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Abstract 

The paper presents a method of rule extraction from the trained neural network by means of a 
genetic algorithm. The multiobjective approach is used to suit the nature of the problem, since 
different criteria (accuracy, complexity) may be taken into account during the search for a 
satisfying solution. The use of a hierarchical algorithm aims at reducing the complexity of the 
problem and thus enhancing the method performance. The overall structure and details of the 
algorithm as well as the results of experiments performed on popular benchmark data sets are 
presented.   
 

1. Introduction 
The problem of extracting rules from neural networks consists in finding the 

dependency between the network output and the properties of the presented 
input vector [1]. It is very important in the medical domain because it increases 
the trust of users to the system based on the neural network. The complexity of 
this task usually arises from a large number of dimensions of the input vectors. 
The usefulness of genetic algorithms results mainly from their ability of 
searching vast multidimensional spaces, as well as processing many potential 
solutions at a time. Moreover, unlike other methods they treat the network as a 
“black box" and concentrate only on the values of inputs and corresponding 
outputs, thus becoming architecture independent (e.g. decision trees), genetic 
algorithms prove to be more successful when dealing with real values of inputs. 
Several techniques, usually for networks whose task is to classify the input 
vectors, have already been developed, e.g. in [2,3] however, the multiobjective 
nature of the problem of rule extraction is rarely taken into account. A set of 
rules describing the functioning of a network may be optimised in several 
various ways. First of all, its accuracy may be improved by modifications that 
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lead to maximizing the number of correctly classified patterns as well as 
reducing the number of errors made by the set. Another criterion usually taken 
into consideration is the complexity of the set, denoted by the number of rules 
and the number of premises in each rule [1], which in, turn may, be considered 
separately.  

This implies the existence of several criteria of the evaluation of the solutions 
that tend to be contradictory. The standard approach in a genetic algorithm is 
based on the concept of aggregating functions that enable gathering all the 
values of the criteria into a single fitness function, usually in the form of a 
weighted sum. However, this method has two main drawbacks. The weights 
must be properly adjusted to allow the algorithm to find satisfactory solutions, 
which may result in the necessity of running the algorithm many times. 
Moreover, whenever the user decides to change the weights in order to 
concentrate on one criterion to a greater degree, the process of evolution must be 
repeated. This makes the use of classic genetic algorithms rather unwieldy and 
time-consuming.  

During the process of rule extraction one may wish to take one of different 
approaches, depending on the purpose of extraction. One option is an attempt to 
obtain a relatively simple set of rules that contains only the most significant 
principles governing the functioning of the network, without focusing on 
exceptions. Another approach aims at developing a set that describes the 
network with the highest fidelity possible. This might lead to discovering 
"hidden" knowledge by finding rules that apply to small numbers of input 
vectors. Taking this into account, one may say that a perfect solution to the 
problem of rule extraction would produce results at a different level of accuracy 
and complexity to suit all the needs. This requirement is met by multiobjective 
genetic algorithms. Such a method has been proposed in [4] but, since the 
algorithm operates on entire sets of rules, its efficiency when dealing with 
complex problems is questionable.  

 
2. Pareto optimality in multiobjective problems 

In a multiobjective problem several criteria are used to evaluate each solution. 
The quality of a given solution cannot be easily expressed in terms of a single 
numerical value; hence the problem of comparing solutions and determining 
which of them proves to be the most satisfactory. The concept of Pareto 
optimality introduces a relation of quasi order on the set of solutions, called 
Pareto domination and denoted by the symbol —. For two solutions x and y, 
whose quality is measured by the two vectors consisting of the values of 
individual criteria, namely:  
 ( ) ( ) ( ) ( )1 2 mf x f x f x … f x= ⎡ , , , ⎤⎣ ⎦ , (1) 
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 ( ) ( ) ( ) ( )1 2 mf y f y f y … f y= ⎡ , , , ⎤⎣ ⎦ , (2) 
the relation of domination is defined as follows:  
 ( ) ( ) ( ) ( ) ( )1    k kf x f y k … m f x f y⇔ ∀ = , , ≤≺ , 
 ( ) ( )k kf x f y∧∃ < . (3) 

