that \(F \) contains the broken cycle \(B_r \), and \(\bar{b}_r \) be the property that \(F \) does not contain \(B_r \) for \(r \leq \sigma \). Similarly, let \(p_r \) be the property that \(F \) contains the proper broken cycle \(B_r \), and \(\bar{p}_r \) be the property that \(F \) does not contain the proper broken cycle \(B_r \), where \(r \leq \phi \). Let \(\{ f_1, f_2, ..., f_t \} \) be a set of properties of a graph. Let \(N_i \left(f_1, f_2, ..., f_t \right) \) be the number of spanning subgraphs of \(G \) with \(i \) edges and with properties \(f_1, f_2, ..., f_t \). Let \(N'_i \left(f_1, f_2, ..., f_t \right) \) be the number of elements of \(S' \) with properties \(f_1, f_2, ..., f_t \). By Theorem 1 we get

\[
h_i = N_i \left(\bar{b}_1, \bar{b}_2, ..., \bar{b}_\sigma \right) = N_i \left(\bar{b}_1, \bar{b}_2, ..., \bar{b}_\phi \right) = N'_i \left(\bar{p}_1, \bar{p}_2, ..., \bar{p}_\phi \right).
\]
Therefore by the inclusion - exclusion principle we get
\[h_i = N_i - \left[N_i(b_1) + N_i(b_2) + \cdots + N_i(b_\phi) \right] \]
\[+ \left[N_i(b_1, b_2) + N_i(b_1, b_3) + \cdots + N_i(b_{\phi-1}, b_\phi) \right] \]
\[+ \cdots + (-1)^\phi N_i(b_1, b_2, \ldots, b_\phi) \]
\[= N_i - \left[N_i(p_1) + N_i(p_2) + \cdots + N_i(p_{\phi}) \right] \]
\[+ \left[N_i(p_1, p_2) + N_i(p_1, p_3) + \cdots + N_i(p_{\phi-1}, p_\phi) \right] \]
\[+ \cdots + (-1)^\phi N_i(p_1, p_2, \ldots, p_\phi). \]

The number of \(i \)-edge elements of the family \(S' \) that contain a given \(j \)-edge subgraph \(F \) is \(\binom{n-j}{i-j} \). Moreover, if \(F = F = P_{i_1, i_2, \ldots, i_s} \) then the term corresponding to \(F \) appears with the coefficient \((-1)^i \) in the above formula. Therefore, if there are \(g_{j,s} \) subgraphs of \(G \) with \(j \) edges and the edge induced by \(s \) proper broken cycles, then they contribute \((-1)^i g_{j,s} \binom{n-j}{i-j} \) to \(h_i \). The proof is done.

In this paper we use Theorem 3 instead of Theorem 2. Let \(t_1 \) be the number of subgraphs isomorphic to \(K_3 \) in \(G \). Let us assume that \(T_i, i=2,\ldots,31 \) and \(F_{j,s} \), \(j=0,1,\ldots,11 \) be graphs presented in Figures 1, 2 and 3.

Let \(t_i, \ i=2,\ldots,31 \) (resp. \(f_{j,s} \), \(j=0,1,\ldots,11 \)), be the number of induced subgraphs of \(G \) isomorphic to \(T_i \) (resp. \(F_{j,s} \)). Farrell [4] proved the following two significant theorems concerning two coefficients of the chromatic polynomial of a graph.

Theorem 4 [4]. The coefficient of \(\lambda^{n-3} \) in \(P(G, \lambda) \) is
\[-(\binom{n}{3}) + (q-2)t_1 + t_2 - 2t_3. \]

Theorem 5 [4]. The coefficient of \(\lambda^{n-4} \) in \(P(G, \lambda) \) is
\[\binom{n}{4} -(\binom{n-2}{2}) + (\binom{n}{2}) - (q-3) + (q-9) + t_5 - t_6 + t_7 + 2t_8 + 3t_9 - 6t_{10}. \]

Now we apply the Proper Broken-Cycle Formula presented in Theorem 3 to prove the above theorems in different and simpler way in comparison with the proof given in [4]. First we study properties of subgraphs of a graph \(G \), involved in \(h_\phi \), for \(i=2,3,4,\ldots \).

