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Abstract 
The simple genetic algorithm (SGA) and its convergence analysis are main subjects of the 

article. A particular SGA is defined on a finite multi-set of individuals (chromosomes) together 
with mutation and proportional selection operators, each of which with some prescribed 
probability. The selection operation acts on the basis of the fitness function defined on individuals. 
Generation of a new population from a given one is made by iterative actions of those operators. 
Each iteration is written in the form of a transition operator acting on probability vectors which 
describe probability distributions of all populations. The transition operator is power of Markovian 
matrix. Based on the theory of Markov operators [1-3] new conditions for asymptotic stability of 
the transition operator are formulated.   
 

1. Introduction 
In the last two decades there has been growing interest in universal 

optimization methods realized by genetic and evolutionary algorithms. These 
algorithms use only limited knowledge about problems to be solved and are 
constructed on the basis of some similarity to the processes in nature. Extensive 
application of those methods in practical solutions of complex optimal problems 
cause a need to their develop theoretical foundations. The question of their 
convergence properties is one of the most important issues [4-9].  

 
2. Preliminaries 

The genetic (GA) as well as the evolutionary algorithms (EG) perform multi-
directional search by maintaining a population of potential solutions, called 
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individuals, and encourage information formation and exchange between these 
directions. A population, i.e. a set of individuals, undergoes a simulated 
evolution with a number of steps. In the most general case the evolution is due to 
an iterative action – with some probability distributions – of a composition of 
three operators: mutation, crossover and selection. If a population is regarded as 
a point in the space Z of (encoded) potential solutions then the effect of one 
iteration of this composition is to move that population to another point. In this 
way the action of GA as well as EA is a discrete (stochastic) dynamical system. 
In the paper we use the term population in two meanings; in the first it is a finite 
multi-set (a set with elements that can repeat) of individuals, in the second they 
are frequency vector components of which fractions are composed, i.e. the ratio 
of the number of copies of each element zk ∈ Z to the total population size. The 
action of that composition is a random operation on populations.  

In the paper we deal with a particular case of the simple genetic algorithm 
(SGA) in which the mutation follows the fitness proportional selection and the 
crossover is not present. In the case of the  binary genetic algorithm (BGA) the 
mutation can be characterized by the bitwise mutation rate µ – the probability of 
the mutation of one bit of a chromosome. In SGA with the known fitness 
function the fitness proportional selection can be treated as a multiplication of 
each component of the frequency vector by the quotient of the fitness of the 
corresponding element to the average fitness of the population. This allows to 
write the probability distribution for the next population in the form of the 
product of the diagonal matrix with the population (frequency) vector. 
Moreover, results of the mutation can also be written as a product of another 
matrix with the population (probability) vector. Finally the composition of both 
operations is a matrix (cf.(10)), which leads to the general form of the transition 
operator (cf.(12)) acting on a new probability vector representing a probability 
distribution of appearance of all populations of the same size equal to the 
population size PopSize. The matrix appearing there turns to be Markovian and 
each subsequent application of SGA is the same as the subsequent composition 
of that matrix with itself (cf.(13)). In the paper owing to the well-developed 
theory of Markov operator([1-3,10]) new conditions for the asymptotic stability 
of the transition operator are formulated and some conclusions are drawn.  

 
3. Frequency and population vector  

In the case of BGA the set of individuals  
 { }0 1sZ z z −= ,...,  
are chromosomes and they form all binary l-element sequences. For a better 
description one orders them and the set Z with s = 2l, becomes a list, in which its 
typical element (chromosome) is of the form { }0 0 1 0 1 0 0jz = , , , ,..., , , .  
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At first by a population we understand any multi-set of r chromosomes from 
Z, then r is the population size: PopSize.  
 