It means that a given solution dominates another if it is better with regard to 
one criterion and at least equally good if any of the remaining criteria is taken 
into account. This implies that in a general case two solutions do not necessarily 
have to be bound by this relation, which makes them equally valuable. The 
optimisation in the Pareto sense, unlike the optimisation of a function, does not 
aim at producing a single satisfactory solution, but at finding an entire set of 
non-dominated solutions that would not only lie possibly close to the optimal 
values, but would also be distributed evenly in the space of solutions. The 
second condition guarantees that all criteria and various combinations of their 
relative “importance" are equally taken into account during the process of 
optimisation.  

 
3. Basic concepts of the proposed method 

The method of rule extraction proposed in the paper, we called MulGEx 
(Multiobjectve Genetic Extractor) is based on a genetic approach. It acquires a 
set of rules describing the performance of a network used for classification tasks. 
Although we concentrate on rule extraction from a neural network, since 
MulGEx treats a network as a black box (a global approach to rule extraction 
[1]), it can be used for extracting sets of rules immediately from raw data as 
well. The input vector presented to the network may consist of data of various 
types (logical, enumerable, real) whereas the only output is an integer 
representing the class that a given pattern belongs to. Because of great 
complexity of the problem, especially for large numbers of attributes and input 
vectors, the algorithm has been divided into two stages, which had been inspired 
by [2].  

The lower-level genetic algorithm operates on single rules and aims at 
maximizing the number of correctly classified patterns without taking the rules’ 
complexity into account. The upper-level algorithm, on the contrary, respects all 
criteria mentioned in the introduction. Its task is to gather the rules evolved by 
the first algorithm into one set and refine them through further processing. The 
general structure of the algorithm has been shown in Fig. 1. The chromosome on 
the lower level represents a single rule consisting of a set of premises followed 
by the conclusion, as shown in Fig. 3a. A premise may be active or not, 
depending on the value of its flag. More detailed explanation of the purpose of 
flags is given in the next subsection. Similarly, a set evolved by the upper-level 
algorithm is a sequence of rules that may also be activated or disabled when the 
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corresponding flag is changed. The chromosome at this stage represents a set of 
rules. Its structure is presented in Fig. 3b.  

 
Responses of 
the network

Non-dominated 
sets of rules

Sets of rules

Upper level GA

Lower level GA

Rules

 
Fig. 1. The general structure of MulGEx 

 
3.1. Description of the lower-level algorithm 

The lower-level algorithm consists of several independently evolved 
populations, each responsible for a different class in the problem of 
classification. At this stage an individual represents a single rule in the 
form of a set of premises followed by the number of the appropriate class, 
as shown in 4.  
 1 2         mIF p AND p … AND p THEN k,  (4) 

Each premise pi corresponds to one element of an input vector presented to 
the network (the i -th input of the network)and denotes the constraint that the 
attribute must satisfy before the rule may be applied to the entire vector. 
Depending on the type of the attribute, this constraint may take one of the 
following forms.  

– For logical attributes the constraint determines which of the two possible 
values must be taken by the attribute. Therefore the premise consists of a 
single Boolean value (Fig. 2a). 

– For enumerable attributes the premise is expressed as an array of Boolean 
values (Vi) with one element per every value in the type. It determines the 
subset of values accepted by the constraint (Fig. 2b)  

– Discrete and real attributes require defining the range of acceptable values, 
which is achieved by specifying its minimum and maximum  

– Discrete and real attributes require defining the range of acceptable values, 
which is achieved by specifying its minimum and maximum (Fig. 2c).  

Every rule contains a complete set of premises, i.e. imposes constraints on all 
elements of input vectors presented to the network. This prevents from 
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introducing chromosomes with variable lengths and thus facilitates defining the 
genetic operators. However, in many cases certain attributes do not influence the 
choice of a class during the process of classification, and therefore all their 
values could be accepted by a given rule. To achieve this, a Boolean flag is 
added to every premise. It determines whether the particular constraint remains 
active and is taken into account when the rule is applied to an input vector. By 
disabling some of the constraints one may obtain more general rules with lesser 
complexity, which is essential during the process of rule extraction.  
 

