Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

oo, Annales UMCS

% Annales UMCS Informatica Al 4 (2006) 244-253 Informatica

‘ao_j o) Lublin-Polonia
e Sectio Al

http://www.annales.umcs.lublin.pl/

The use of model checking and the COSMA environment
in the design of reactive systems

e, e gk
Jerzy Miescicki

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00 665 Warszawa, Poland

Abstract
The paper discusses how a bridge between the design practice and the formal methods could be
maintained. The use of model checking seems to be the most promising approach. Then, the
software environment COSMA is presented, implementated in the Institute of Computer
Science, WUT. The conceptual framework of COSMA is based upon Concurrent State Machines
(CSM) and Extended CSM, which are also briefly summarized and illustrated with a simple
example.

1. Introduction
1.1. Formal methods and the design process

One of the most interesting aspects in the up-to-date computer science is a
gap between the research on formal methods of system design and rather poor
usage of its results in practice. Indeed, the research in formal methods has gained
a growing interest in the last decade, both in academia and in the leading
research centers. International organizations exist (e.g. FME (Formal Methods
Europe [1]) and about twenty international conferences devoted to these issues
are organized every year (e.g. FME (Formal Methods Europe, FORTE (I/FIP
International Conference on Formal Techniques for Networked and Distributed
Systems, or ETAPS (European Joint Conferences on Theory and Practice of
Software). In addition to specialized journals (as, for instance, Formal Methods
in System Design or Formal Aspects of Computing Science), the use of formal
methods is frequently discussed in professional international journals. The
original formal methodologies are proposed, supported with the appropriate
software tools. The reader can find more information in [2].

On the other hand, most of these results, methodologies and tools are not
broadly used in practice beyond the research community, despite the fact that

*E-mail address:] Miescicki@ii.pw.edu.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

The use of model checking and the COSMA environment ... 245

their authors work hard to make them be industrial strength formal methods.
Hardware and IC designers seem to be more aware of advantages of formal
methods, but as for software products — the testing procedures (at the
consecutive stages of design and implementation) and beta-versions are the only
(practically used) means for the system verification.Testing, however, is
basically an experimental (rather than formal) method. In the case of reactive
systems, involving a communication among concurrent subsystems (modules,
threads, ... etc.) as well as between subsystems and the environment — one can
hardly expect that all possible sequences of events would be actually tested.
Moreover, the testing can improve our confidence that the system does what it
should do, but can not assure us that it does not do anything it shouldn’t (get
deadlocked, for instance). On the other hand, formal methods are aimed at
proving (rather than check experimentally) the required properties of system
behavior.

Also, the commercially available CASE tools hardly support the formal
verification of the systems under design. The emphasis is put mainly on the
consistency with a particular design methodology, structural or object-oriented
programming paradigm, on provisions for team work, version control,
documentation, design of tests etc. Offered specification formalisms (e.g. UML
[3]) are aimed at supporting the project readability and its convenience for users
rather than to guarantee the formal correctness of the project. Only a few CASE
environments (as, for instance, EDT based on the Estelle language [4,5]) offer a
rigorous, formally defined semantics of used programming constructs.

Probably, it is so partially due to just the imperfect nature of software tools
(supporting the formal methods) implemented in the research institutions. But in
addition to this, the formal verification methods require from the designer new
knowledge. He/she has to acquire a bulk of new, quite allien, concepts and ideas
as well as to get familiar with new ’technology’ of building provably correct
systems. One may guess that this also explains why the methods built upon Z
notation, VDM or B-method, or theorem proving techniques and tools (e.g. PVS,
HOL or Larch) enjoy only a limited (if any) interest in practical designers’
community.

Out of a vast collection of formal methods, model checking [6-9] seems to be
the most promising one just from the viewpoint of potential proliferation among
system designers. Indeed, model checking presently gains a growing interest in
today’s computer science and practice. During the last two decades it has
become a known technique for the verification of industrial hardware projects
[10], protocols and software [6,7]. A range of software tools (or model checkers)
have been implemented aimed at supporting the verification. Among the most
frequently referenced ones are SPIN [11,12], SMV [9,13], FormalCheck [14]. A
number of other tools of this type have been implemented for research purposes

[2].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

246 Jerzy Miescicki

1.2. Characteristics of model checking

The main idea of the approach is that the system to be verified is modeled as
some formal finite-state structure M (e.g. a transition system, a graph of
reachable system states etc.), representing the system behavior. The desired
property (p, say) is also formally expressed (e.g. in a form of a formula of some
temporal logic, or a Biichi automaton). Then, the model checker checks if
M E p, that is, if p holds for M. The evaluation of M F p involves the

exhaustive inspection of M’

Notice that as the model M is finite, the checking against any property
expressed in terms of system states, transitions, input or output sequences etc. is
decidable, and can be algorithmized, at least if we postpone for a while the
problems related to the size of M and to the complexity of algorithm. This way,
the system designer is offered a set of ready-to-use algorithms and techniques
for the analysis of system properties. Moreover, if the checked property does not
hold, he/she can obtain a counterexample, i.e. the path leading to the just-
identified failure. This provides the feedback information enabling the designer
to identify and correct the component which is responsible for a negative
outcome of the checking.