Let for a graph \(G \), the numbers \(\phi \) and \(g_{j,s} \) be defined as in Theorem 3, and let \(w_j(G) = \sum_{s=1}^{\phi} (-1)^s g_{j,s} \). The number \(w_j(G) \) we call the \(j \)-weight of the graph \(G \).

Proposition 6. Let \(F \) be an induced subgraph of \(G \) such that \(\delta(F) = 1 \). Then any spanning subgraph of \(F \) does not give its contribution to \(w_j(G) \), for \(j=2,3,\ldots \).
Proof: Let F be an induced subgraph of a graph G such that $\delta(F) = 1$. Let H be a spanning subgraph of F. Suppose that H is counted in j-weight of G. Then H has j edges and it is covered by a set of proper broken cycles. If H contains an edge incident to a 1-degree vertex in F, then this edge cannot belong to any broken cycle, a contradiction. Therefore H contains an isolated vertex, a contradiction (since, by definition of $g_{j,s}$, each vertex should be covered by an edge of a proper broken cycle). The proof is done.

Proposition 7. Let j be the integer, $2 \leq j$, and let F be an induced subgraph of G. If $|V(F)| > j + \left\lfloor \frac{j}{2} \right\rfloor$ then F is not covered by any set of proper broken cycles with j as the sum of their edges. Moreover, if $|E(F)| \leq j$ then $w_j(F) = 0$, $j = 2, 3, ...$

Proof: Note that F contains a vertex of degree at most 1. Thus the result follows immediately from Proposition 6 and Theorem 3.

Proposition 8. Let $2 \leq j$. Then $w_j(G) = \sum_F w_j(F)$, where the sum is taken over all induced subgraphs F of G with the minimum degree at least 2 and such that $|V(F)| \leq j + \left\lfloor \frac{j}{2} \right\rfloor$ and $|E(F)| > j$.

Proof: Immediately from the definition of the broken cycle and from Propositions 6, 7.

Immediately from Proposition 8 we have the following result.

Corollary 9. For a graph G we get

\[
\begin{align*}
 w_2(G) &= w_2(T_1) \cdot t_1, \\
 w_3(G) &= w_3(T_2) \cdot t_2 + w_3(F_0) \cdot f_0 + w_3(T_3) \cdot t_3, \\
 w_4(G) &= \sum_F w_4(F), \text{ where the sum is taken over all induced subgraphs } F \text{ of } G \text{ of the order } 4, 5, 6 \text{ with } \delta(F) > 1, \\
 w_5(G) &= \sum_F w_5(F), \text{ where the sum is taken over all induced subgraphs } F \text{ of } G \text{ of the order } 4, 5, 6, 7 \text{ with } \delta(F) > 1.
\end{align*}
\]

Proposition 10. All weights are independent of an edge labelling of a graph.

Proof: Immediately from the Proper Broken-Cycle Formula.

Evidently, by Corollary 9, the 2-weights of G equals $-t_1$. Similarly 3-weights can be easily obtained. Notice that if a graph has at most 3 proper broken cycles
the 4-, and 5-weights can be easily obtained as well. The 4-, and 5-weights for other graphs we have been found by means of the computer computation.

Table 1 contains the 3-, 4-, and 5-weights for the graphs of the orders 4 and 5 with the minimum degree at least 2. Table 2 contains the 5-weights for the graphs of order 6 with the minimum degree at least 2.

In order to count \(h_i \), for \(i=4,5 \), we use some special functions, defined below. Let \(D, F, H \) be the graphs of the orders 4, 5, 6, respectively. Let \(F_0, F_1, F_2, F_5 \) be the graphs presented in Fig. 1, and let \(F_7, F_8 \) be the graphs presented in Fig. 3.