AA A AV V1 V2 Vn
... min max

a) b) c)

Flag  
Fig. 2. Genes for different type of premises, which depending on the type of attribute, a) for 

logical, b) for enumerative, c) for real attribute 
 

 
Fig. 3. A schema of chromosomes on both levels 

 
The form of the chromosome (rule) requires defining special genetic 

operators responsible for crossover and mutation. Uniform crossover has been 
used, i.e. the process of exchanging genetic information between two individuals 
consists in choosing one of the parents with equal probability for each premise 
(gene) copied to the chromosome of the offspring. A premise is duplicated 
entirely, including the flag. The only exception occurs in the case of constraints 
imposed on real inputs, where each of the values determining the accepted range 
(namely the minimum and maximum) may be taken from a different parent. The 
conclusion of the rule may be copied from either of the parents, since the 
number of the class is identical for all individuals in a given population.  

The effect of mutation depends on the type of the gene that it is applied to. In 
all cases the flag may be affected, which results in enabling or disabling a given 
gene. For the types consisting of Boolean values shown in Fig. 2a and 2b, 
mutation may cause changing a randomly chosen value to the opposite one. The 
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operator of mutation applied to a real value in a premise of the type shown in 
Fig. 2c changes it by a random amount (without exceeding the maximal range 
defined for the corresponding attribute), on the assumption that small 
modifications are more probable. Mutation does not affect the conclusion of a 
rule.  

In order to compare both approaches (scalar and multiobjective), the value of 
the fitness function assigned to an individual in the lower-level algorithm may 
be either calculated as a weighed sum of the criteria or based on the relation of 
domination (the multiobjective approach). The first step in both cases consists in 
determining the number of correctly and incorrectly classified input vectors, i.e. 
the coverage and error, respectively. To this end the answer given by the neural 
network for each vector is compared to that given by the rule if the constraints 
have been satisfied. The weights used for fitness calculation in the first approach 
are chosen by the user and the function takes the form presented by Eq. 5.  
 lower c eW coverage W errorFitness = ⋅ − ⋅  (5) 

If the value of the function happens to be negative, it must be modified, e.g. 
by adding a constant value to the fitness of every individual.  

In the multiobjective approach, the fitness assignment is based on ranks given 
to the individuals. Several techniques may be used here – the most popular were 
those proposed by Goldberg in [5] and Fonseca and Fleming in [6]. Both of them 
are implemented in MulGEx, the latter with a modification introduced by Zitzler 
and Thiele (the SPEA algorithm [7]). The selection of individuals that 
participate in the process of reproduction is performed by means of the roulette 
wheel method, which implies that the probability of choosing a given individual 
for crossover is proportional to its fitness. Goldberg’s algorithm of rank 
assignment is as follows:  
 

Temp := Population 
n = 0  
while(Temp ≠ 0)do 
{ 
Nondominated = {x∈Temp/(¬∃∈Temp)f(y)≺ f(x)} 
(∀x∈Nondominated)rank(x) := n 
Temp := Temp\Nondominated 
n := n + 1 
} 

 

Fitness assignment in SPEA is performed according to the following 
algorithm:  

Let N denote the size of the population 
 

For each individual i in the external set : 
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 i
Nf

N q
=

+
,  

where n stands for the number of individuals   
dominated by i fi∈[0,1) 

 

For each individual j in the population : 
 1j ii i j

f f
,

= +∑ ≺
,  

i.e.the sum of fitness values of all external 
individuals that dominate j increased by on  

 [1 )jf N∈ ,   
 

As in this method the lowest fitness values are assigned to the best 
individuals, the fitness function must be modified so that it can be used for the 
roulette wheel technique.  