Definition 1. By a frequency vector of population we understand the vector 

 ( )0 1 ) k
s k

ap p p    where p
r−= ,..., , =  (1) 

where ak is a number of copies of the element zk.   
The set of all possible populations now understood in the other meaning as 

frequency vectors is  

 
1

0
0    1

s
s

k k k
k

dp p p d p
r

−

=

⎧ ⎫
Λ = ∈ : ≥ , = , ∈ , =⎨ ⎬

⎩ ⎭
∑R N . (2) 

When GA is realized by an action of the so-called transition operator on a 
given population, a new population is generated. Since the transition between 
two subsequent populations is random and is realized by a probabilistic operator, 
then if one starts with a frequency vector, a probabilistic vector can be obtained, 
in which pi may not be rational any more. Hence for our analysis the closure of 
the set Λ, namely 

 
1

0
0  and 1

s
s

k k
k

x k x x
−

=

⎧ ⎫
Λ = ∈ :∀ , ≥ , =⎨ ⎬

⎩ ⎭
∑R , (3) 

is more suitable.  
 

4. Selection operator 
The optimization problem at hand is characterized by a goal (or cost) 

function. If we transform it by a standard operation to a nonnegative function we 
will get the so-called fitness function  f Z +: →R . If we assume the first 
genetic operator is the fitness proportional selection, then the probability that the 
element zk from a given population p will appear in the next population equals  

 ( )
( )
k kf z p

f p
, (4) 

where ( )f p  is the average population fitness denoted by  

 ( ) ( )
1

0

s

k k
k

f p f z p
−

=

=∑ . (5) 

Then the transition from the population p into the new one, say q, can be 
given by 

 
( )
1q p

f p
= S , (6) 

where the matrix S of the size s, has on its main diagonal the entries  
 ( )kk kS f z= . (7) 
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Matrix S describes the selection operator [7-9].  
 

5. Mutation operator 
The second genetic operator considered the binary uniform mutation with a 

parameter µ as the probability of changing bits 0 into 1 or vice versa. If the 
chromosome zi differs from zj at c positions then the probability of mutation of 
the element zj into the element zi is  
 ( )1 l cc

ijU µ µ −= − . (8) 
Then we may define a matrix  
 [ ]ijU=U , 
with Uij as in (8) and Uii – the probability of the surviving of the element 
(individual) zi. In general one requires  
 0ijU ≥ , 

 
1

0
1    for all 

s

ij
i

U j
−

=

= ,∑ . (9) 

 
6. Transition operator 

When we have the specific population p, then it means p is a frequency vector 
and p ∈ Λ. If the mutation and selection (random) operators are applied to it they 
could lead p out the set Λ. The action of the genetic algorithm in the first and all 
subsequent steps is the following: if we have a given population p then we 
sample with returning r-elements from the set Z, and the probability of sampling 
the elements z0,…,zs–1 is described by the vector G(p), where 

 ( )
( )
1G p USp

f p
= . (10) 

This r-element vector is our new population q.  
Let us denote by W the set of all possible r-element populations composed of 

the elements selected from the set Z, where elements in the population could be 
repeated. This set is finite and let its cardinality be M. It can be shown that the 
number M is given by a combinatoric formula, cf. [12]. Let us order all 
populations, then we identify the set W with the list W = {w1,…,wM}. Typical wk, 
k = 1,2,…,M is some population for which we used the notation p in the previous 
section. That population will be identified with its frequency vector or 
probabilistic vector. This means that for a given population 

( )0 1
k k k

sp w w … w −= = , , , the number k
iw , for i ∈ {0,…,s–1}, denotes the 

probability of sampling from the population wk the individual zi. If p is a 
frequency vector then the number k

iw  is the fraction of the individual zi in the 
population wk.  
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Beginning our implementation of BGA from an arbitrary population p = wk in 
the next stage each population w1,…,wM can appear with the probability, which 
can be determined from our analysis. In particular, if in the next stage the 
population has to be q, with the position l on our list W (it means q = wl), then 
this probability [8,11,12] is equal to 

 
( )( )
( )

1

0

jrq
s

j

j j

p
r

rq

−

=

!
!∏

G
. (11) 