Finite state structure M representing the global behavior of a system is usually
obtained from the specification of a collection of system components. Each
component’s behavior is represented either explicitly (in a form similar to
statecharts, UML’s state diagrams [15,16] etc.) or derived from some primary
specification (frequently, having the form of program-like notation, e.g. as
SPIN’s Promela [12]). For each model checking platform a rule is determined
how these local behaviors are composed into a one, large (however still finite)
graph or transition system M which is the subject to exhaustive inspection while
M F p is evaluated. Different approach was undertaken in the Bandera project

[17]. Here, the Java code (which is actually the final product of the design
process) is a primary specification for model checking. From this code, using the
techniques of abstraction and slicing [18], some intermediate specification (BIR)
is derived, which can be converted into an input language of model checkers like
SPIN.

The main challenge the model checking is confronted with is the exponential
explosion of the model size, which has been always considered a serious
limitation of all finite-state methods. Therefore, an extensive research has been
(and is being) done on various techniques that can help to manage the problem.
First, a very effective representation for very large graphs has been developed,
based on Reduced Ordered Binary Decision Diagrams (ROBDD). It allows the
representation of graphs of 10°°-10° states or even more. Secondly, the multiple

'Of course, the correctness of system’s behavior is usually checked against a set of such
properties, {p;}.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

The use of model checking and the COSMA environment ... 247

forms of reduction of state space are proposed, aimed at removal of the states
and transitions which are irrelevant w.r.t. the evaluation of a given formula. The
other approach is to calculate the model stepwise, just during the evaluation, as
one can expect that in order to obtain the outcome of the evaluation only the
limited model will do. Still another technique is the compositional model
checking, where the whole model (too large to be analyzed at once) is
decomposed into sub-models of more acceptable size. Accordingly, also the
process of verification of model properties is performed in a step-by-step manner
rather than in one run.

The present paper is devoted to model checking techniques developed for the
COSMA software environment [19], now under implementation in the Institute
of Computer Science, (Warsaw University of Technology). COSMA is based on
the idea of Concurrent State Machines (CSM) [20], the finite-state model
particularly suitable for the modeling of the cooperation and communication
among the components of concurrent reactive systems, as well as between the
system and its environment.

2. Concurrent State Machines (CSM)

In the CSM framework, the system is a finite set of Concurrent State
Machines (CSM), representing the behavior of individual system components.
Components can receive (as their input) signals or messages from the
environment and from other components. They also can produce signals as their
output. Formally, these signals are input or output symbols of an automaton. To
any atomic symbol we attribute the atomic proposition which is True if (in a
particular state) this symbol occurs at the input (or is produced as the output) and
False otherwise. Let AP be the the finite set of all such atomic propositions. Let
BF stand for a universal set of Boolean formulas. Formulas formeBF are
sequences of symbols that obey the well-known syntax:

form ::=0|1] prop|!form | (form + form) | (form * form)
where prop stands for any atomic proposition peAP and !+, % stand for
Boolean negation, sum and product (respectively). The semantics of Boolean
formulas is equally conventional.

Formally, each CSM is a tuple

m =< N,edges, form,out,n, >
where:

— N — finite set of nodes (states of behavior),

— edges c Nx N —set of directed arcs,

— form:edges — BF - labeling function, attributing Boolean formulas to

edges,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

248 Jerzy Miescicki

— out:N — P(AP) — output function, attributing each node with a set of

propositions that are 7rue for this node,
— n, €N is the initial node.

To give the reader just a flavor of CSM modeling, let us consider a simple
system of two cooperating processes: Sender and Receiver using a common
Buffer. The Sender puts data frames into the buffer, one by one, and stops when
N; frames have been put. The Receiver observes the buffer and once N, data
frames are collected, the Receiver turns active, processes the content of the
Buffer, clears (resets) it and signals to the Sender that the operation of
transmitting the data can be resumed. Of course the system works properly only
if Ny =N,, i.e. the number of frames sent by the Sender matches the number of
frames waited for by the Receiver. However, for the sake of illustration, assume
that (due to a design error) N; > N,.