Since the complexity criterion is not taken into account during the fitness 
assignment at this stage, all genes of the individuals in the initial population are 
set to the disabled. During the process of evolution the premises are gradually 
activated by applying mutation, which allows to keep the complexity at a 
relatively low level and introduce only the necessary constraints. The duration of 
evolution is determined by the user who may choose either to create a fixed 
number of generations or to stop the algorithm when no improvement has been 
detected for a given amount of time (measured in generations). When the 
algorithm has stopped, the best rule in every population is stored in an external 
set and all vectors recognized by this rule are removed from the set that the 
algorithm works on. A good idea is to choose the rule with the highest coverage 
and noerror, but in some cases this might be impossible or inefficient. 
Afterwards a new initial population is created and all steps are repeated. This 
phase of rule extraction ends when there are no more vectors corresponding to a 
given class in the set, so that no new rules may be evolved. The external set 
containing rules stored during the entire course of evolution is passed to the 
upper-level algorithm for further processing and optimisation.  

 
3.2. Description of the upper-level algorithm 

The upper-level algorithm is used to refine and optimise the rules evolved by 
the previous algorithm. This is achieved by gathering them into a single set and 
evaluating the efficiency of their cooperation. As a result, superfluous rules may 
be eliminated and the remaining ones simplified. Because at this stage a 
multiobjective algorithm is used, the evolved sets of rules have different 
features; they vary both in accuracy and complexity. The most general structure 
of the algorithm resembles the one introduced at the lower level where, an 
individual represented a rule consisting of premises that could remain active or 
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inactive. In this case a chromosome codes a set of rules that may be disabled in 
the same way, which excludes them temporarily from participating in 
classification. Again, in order to avoid operating on chromosomes with variable 
length, each rule is accompanied by a flag determining its status in the set. In the 
initial population all individuals are exact copies of the set of rules obtained 
from the lower-level algorithm. This implies that the maximal accuracy is 
available without the necessity for adding new rules. The only condition that has 
to be met is that all genes remain active. Therefore the task of the algorithm is 
limited to searching for sets with reduced complexity. However, the 
improvement of this criterion should be accompanied by the lowest possible 
deterioration of accuracy.  

The process of reproduction, just like at the earlier stage, consists in 
exchanging genes in a random way between the parents (uniform crossover). 
This means that every rule and its flag in a newly created individual are copied 
from the parent that has been selected randomly for this purpose. Mutation 
occurs on two levels. First of all, a randomly selected flag may be changed, 
which results in altering the activation status of the corresponding rule. The 
effect is that a potentially superfluous rule is excluded from the set or, in the 
oppositecase, a previously removed one is restored. The other type of mutation 
affects single premises inside the rules and is performed in the same way as in 
the lower-level algorithm, thus leading to the modification of constraints 
imposed on the attributes. Since in the previous algorithm some rules were 
evolved on the basis of a reduced set of input vectors, at this stage they have a 
chance to improve their quality through the use of the entire vector set as a 
ground for evaluation, as well as cooperation with other rules.  

The upper-level algorit hm is multiobjective and therefore its fitness function 
is based on the relation of domination. The entire process of selection, including 
the rank-based method of assigning fitness to an individual as well as the 
technique of the roulette wheel, is identical to the one used in the lower-level 
algorithm. The only difference consists in the choice of criteria for the 
evaluation of individuals and the way of calculating their values. The coverage 
of a set is determined by the number of input patterns that are correctly classified 
by the set as a whole, i.e. by at least one of its active rules. The error, on the 
contrary, depends not only on the number of misclassified vectors, but also on 
the frequency of a given mistake. In other words, the error is calculated as the 
sum of errors for all active rules in the set. On the upper-level another criterion, 
namely the complexity of a set, is added. Its value is determined by the number 
of active rules in a set increased by the number of active premises in each of 
them. This criterion could be split into two, but, apart from complicating the 
algorithm, such a distinction would not result in a significant improvement of 
performance.  
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The process of evolution stops after evolving a given number of generations 
measured either from the beginning or since the last improvement observed (like 
in the previous algorithm). However, the definition of improvement in a 
multiobjective algorithm is not as straightforward as in classic algorithms, where 
the average fitness of the population may be easily compared in the course of 
evolution. In this case the quality of an individual is expressed as a vector 
consisting of several values. Average values for all criteria in the population may 
be calculated, but the comparison of different generations must be based on 
domination. In other words, a new generation is recognized as more fit only if 
the vector of those average values dominates a corresponding vector calculated 
for the previous generation. The output produced by the algorithm is a set of 
non-dominated solutions. The choice of the most appropriate one (in a given 
situation) is left to the user, who may apply certain weights to the criteria and 
obtain the solution with the highest weighed sum of their values. This might be 
done repeatedly, which results in presenting solutions with various features 
without the need for rerunning the algorithm with different parameters.  