After two steps, every population w1,…,wM will appear with some probability, 
which is a double composition of this formula. It will be analogously in the third 
step and so on. This formula gives a possibility of determining all elements of a 
matrix T which defines the probability distribution of appearance of populations 
in the next steps, if we have current probability distribution of the populations. 
With our choice of denotations for the populations p and q, the element (l,k) of 
the matrix will give transition probability from the population with the number k 
into the population with the number l. It is important that elements of the matrix 
are determined once forever, independently of the number of steps. The 
transition between elements of different pairs of populations is described by 
different probabilities (11) represented by different elements of the matrix. We 
can see that the nonnegative, square matrix T of dimension M, with elements plk, 
l,k = 1,2,…,M has the property: the probability distribution of all M populations 
in the step t is given by the formula  
 0 1 2tu = , , ,...T  

Let us denote by  
 { }0  oraz 1M

kx kx xΓ = ∈ :∀ ≥ =R , 

where 1 Mx x x= + ... + , for ( )1 Mx x x= ,..., , the set of new M-dimensional 
probabilistic vectors. A particular component of the vector x represents the 
probability of the appearance of this population from the list W of all M 
populations. The set Γ is composed of all possible probability distributions for M 
populations. Then the described implementation transforms, in every step, the 
set Γ into the same.  

Note that if at the beginning we start our SGA at a specific population p, 
which attains the place j-th on our list W,i.e. p = wj, then the vector u will denote 
the particular situation of the population distribution in the step zero 0 if  
 ( )0 0 1 0 0 mu … …= , , , , , ∈R . 

On the set Γ the basic, fundamental transition operator,  
 ( )T Γ Γ⋅ : × →N  (12) 
is defined. According to the above remark, the transition operator T(t) is linked 
with the above matrix by the dependence  
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 ( ) tT t =T . (13) 

If u ∈ Γ, then ( ) ( )( ) ( )( )( )1 M
T t u T t u … T t u= , ,  is the probability distribution 

for M populations in the step number t, if we have begun our implementation of 
SGA given by G (10) from the probability distribution ( )1 Mu u … u Γ= , , ∈ , by t – 

application of this method. The number ( )( )k
T t u  for { }1k … M∈ ,  denotes the 

probability of appearance of the population wk in the step of number t. By the 
definition G(p) in (10),(11), and the remarks made at the end of the previous 
section, the transition operator T(t) is linear for all natural t.  

Notice that though formula (11) determining individual entries (components) 
of the matrix T is a dependent population, and hence nonlinear, the transition 
operator T(t) is due thanks to the order relation introduced in the set W of all M 
populations. The multi-index l,k of the component plk kills, in some sense, this 
nonlinearity, since it tells (is responsible for) a pair of populations between 
which the transition takes place. The matrix T is a Markovian matrix. This fact 
permits us to apply the Theory of Markov operators to analyze the convergence 
of genetic algorithms [1-3,10].  

Note that the action of the matrix T can be seen as follows. In the space of all 
possible populations there is a walking point, which attains its next random 
position numbered by 1,2,…,M, as an action of SGA on the actual population, 
with probabilities u1,u2,…,uM. We know that if at the moment t (in the generation 
number t) we had population p with the position k on our list, i.e. the population 
wk, then the probability that at the moment t + 1 (in the generation number t + 1) 
it will attain population q with the position l, on our list, i.e. the population wl, is 
plk, and this probability is independent of the number of steps in which it is 
realized. With this denotation the probability plk is given by formula (11).  

Let ek ∈ Γ be a vector which at the k-th position has one and zeroes at the 
other positions. Then ek describes the probability distribution in which the 
population wk is attained with the probability 1.  

By the notation T(t)wk we will understand  
 ( ) ( )k

kT t w T t e=  (14) 
which means that we begin the GA at the specific population wk.  

Further on we will assume Ujj > 0 for j ∈ {0,…,s–1}. Note that in the case of 
binary mutation (8) this condition will be satisfied if 0 1µ≤ < .  
 

Definition 2. We will say that the model is asymptotically stable if there exists 
u* ∈ Γ such that:  
 ( )    for   0 1T t u u t …∗ ∗= = , ,  (15) 

 ( )lim 0   for all   
t

T t u u u Γ∗

→∞
− = ∈ . (16) 
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Since for { }1k … M∈ , ,  we have  

 ( )( ) ( )kk
T t u u T t u u∗ ∗− ≤ −  (17) 

then (16) gives  
 ( )( )lim kkt

T t u u∗

→∞
= . (18) 

It means that probability of appearance of the population wk in the step 
number t converges to a certain fixed number ku∗  independently of the initial 
distribution u. It is realized in a special case, when our implementation begins at 
one specific population p = wj.  