We define two functions \(p, s \) for the graphs \(D \) and \(F \), respectively as follows:

\[
p(D) = \text{the number of spanning subgraphs of } D \text{ isomorphic to } F_0,
\]
\[
s(F) = \text{the number of spanning subgraphs of } F \text{ isomorphic to } F_1.
\]

Moreover, we define two functions \(u, z \) for \(F \) and two functions \(x, y \) for \(H \) as follows:

\[
u(F) = \text{the number of spanning subgraphs of } F \text{ isomorphic to } F_2, \text{ and such that the 4-cycles do not contain any chord in } G,
\]
\[
z(F) = \text{the number of spanning subgraphs of } F \text{ isomorphic to } F_5,
\]
\[
x(H) = \text{the number of spanning subgraphs of } H \text{ isomorphic to } F_7, \text{ and such that the 4-cycles do not contain any chord in } G,
\]
\[
y(H) = \text{the number of spanning subgraphs of } H \text{ isomorphic to } F_8.
\]

The values of functions \(p, s, u, z \) are given in Table 1, and the values of functions \(x \) and \(y \) are given in Table 2, where \(X=x(H) \) and \(Y=y(H) \).

Proof: (of Theorems 4 and 5) We count \(h_3, h_4 \) from Theorem 3 and Corollary 9. Evidently \(w_2(G) = -t_1 \) and \(w_3(G) = -t_2 + 2t_3 \). Let \(d_4 = \sum_H w_4(H) \), where the sum is taken over all the induced subgraphs \(H \) of the order 6 in \(G \) and such that \(\delta(H) > 1 \). Note that the contribution of a graph \(H \) of the order 6 into 4-weight equals the number of spanning subgraphs of \(H \) isomorphic to \(2K_3 \). Therefore, from Table 1, we have
A new method for counting chromatic coefficients

$$w_4(G) = d_4 + f_0 + 3t_3 - t_4 + f_1 + t_5 + f_2 + 2t_6 + 2f_5 + 5t_7 + 6f_6 + 9t_8.$$

Evidently, $$w_4(F_0) = 1 = w_4(F_1) = w_4(2K_3)$$
and $$d_4 = \left(\frac{4}{2} \right) - \sum_D p(D) - \sum_F s(F),$$
where the sums are taken over all induced subgraphs D of the order 4 and all induced subgraphs F of the order 5 in G and such that $\delta(D) > 1$ and $\delta(F) > 1$.

Hence, $$w_4(G) = \left(\frac{4}{2} \right) - 3t_5 - t_4 + t_5 + 2t_6 + 3t_7 - 6t_8.$$

According to the Proper Broken-Cycle Formula presented in Theorem 3, we obtain h_3, h_4.

Table 1. Graphs of the orders 4 and 5 with the minimum degree at least 2 and their j-weights, $j=3,4,5$, as well as their special functions

<table>
<thead>
<tr>
<th>F</th>
<th>T_2</th>
<th>F_0</th>
<th>T_3</th>
<th>T_4</th>
<th>F_1</th>
<th>T_5</th>
<th>F_2</th>
<th>T_6</th>
<th>F_3</th>
<th>T_7</th>
<th>F_4</th>
<th>T_8</th>
<th>T_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_3(F)$</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$w_4(F)$</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$w_5(F)$</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>-12</td>
</tr>
<tr>
<td>$p(F)$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$s(F)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$u(F)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The following theorem presents the sixth chromatic coefficient for a graph G.