 
4. Experiments 

The purpose of performing experiments is to verify whether the proposed 
method can be applied to various problems and whether it remains efficient 
regardless of the number and types of attributes in a set of input vectors. The use 
of popular benchmark data sets gathered in [8] during the tests facilitates 
comparing the method with other techniques developed for a similar class of 
problems. Table 1 presents the detailed information about the data sets that have 
been used for the tests, namely: Iris, LED – 24, Monk – 1 and Quadrupoles.  
A 2 % noise has been introduced to the LED – 24 data set.   

 
Table 1. Data sets used for the tests 

Name  
(examples) 

Type of  
attributes  Class  No of  

examples  
Iris  Setosa  50  

(150 ) 3 Versicolour  50  
 continuous Virginica  50  

 LED-24  
(1000) 

24 binary  
2% noise 10 classes 

≈100/ 
class  

0  216  Monk-1  
(432 ) 

6  
enumerable 1 216  

 
Separate experiments were carried out directly on the data sets obtained from 

the repository [8], without having them processed by a neural network 
beforehand. One more data set (Quadrupeds) was added to verify the scalability 
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of the presented method. The reason is that a network tends to simplify data by 
eliminating noise at least partially. This should theoretically lead to reducing the 
complexity of rule sets and improving the efficiency of the algorithm, which has 
been observed during the tests. Extracting rules from the data processed by a 
network resulted in improved efficiency of the method and enhanced accuracy of 
the solutions. 

The proposed genetic algorithm was tested on the data that had been 
processed by a multi-layer feed-forward neural network with one hidden layer, 
trained by the back-propagation algorithm. The accuracy achieved by the 
network in each case is presented in Table 2.  

 
Table 2. Results of the network training 
data   Number of neurons  Accuracy  
(set) in the hidden layer  %  
Iris 3  98   

LED-24 5  95   
Monk-1 3  100  

 
During the tests the lower-level algorithm worked with best effectiveness 

with a relatively low probability of crossover, not exceeding 50%, and a low 
probability of mutation, up to 1%. The desirable size of a single population 
depended strongly on the complexity of the problem, particularly on the number 
of attributes, and was usually set to 50 or 100 individuals. Increasing the size of 
a population (within reason) resulted in better efficiency of the search. On the 
upper level the probability of crossover and mutation was usually the same. 
Otherwise the changes in the chromosome became too rapid for the algorithm to 
be able to refine the rules through small modifications. At both stages of the 
algorithm its efficiency could be enhanced by adding the option of saving the 
best individuals in the population. In a multiobjective algorithm this is achieved 
by introducing an external population consisting of all non-dominated 
individuals found so far during the course of evolution, as described in [7] 
(SPEA algorithm). This permits to increase the probability of mutation without 
the risk of destroying the best individuals. In all cases the process of evolution 
was stopped when no improvement had been observed in the last 100 
generations.  

