Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

T Annales UMCS

3

@ Annales UMCS Informatica Al 3 (2005) 285-292 Informatica
a5, Lublin-Polonia

ERs
SNWERSHe,
&
¢
s moa0™

Lugp o™ .
o Sectio Al

http://www.annales.umcs.lublin.pl/

The design patterns in PHP language for the web documents
aggregation model

Grzegorz Futa"

Department of Applied Computer Science, M. Curie-Sklodowska University,
pl. M.Curie Sklodowskiejl, 20-031 Lublin, Poland

Abstract
This paper considers the usage of design patterns in PHP language for the documents set
model. The author discusses briefly to design patterns and one of the open web documents
aggregation model. Some of new features on PHP and its consequences are also presented. The
author states that usage of free, powerful development tools and standard problem solving in a new
context gives the flexible and professional software building environment.

1. Introduction
1.1. Design patterns

In the seventies of the last century Alexander [1,2] wrote a couple of books
dealing with patterns in civil engineering and architecture. The software
community subsequently adopted the idea of patterns based on his work, though
there has already been burgeoning interest in these ideas of the software
community. Patterns in software were popularized by the book [3] by E.
Gamma, R. Helm, R. Johnson and J. Vilssides (also known as the Gang of Four,
or GoF). While the GoF’s work resulted in patterns becoming a common
discussion topic in the software development teams, the important point to
remember is that the patterns they describe were not invented by the authors.
Instead, having recognized recurring design in numerous projects, the authors
identified and documented this collection.

Patterns are about communicating problems and solutions. They enable us to
document a known recurring problem and its solution in a particular context.
One of the key elements in the previous statement is the word recurring, since
the goal of the pattern is to foster conceptual reuse over time. Also the
documents set model can be designed with usage of some design patterns. The
model is the specific application of object aggregation for the specific

*E-mail address: grzegorz.futa@umcs.lublin.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

286 Grzegorz Futa

information system. According to Martin Flower “A pattern is an idea that has
been useful in one practical context and will probably be useful in others”, I will
try to prove that the model and its implementation allow for rapid building of the
web sites.

Many software pattern books have been published since the GoF’s book.
Those books cover patterns for various domains and purposes. In this paper I
will try to discuss software design patterns for the document set model.

1.2. Document set model

The document set model was introduced in [4]. The model bases on the
previous work on content management systems (CMS) [5]. This section brings
up a short description and the most important assumptions of the document set
aggregation model.

Let us define the document as any content that can be presented on web
pages. It can contain hypertext, images, Flash animations, including Java Script
scripts, etc. The document can not be treated as web page that the browser
receives from the server. Web page can (but must not) contain the document.
The document content is usually shown in the central part of the page. The
aggregation model assumes that each of the documents has to belong to some set
of documents.

Each of the documents belongs to at least one of the document sets. There is
one special document set W that contains any document d; and all other sets and
subsets F; (Eq. 1). We can say:

Vd W, Fcl. (1)

To simplify the model, we assumed another condition (Eq. 2), that states that
any document placed on the web does not belong “directly” to the subset W.

Nd, eW =d, cF,.)
J

You can not put any document directly in W. Each document has to be placed
in some subset F;. It can be understood, that documents have to be categorized.

Let us define the site structure as all the subsets F; belonging to the set W. We
can say that the sets F; and W are the site structure on W. In a particular case, all
the sets F; can be empty sets (Eq. 3). It implies that W is an empty set. The site
has only the structure if there exists at least one set /; and any F; contains no
document:

V F,cW,/\F,={2}. 3)
The next assumption of the model limits documents placement in the sets.

The document dj belongs to the sets F; and F; only if the condition written below
(Eq. 4) is satisfied:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

The design patterns in PHP language for the web documents ... 287

dieF,nd eF,=>F cFVvFCF,. 4)

This limit is the intentional assumption of the proposed model. It causes that a
particular document can not be placed in several sets. The detailed discussion on
this assumption can be found in [4].

1.3. New features in the PHP language

The PHP language succeeds in an older product, named PHP/FI. The PHP/FI
was created by Rasmus Lerdorf in 1995, initially as a simple set of Perl scripts
for tracking accesses to his online resume. He chose to release the source code
for PHP/FI for everybody to see, so that anybody can use it, as well as fix bugs
in it and improve the code. Till the version 3.0 was released (created by
A. Gutmans and Z. Suraski) in 1997 the language was not popular. This version
contained a lot of bugs that were fixed in the version 4.0+. This release of the
server-side scripting language had introduced a simple way of the object-
oriented programming. The simplicity of the model did not allow to treat the
PHP language as full object-oriented technology.

The latest version of the PHP introduces several techniques that make the
language more “objective”. The detailed description of the new features can be
found in many publications (see f.e.: [6-9]). The author enumerates only a few
the most important features:

— abstract classes,

— interfaces,

— object constructors and destructors,

— multiple class inheritance,

— class members and methods visibility,

— scope resolution operator and static members and object constants,

— class members and methods overloading,

— exception mechanisms,

— template method patterns,

— type hinting and objects cloning.