Write__ |
put { Domn)
eqhl2
o

Think

| SN

ack
pa
Wiait Cecide Conclude
i re?{et
ac
lleh

Fig. 1. CSM models of Sender (left) and Receiver (right)

The CSM models of Sender and Receiver are shown in Fig. 1 and Buffer (for
the case NV, > NV,) in Fig. 2. Initial states are highlighted with a thicker borderline.
Remember that graph edges are labeled with the Boolean formulas rather than
with symbols of some input alphabet. If the formula is True, the transition is
enabled. If more than one transition is enabled then one of them is selected as
active and executed. The choice is nondeterministic and fair. Formula 1 is
always True and the edges labeled with it are unconditionally enabled. Thus, if
the Sender is in its initial state and the number of data in Buffer is less than N,
(i.e. leN, is True), the Sender can (nondeterministically) either remain in Think
or to pass to Write etc. Notice that CSM produce the sets of output symbols. For
instance, Receiver in Dorm produces an empty set of symbols , one-element set
{process} in Active and two-element {reset,ack} in Conclude.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

The use of model checking and the COSMA environment ... 249

Do
P P
i 1 S U R T LA |
i
=i ¢ Do
— : : : :
eqhiz L ia
o .
overflow ! i L A
T o
b1 1821 B3 B4l B85
! h

Fig. 3. Graph of reachable system states

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

250 Jerzy Miescicki

For the system of CSM, the algorithm of obtaining the graph of reachable
system states (GRSS) has been developed [20] and implemented as a module of
COSMA environment. GRSS for the example system is shown in Fig. 3. It has
as few as 24 reachable states (out of 4x3x5 = 60 elements of Cartesian product
of sets of components’ states) so that it can be analyzed just by naked eye. At no
surprise, the example system performs incorrectly: there are two reachable
deadlock states (shadowed grey) in which the system unconditionally remains
for ever. Moreover, at some states both put and get occur simultaneously, which
means that the access to the Buffer is not properly synchronized.

The example above was purposefully simple and small in terms of the size of
the reachability graph. The COSMA environment (described in the next section)
can be used for the verification of much more practical and challenging systems.

3. The COSMA environment

The overview of COSMA software ([19]) is sketched in Fig. 4. A central role
is played by the repository, which stores the system components specified in a
form of text files in CXL language (based on XML). The COSMA control
module (not shown) supports creation/edition of workspaces and projects as well
as communication to/from other modules. The functions of main COSMA
modules are the following:

— Grapher provides the user interface for graphical specification/edition of

the CSM graphs and their conversion to/from CXL text files,

— Product Engine performs the conversion of CSM models from CXL to
ROBDD data structures, computes the reachability graph of a given project
(using a state-of-the-art BDD library) and (if needed) converts the
resulting CSM graph back to CXL. Product Engine supports also
algorithms for multi-phase reduction of the product [21,22],

— TempoRG evaluates the required properties (expressed in a form of
formulas in QsCTC, a version of CTL [23,24]) in the Reachability Graph
of a system,

— Cntrexmple Editor processes the counterexamples provided by TempoRG
in the case of a negative evaluation,

— UML2COSMA (now under implementation) supports import of UML state
diagrams into the COSMA CXL format and sequence diagrams into
temporal requirements to be evaluated.

The COSMA tool supports also the extended CSM model (ECSM, [25]). The
extensions consist in defining conventional variables, attributing actions” to
CSM states and/or transitions, using expressions over these variables as the
additional propositions in Boolean formulas etc. Also, for the performance
evaluation purposes, the random or constant times can be attributed to states and

“Practically — the sequential programs and functions in C.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

The use of model checking and the COSMA environment ... 251

for non-deterministic choices the probabilities can be determined. Of course, the
Extended CSM are no longer finite-state models and are analyzed by the
simulation rather than the model checking. This role plays ECSM Simulator.

Simulation

results
ECSM I
C (Java)
csv Simulator e
graphs Code gene-
' Grapher i ration
BIR

(Bandera)

Repository of
Counterexample component } T
Editor models (XML)
Product
t Engine
CASE UML2COSMA l |

tools
(State, sequence N
diagrams) BDD Reachability
TempoRG Graph (BDD)
Requirements, results

Fig. 4. The COSMA software environment

Two additional modules exist in an experimental form and are not included
into the present version of COSMA. The Code generator was designed to
generate the C code from ESCM specification, while Code analyzer was aimed
to accept Java programs (in a BIR form, produced by Bandera [17,18] and to
convert them into the CSM projects. The Code analyzer has been fully
implemented [26], however, the results were rather discouraging. It seems that
the CSM model scan be effectively obtained and model-checked only for a very
limited subset of Java.

4. Conclusions

An attempt to maintain a bridge between the design practice and formal
verification must involve the decision as to the place of the verification within
the design process. Our experience shows that the most promising approach is
the use of model checking at the early phase of a design. The verification of a
coordination and communication among main concurrent components may help
to identify and correct the coordination errors, which then do not propagate to
consecutive design stages. Just verified general component models can serve as
the templates for a more detailed implementation in a form of programs or
pieces of hardware.