An example of rules for Iris evolved by the lower-stage algorithm for the data 
processed by the network is shown in Table 3. In this case the first rule in each 
class usually covers the majority of input patterns, whereas the remaining rules 
supplement it by covering all omitted examples. It is worth noticing that the 
number of patterns covered by each rule is calculated on the basis of a reduced 
set, after all vectors recognized by the previous rule have been excluded. 
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Therefore the actual number of examples covered by some of the rules may be 
larger than indicated. In all cases the number of misclassified examples is equal 
to zero, which results from the method of choosing the best rule (a very high 
weight assigned to error). The number of decimal places within the premises has 
been reduced for clarity. Table 4 presents the examples of sets obtained from the 
upper-level algorithm on the basis of the previously evolved rules. It is apparent 
that the improvement in accuracy is accompanied by increasing complexity of 
sets and rules – and vice versa.  

 
Table 3. Rules for Iris evolved by the lower-level algorithm; *) indicates that coverage has been 

calculated on the basis of a reduced set of input patterns)  
No  Rule  Coverage 
1. IF PetalLength ∈ [1.00; 2.90] THEN Setosa  50  

2.  IF PetalLength ∈ [1.97; 4.98] AND PetalWidth ∈  [0.96; 1.65] 
 THEN Versicolour 47 

3. 
IF SepalLenght ∈ [6.19; 7.17] AND SepalWidth ∈ [2.66; 3.32] 
AND PetalLength ∈ [1.00; 5.51] AND PetalWidth ∈ [0.88; 1.71] 
 THEN Versicolour 2* 

4. IF PetalWidht ∈ [1.72;2.50] THEN Virginica  46 

5.  
IF SepalLength ∈ [4.30; 6.12] AND SepalWidth ∈ [2.00;2.75]  
AND PetalLength ∈ [4.37; 5.76] AND PetalWidth ∈ [1.37; 2.50] 
 THEN Virginica 2* 

6. IF PetalLenght ∈ [5.33;6.27] THEN Virginica 1* 
 

Table 4. The two examples of sets of rules for Iris evolved by the upper-level algorithm  
(cov – stands for coverage, compl – stands for complexity) 

No  Rule  Cov. Error Compl. 

1. 

IF PetalLength ∈ [1.00; 2.90] THEN Setosa  
IF PetalLength ∈ [1.97; 4.98] AND PetalWidth ∈  [0.96; 1.65] 
 THEN Versicolour 
IF PetalWidht ∈ [1.72;2.50] THEN Virginica 

143 0 7 

2.  

IF PetalLength ∈ [1.00; 2.90] THEN Setosa  
IF PetalLength ∈ [1.97; 4.98] AND PetalWidth ∈  [0.96; 1.65] 
 THEN Versicolour 
IF SepalLenght ∈ [6.19; 7.17] AND PetalWidth ∈ [0.88; 1.71]  
 THEN Versicolour 
IF PetalWidht ∈ [1.72;2.50] THEN Virginica 
IF SepalWidht ∈ [2.00; 2.62] AND PetalWidht ∈ [1.37;2.50] 
 THEN Viginica 

148 2 13 

 
The general features of rule sets obtained by the method in question for the 

chosen benchmark data sets are gathered in Tables 5 and 6 – for the data passed 
through a network and for raw data, respectively. The algorithm has been run 
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five times for every data set and the average values of accuracy corresponding to 
particular sizes of rule sets have been calculated. In each case the algorithm 
evolved a wide range of sets with various features, including complex sets 
classifying correctly all the instances, as well as relatively simple solutions with 
a few rules for each category. This proves that the proposed method is suitable 
for different types of attributes. Moreover, very good results obtained for 
Quadrupeds are the evidence for the method scalability, i.e. the ability of solving 
problems with large numbers of attributes. 