Theorem 11. The coefficient of λ^{n-5} in $P(G, \lambda)$ is $(-1)^{h_5}$, where

$$h_5 = \left(\frac{q}{5} \right) - \left(\frac{q^2}{3} \right) t_1 + (q - 4) \left(\frac{q}{2} \right) t_2 + (t_2 - 2t_3) t_4 + \left(\frac{q^2}{3} \right) t_5 + (q - 3)t_5 + 2(q - 5)t_6 + 3(q - 6)t_7 + 6(q - 8)t_8 - t_9 + t_{10} + 2t_{11} + 2t_{12} + t_{13} - t_{14} + t_{15} + 3t_{16} + 4t_{17} + 4t_{18} - 2t_{19} + 4t_{20} + t_{21} - 4t_{22} - 3t_{23} - 4t_{24} - 5t_{25} - 4t_{26} - 6t_{27} - 8t_{28} - 16t_{29} - 12t_{30} + 24t_{31},$$

where t_i is the number of K_i in G and $t_i, i = 2, ..., 28$, are the numbers of subgraphs of G isomorphic to graphs T_i presented in Figures 1-2.

Proof: Using Theorem 3 and Corollary 9 we count h_5. Let $d_5 = \sum_F w_5(F)$, where the sum is taken over all induced subgraphs F of the order 7 in G such that $\delta(F) > 1$. Let F_9, F_{10}, F_{11} be the graphs presented in Fig. 3. Notice that $w_5(F_{10}) = 0, w_5(F_9) = 1, w_5(F_{11}) = -2$.

Therefore
\[d_5 = t_1 \cdot t_2 - 2 \cdot t_1 \cdot t_3 + 2 \cdot 4 \cdot t_5 - \sum_F (u(F) - 2z(F)) + \sum_H (2y(H) - x(H)), \]
where the sums are taken over all induced subgraphs \(F \) of the order 5 and all
induced subgraphs \(H \) of the order 6 in \(G \), with \(\delta(F) > 1 \) and \(\delta(H) > 1 \).

From Proposition 8 and Corollary 9, we have
\[w_5(G) = d_5 + t_3 \cdot w_3(T_3) + \sum_F w_5(F) + \sum_H w_5(H), \]
where the sums are taken over all induced subgraphs \(F \) of the order 5 and all
induced subgraphs \(H \) of the order 6 in \(G \), with \(\delta(F) > 1 \) and \(\delta(H) > 1 \). Hence,
from Theorem 3, we get
\[h_5 = \left(\frac{q}{3} \right) - \left(\frac{q^2}{3} \right) \cdot t_1 + \left(\frac{q^3}{2} \right) \cdot t_2 - t_3 \cdot t_4 + t_5 - 4 \cdot t_6 + 2t_8 - 4t_{10} + t_{12} + t_{13} - t_{14} + t_{15} + t_{16} + 4t_{17} + t_{18} - 2t_{19} + 4t_{20} + t_{21} - 4t_{22} - 3t_{23} - 4t_{24} - 5t_{25} - 4t_{26} - 6t_{27} - 8t_{28} - 16t_{29} - 12t_{30} + 24t_{31}. \]
Finally, from the simple algebraic reduction, we get the result.

Fig. 2. The list of graphs of the order 6 with the minimum degree at least 2 present in \(h_5 \).
A new method for counting chromatic coefficients

Fig. 3. Other graphs of the minimum degree 2 and the order 6 or 7 with their 3-, 4- and 5-weights

The following Table 2 contains the adjacency matrices of graphs H of the order 6 with the minimum degree at least 2 and their 5-weights (bold, in the right upper corner), where $X=x(H)$, $Y=y(H)$.

Table 2. The adjacency matrices of graphs H of the order 6 with the minimum degree at least 2 and their 5-weights (bold, in the right upper corner), where $X=x(H)$, $Y=y(H)$
3. Final remarks

The values of h_5, h_4 can be applied to study sufficient conditions for the existence of complex roots of chromatic polynomials. The conditions in terms h_2, h_3 are presented in [6] and [7], respectively. The new Proper-Broken-Cycle
A new method for counting chromatic coefficients

Formula presented in Theorem 3 can be simply applied for counting explicit expression for the next coefficients of chromatic polynomial of a graph.

References