CSM model and COSMA offer a promising approach to the research in this
field. Specification of components behavior in terms of Concurrent State
Machines is reasonably intuitive and understandable to anyone familiar with

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

252 Jerzy Miescicki

such basic notions as a state, a transition, a Boolean formula. Moreover, CSM
support two aspects of concurrency: simultaneous occurrence of communication
events (formally — symbols of the input alphabet) and simultaneous execution of
component actions. No special mechanism for interleaving actions or sequencing
the input is assumed. The system of CSM performs as if it was embedded in a
communication medium which instantaneously and faultlessly broadcasts to all
system components the set union of output symbols produced by the
environment and components themselves. However, the delays, nondeterministic
loss of symbols, (finite) buffers as well as the specific sender — receiver pairs
(instead of broadcast-mode communication) can be also modeled, but as a
deliberate designer’s decision rather than as an implicit general assumption.

Further research of the CSM methodology and the COSMA tool would

involve mainly:

— development of an effective tool for conversion of commonly known UML
state, sequence, activity and cooperation diagrams to/from the CSM
model,

— development of compositional model checking techniques, especially the
multi-phase reduction method that helps relax the exponential explosion
problem,

— introduction of time constraints to the CSM model (Timed CSM),

— use of the Extended CSM model as a tool for the refinement of systems of
finite state CSM components into concurrent programs.

References

[11 Formal Methods Europe: http://www.fmeurope.org/

[2] http://archive.museophile.sbu.ac.uk/formal-methods.html

[3]1 Unified Modeling Language: www.omg.org/technology/documents/formal/uml.htm

[4] Budkowski S. et al, The Estelle Development Toolset, Institut National des
Télécommunications, Evry, France, 1998, http://www-lor.int-evry.fr/edt.

[5] Information Processing Systems. Estelle: A Formal Description Techinque Based on an
Extended State Transition Model, ISO/TC97/SC21, 1997.

[6] Peled D.A., Software Reliability Methods. Springer Verlag, (2001).

[7] Berard B., (ed.) et al., Systems and Software Verification: Model-Checking Techniques and
Tools. Springer Verlag, (2001).

[8] Clarke E.M., Grumberg O., Peled D.A., Model Checking. MIT Press, (2000).

[91 McMillan K.L., Symbolic Model Checking. Kluwer Academic Publishers, (1993).

[10] Kropf T., Introduction to Formal Hardware Verification. Springer Verlag, (1999).

[11] Holzmann G.J., The Model Checker SPIN. IEEE Trans. on SE., 23(5) (1997) 279.

[12] SPIN: http://spinroot.com/spin/whatispin.html

[13] SMV: http://www-2.cs.cmu.edu/ modelcheck/smv.html

[14] FormalCheck: www.cadence.com/datasheets/formalcheck.html

[15] Harel D., StateCharts: A visual formalism for complex systems. Science of Computer
Programming. (8) (1987) 231.

[16] Harel D. et al., STATEMATE: A4 Working Environment for the Development of Complex
Reactive Systems. IEEE Transactions on Software Engineering, 16(4) (1990) 403.

[17] Bandera www.bandera.projects.cis.ksu.edu/

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 03/02/2026 17:30:27

The use of model checking and the COSMA environment ... 253

[18] Hatcliff J., Dwyer M., Using the Bandera tool set to model-check properties of concurrent
Java software. Proc. CONCUR 2001, (2001) 39.

[19] COSMA: www.ii.pw.edu.pl/cosma/

[20] Miescicki J., Concurrent State Machines, the formal framework for model-checkable systems.
ICS Research Report, 5 (2003).

[21] Miescicki J., Multi-phase model checking in the COSMA environment. ICS Research Report,
Warszawa, 14 (2003).

[22] Miescicki J., Czejdo B., Daszczuk W.B., Multi-phase model checking in the COSMA
environment as a support for the design of pipelined processing. 1CS Research Report,
Warszawa, 16 (2003).

[23] Daszczuk W.B., Verification of temporal properties in concurrent systems, Ph.D. thesis,
Warsaw University of Technology, Faculty of Electronics and Information Technology,
Warszawa, (2003).

[24] Daszczuk W.B., Temporal model checking in the COSMA environment (the operation of
TempoRG program). ICS Research Report, Warszawa, 7 (2003).

[25] Krystosik A.,: ECSM — Extended Concurrent State Machines. ICS Research Report, 2 (2003).

[26] Fusik P., Model checking of concurrent Java programs using Bandera and COSMA
environments. M.Sc. thesis, Institute of Computer Science, WUT, (2004).

http://www.tcpdf.org