 
Table 5. The results of experiments (size – number of rules, acc – accuracy as the difference 

between coverage and error) performed on the data processed by a neural network 
Iris LED-24 Monk-1 

size  acc  size acc size  acc  
1 50 1 106 1 72  
2 97 5 507 2 144  
3 141 10 926 3 216  
5 147 15 943 5 360  
8 150 20 953 7 432  

 
Table 6. The results of experiments (size– number of rules, acc – accuracy as the difference 

between coverage and error) performed on the raw data 
Iris LED-24 Monk-1 quadrupeds 

size  acc  size acc size  acc size  acc  
1  50  1  106  1  72  1  144  
2  97  5  507  2  144  2  277  
3  141  10  926  3  216  3  388  
5  147  15  943  5  360  4  497  
8  150  20  953  7  432  6  500  

 
The results for Iris, LED-24 and Quadrupeds indicate that a set consisting of 

one rule per category may cover most of the instances although some level of 
misclassification is possible. Additional rules improve the accuracy in a 
relatively low degree. This applies especially to the LED-24 data set, where the 
accuracy of 96% and 92% was achieved by a set of 10 rules whereas a set 
classifying correctly all input vectors contained 23 rules for the data processed 
by the network and over 60 rules for the raw data (not presented in the table). 
The observed disproportion is caused by noise that requires very specific rules to 
deal with certain examples. A small increase in accuracy observed when new 
rules are added to a set indicates that the algorithm starts taking exceptions into 
account, which is usually not desirable – unless these specific rules lead to 
discovering “hidden” knowledge, i.e. unknown dependencies concerning small 
subsets of instances. Therefore the most complex rule sets evolved for Iris,  
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LED-24 and Quadrupeds have little value. This observation is possible due to 
the multiobjective approach used in the algorithm that allows to develop 
different solutions in parallel, thus facilitating their analysis and comparison. 
The results produced by the presented algorithm may be confronted with those 
obtained for a different multiobjective algorithm (GenPar) described in [2]. 
Since the same data sets have been used in both cases, it is possible to compare 
the effectiveness of the methods. However, this can be done to a certain degree 
only because of differences in the way of performing experiments. The most 
significant one is that the results presented in [4] and copied to Table 6 contain 
information on the number of correctly classified instances only (fidelity), 
without providing any data about the error made by a given set. Moreover, no 
superfluous attributes had been added to the LED data set. 

The results for GenPar, shown in Table 7 prove to be less accurate than those 
for MulGEx. It is worth noticing that GenPar did not produce a set with maximal 
possible accuracy in any of these cases. This might be caused by the fact that it 
operates on entire sets only, which hinders individual rules from being 
intensively optimised (the lower-level algorithm in the proposed method is 
aimed solely at improving single rules), as well as by combining coverage and 
error into one criterion. The presented algorithm, on the contrary, considers them 
separately, thus gaining the ability of finding a solution with maximal coverage 
which is followed by modifications leading to the reduction of error.  

 
Table 7. The results of experiments for GenPar (size – number of rules, fid –fidelity equivalent  

to coverage) on the basis of [4] 
Iris LED-24 Quadrupeds  

size  fid  size fid size  fid  
1  50  1  87  2  182  
2  94  4  324  4  471  
4  137  5  473  - - 
5  144  13  928  - - 

 
5. Conclusions 

The results of the performed experiments indicate that the proposed method 
shows good effectiveness when extracting rules from various data, with different 
numbers and types of attributes. It enables producing a wide range of sets of 
rules, varying from those with perfect accuracy achieved at the cost of high 
complexity to relatively simple ones that cover only the most typical cases, as 
well as dealing with the problem of noisy data. This is obtained by combining a 
hierarchical genetic algorithm with a multiobjective approach based on the 
concept of Pareto optimality. The method is architecture independent. It can be 
used for any classification problem performed by a neural network regardless of 
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its structure, as long as the responses given by the network for the examined set 
of input vectors are known. The main weakness of this method consists in the 
necessity of adjusting parameters for both genetic algorithms in order to ensure 
the effectiveness of evolution. The optimal values of parameters may be 
different for each problem and no technique of their precise estimation has been 
developed. Another disadvantage is that the algorithm needs to examine the 
entire set of input vectors repeatedly to calculate the values of the criteria for 
each individual. Even if an effective data representation is implemented, large 
sets cause the deterioration of efficiency. In spite of these drawbacks present in 
many GA-based methods of rule extraction, the results produced by the 
proposed algorithm may be considered satisfactory.  
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