We can say that from the chromosome za it is possible to obtain zb in one 
mutation step with a positive probability if Uba>0 and that from the chromosome 
za it is possible to get the chromosome zb with a positive probability in n-step 
mutation if there exists a sequence of chromosomes 

o ni iz z,..., , such that 
 

o ni a i bz z z z= , =  and any 
jiz  for j = 1,…,n is possible to be obtained from 

1jiz
−

 in 

one step with a positive probability.  
Definition 3. Model is pointwise asymptotically stable if there exists such a 
population wj that  
 ( )( )lim 1  for  

jt
T t u u Γ

→∞
= ∈ . (19) 

Condition (19) denotes that in successive steps the probability of appearance 
of other population than wj tends to zero. It is a special case of the asymptotic 
stability for which  
 ju e∗ = . 
Theorem 1. Model is pointwise asymptotically stable if and only if there exists 
exactly one chromosome za with such a property that it is possible to attain it 
from any chromosome in a finite number of steps with a positive probability. In 
this situation the population wj is exclusively composed of the chromosomes za 
and  
 ( ) j jT t w w=  (20) 
holds. Moreover, the probability of appearance of other population than wj 
tends to zero in the step number t with a geometrical rate, i.e. there exists 
λ ∈ (0,1), D∈R+ thats  

 ( )( )
1i

i j

M
t

i
T t u D λ

=
≠

≤ ⋅∑ .  (21) 

The proofs of our theorems and auxiliary lemmas are presented in original 
articles [12,13].  

Numbers λ and D could be determined for a specific model. This will be the 
subject of next articles.  
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Theorem 1 states that the convergence to one population could occur only 
under specific assumptions. This justifies the investigation of asymptotic 
stability in Definition 2.  
 

Definition 4. By an attainable chromosome we denote za ∈ Z such that it is 
possible to attain it from any other chromosome in a finite number of steps with 
a positive probability. Let us denote by Z* the set of all za with this property.  
 

Theorem 2. Model is asymptotically stable if and only if Z ∗ ≠ ∅ .                      
 

Theorem 3. Let us assume that the model is asymptotically stable. Then the next 
relationship holds:  

( ) 0kwar u∗ >  if and only if the population wk is exclusively composed of 

chromosomes belonging to the set Z*.                                                                   

 
7. Conclusions 

Here we present the summary of our results obtained in this and our other 
papers [11-13]:  

1. If Z ∗ = ∅  then there is a lack of asymptotic stability.  
2. If Z ∗ ≠ ∅  then asymptotic stability holds but:  
3. If cardinality (Z*) = 1 then pointwise asymptotic stability (in some sense 

convergence to one population) holds.  
4. If cardinality (Z*) > 1 then asymptotic stability holds, but there is no 

pointwise asymptotic stability.  
5. If Z* = Z then 0ku∗ >  for all k ∈ {1,…,M}.  
REMARK. In SGA with a positive mutation probability, it is possible to attain 

any individual (chromosome) from any other individual. Then there is more than 
one chromosome which is possible to attain from any other in a finite number of 
steps with a positive probability. Hence, from Theorem 1, it is impossible to get 
the population composed exclusively of one type of chromosomes.  

The last conclusion means that if any chromosome is possible to attain from 
any other in a finite number of steps with a positive probability then in the limit 
(probability distribution) of infinite number of generations each population (has 
a positive probability) may be reached with a positive probability.  

Theorem 2 is an extension of Th.4.2.2.4_4 from [9] for the case when it is 
possible to attain any population in a finite number of steps, (not only in one 
step). It means that transition operator does not need to be positively defined, but 
there exists such k, that the k-th power of the transition operator possesses a 
column which is strongly positive. The same concerns Th.4.2.2_1 of [9] which is 
true only for a positively defined transition matrix.  
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