Many other functionalities of the new preprocessor engine has been omitted
as functions that are not crucial in further discussion on the patterns for the
documents aggregation model. The most important thing is the objectivity of the
programming language. This allows to apply the design patterns for building the
structures and components of the software.

2. The patterns

This section discusses some of the design patterns that can be applied in the
document set model. The author concentrates only on two patterns, that is:

— Simple Factory and Abstract Factory,

— Decorator.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

288 Grzegorz Futa

2.1. Simple Factory and Abstract Factory

In the object oriented programming, object creation is not difficult. The
problem appears if object has to be created based on different conditions or
context of call. Without applying the factory patterns (e.g. Factory Method,
Abstract Factory or Simple Factory) developers spend a lot of hours on
debugging and updating the software.

The document set model assumes that the sets can contain any type of
document. The document is any data that can be described in the HTML
language. Let us consider the situation where the system allows to put two types
of document. Those documents are represented by two classes:
SimpleDocument and OtherDocument. Each of the documents
implements Document interface. There is also a factory class that creates any
kind of document depends on type of document (Fig. 1).

DocumentF actory

<<Interface=>
Document

build)
retumn_htmii) - String
o

Documentf actonddosumentiD: int)

getDoecument]) : Dosument

SimpleDocument Otheibocument

L

buildl) build)
. Earl Fabricates instance of Document class
iy htmiQ : String retum_himi() : String depends on the document type.

Fig. 1. DocumentFactory class and classes that implement Document interface

The classes related to each of documents are responsible for building the
main content of the web page. It does not matter what kind of content they can
return (method return html ()) or how to prepare the data to be displayed
on the browser (method build ()). The data preparation process depends on
the type of document. In the simplest situation document preparation requires
getting data stored in some database from one of the tables. More complex
documents (e.g. document that represents discussion forum) require getting data
form several tables or even connecting to another server. Also the method that
generates HTML code returned to the client browser does it in its own way.

The class DocumentFactory is responsible for the fabrication of objects
of any type of document. The objects are created upon the unique identifier of
the document. In the proposed solution, the identifier is a type of integer
number. The value of the identifier is passed to the requested page as one of
parameters in Unique Resource Locator (URI). The disadvantage of this solution
is necessity to define the type of the document upon its identifier. In the

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

The design patterns in PHP language for the web documents ... 289

implementation that was made by the author the additional SQL query is
required. It does not impact the efficiency of the software. In the case of simple
document retrieval, it is possible to receive complete information about the
document. The build() method that is defined in classes implement
Document interface does not have to make an additional query. The factory
class returns objects of certain type that posses the whole inclusive information
(method getDocument ()).

The exemplary source code (Example 1) illustrate how to use Simple Factory
pattern to create documents.

$documentFactory = new
DocumentFactory ($ GET[’docID’]);

$SsomeDocument = SdocumentFactory->getDocument () ;
SsomeDocument->build () ;
$doc content = someDocument->return html();

Example 1. Sample PHP code that using SimpleFactory design pattern

The variable $doc content contains a sequence of characters that is the
part of the page to be sent as a response to the web browser. The huge advantage
of using this pattern is the possibility of code separation. The creation of the
document content does not affect the main page script.

The document set architecture can be implemented without usage of the
Simple Factory design pattern. The extension of the new document type would
force changes in the main source code of the page. The design pattern usage
allows to extend the system of the new types of documents that can be stored
and rendered on the site. It does not require any changes to the skeleton of the
system. This gives the easy way to add new functionalities and features.

The Simple Factory design pattern can be used with the Abstract Factory
pattern together. The Abstract Factory provides an interface for creating families
of related or dependent objects without specifying their concrete classes. This
pattern takes the abstraction to the next level by providing a common factory
interface for a given family of objects. The code that actually uses the factory to
create objects only expects an object that conforms to the interface of the
abstract factory and does not know any details about concrete factory classes.

2.2. Decorator

The Decorator pattern is used for adding additional functionality to a
particular object as opposed to a class of objects. It is easy to add functionality to
an entire class of objects by subclassing an object, but it is impossible to extend
a single object this way. With the Decorator pattern, you can add functionality to
a single object and leave the others like it unmodified.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

290 Grzegorz Futa

The documents set model allows to present content of some set as a bricklet
[4]. The bricklet usually contains a list of documents or links placed in a given
set. Depending on the renderer assigned to a certain set, the content of this set
can be also rendered as an image with a name of document. If some options are
set, the renderer also allows to display some additional metadata that describe
the document. Nevertheless, the renderer is responsible only for the content

visualization.
B Qa Bestsellers
1. Mefrology, &, Ksigzk & B,
Start Rutkowskiego (editor=],
s 18800 PLK
Bookstore 2. Accidertal radiology,
Journals 0T Schweartz,

R [=10 E .l Rejzdorff, 98 00 PLM

SHC NS 3. Clinical farmacy, H. P.
Fariners Rang, M. M. Dale, J. M.
Conferences Ritter, 54.00 PLN

4. Meurology by Adatns andd
“ictor, Maurice “ictor,
Allan H. Ropper, 120.00
PLM

Fig. 2. The exemplary bricklets with different Decorator pattern applied

Figure 2 presents two different bricklets with a different content. The
standard bricklet should be adapted to graphics style of the website and the
corporate identity. Nevertheless, it is sometimes necessary to make one of the
page elements visually distinguished. These are usually the navigation patterns
or some promoted elements. On the other hand, the model in the sense of way in
which the data are stored should use the same mechanisms and it should be
independent of the way of visualization.

The diagram in Figure 3 presents the relations between the bricklets, its
model and the objects responsible for its decoration.

The Decorator pattern applied in the documents set model allows to add new
functionalities to any component that realizes the VisualWebComponent
interface. This interface forces the return html () method implementation
in classes inherited by them. The decorator classes use this method to add
different, appropriate for given style borders. The source code (Example 2)
shows the pattern usage.
$best bricklet = new Bricklet ($someSet);
$best bricklet->build();
$best_decor = new BestsellerDecorator ($best_bricklet) ;
$content = S$best decor->return html ();

Example 2. The exemplary usage of the decorator pattern

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

The design patterns in PHP language for the web documents ... 291

“d|nterfacess Biricklet

isvalifebComponen <] -------------

rbuen kim0 Brickletiset: Set)

I 1
1 |
: [N

Decarator Some of the methods

and parameters Jne

intentionally ommited.

NawiDecorator Bestsellerbecorator

NaviDecoratoncomponent VisualiiebComponent) BesteellerDecoratofcomponent VisualiWeb Compone ni)

Fig. 3. The relationships between classes for Decorator pattern usage

The variable $content contains the HTML code to be displayed in the
browser window. As shown in the example the object $Sbest bricklet
contains only the data ready to be displayed with the return html () method
of Bricklet class. The decorator does not affect the content of the bricklet
itself. This only adds a new functionality to the bricklet class. The new feature
does not change the content, but only extends the possibility of custom
visualization.

The clear separation of the presented data and its visualization gives the easy
way out to decomposition of work among programmers. It also protects the data
stored in the bricklet objects. The limited accessibility to some components can
decrease the amount of bugs made by programmers. This can noticeably reduce
the time of programming.

Another benefit of usage the decorator pattern is the objectivity. The typical
way of decorator implementation in PHP is the conditional including. This
technique of programming in interpreted languages causes many problems with
code maintenance. The technique is very sensitive to the programmer and
maintenance time errors. The usage of the decorator pattern eliminates those
problems in the design time.

3. Conclusions

The two examples described below show that the idea of documents set
model allows to use powerful techniques and methodologies of developing the
software. The new features of PHP language, especially full objectivity support,
give tools for rapid web sites building to the programmers.

The document set model is not only sophisticated, the theoretical model for
document aggregation. The discussion above aimed at showing that it is the
flexible and open framework. The Abstract Factory pattern allows to extend the
designed web application with the new types of documents and keeps the

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 21/01/2026 01:03:44

292

Grzegorz Futa

easiness of the document management. The decorator pattern presents a new
way of graphics style management that was impossible to apply before PHP 5.0.

The standard way of solving problems can be discussed with other patterns

proposed by GoF and their successors. The limited size of this publication does
not allow to consider other important patterns (e.g. Builder or 2™ tier patterns).
Nevertheless, the combination of the design patterns, proposed aggregation
model and the extensions to the well known languages seems to give the flexible
development framework and environment for building web applications.

References

Alexander C., The Timeless Way of Building, Oxford University Press, New York, (1979).
Alexander C., Ishikawa S., Silverstone M., Jacobson M., Fiksdahl-King 1., 4 Pattern
Language, Oxford University Press, New York, (1977).

Gamma E., Design Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley Longman, New York, (1998).

Futa G., Implementation of documents’ set model for corporate miniportals, Proceedings of
the 5" International Conference “Multimedia in Business and Education”, Technical
University of Czgstochowa, Czg¢stochowa, (2005), (in Polish).

Futa G., The CMS systems for small and medium enterprises, Proceedings of the Third KEI,
PWSZ, Chetm, (2004) 37, (in Polish).

Bergmann S., The Template Method Pattern in PHP 5, PHP 5 Feature Spotlight on
http://www.zend.com/, Cupertino, July (2003).

Bergmann S., Introduction to Interceptors I: Implementing Delegation, PHP 5 Feature
Spotlight on http://www.zend.com/, Cupertino, August (2003).

Bergmann S., Introduction to Interceptors II: Implementing Lazy Initialization, PHP 5 Feature
Spotlight on http://www.zend.com/, Cupertino, August (2003).

Hojtsy G., PHP Manual, PHP Documentation Group, (2005)

http://www.tcpdf.org

