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Abstract 

The case study analyzed in the paper illustrates the example of model checking in the COSMA 
environment. The system itself is a three-stage pipeline consisting of mutually concurrent modules 
which also compete for a shared resource. System components are specified in terms of 
Concurrent State Machines (CSM) The paper shows verification of behavioral properties, model 
reduction technique, analysis of counter-example and checking of real time properties. 

 
1. Introduction 

In [1] we have described the functional model of a system for processing of 
consecutive portions of data (or messages) submitted to its input. Each message 
goes through the three stages of processing which is reflected in the system 
structure (Fig. 1). The system is a three-stage pipeline consisting of three 
modules that operate concurrently and asynchronously, in a sense that there is no 
general, common synchronizing process or mechanism. Moreover, two out of 
three modules compete for the access to the common resource, which is accessed 
also by some other (unspecified) agents from the system environment. This calls 
for the verification if the cooperation among system components is correct. 
Indeed, due to potential coordination errors the system can get deadlocked, 
messages can be lost or duplicated etc. After the behavior is proved correct, 
some real-time performance features may be formally analyzed: minimal and 
maximal time of given actions, time intervals between events etc.  

It is known that in the case of asynchronous and concurrent systems 
behavioral errors are extremely hard to discover, identify and correct using 
typical debugging and testing procedures.  Therefore, we have applied a formal 
procedure of model checking [2-5], using the software tool called COSMA [6], 
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implemented in the Institute of Computer Science, Warsaw University of 
Technology.  
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Fig. 1. Flow of data in a three-module pipeline with a shared resource 

 
Model checking is based on the following principle. Given the finite state 

model M of system behavior and property (requirement) p to be checked, one 
has to check if p holds for M. Usually, there is a set of techniques and algorithms 
(making together the model-checking environment or tool) designed for this 
purpose. This is a designer’s job to formulate properties to be evaluated: usually 
the verification involves a set of model checking experiments with several 
properties pi. Additionally, if the given property does not hold for M, then so-
called counterexample is provided which allows to identify the sequence of 
states (or events) that results in this negative evaluation. This helps to identify 
and correct the cause of an error. 

The main limitation the model checking faces is the exponential explosion of 
model’s state space size along with the increase of the number of finite state 
system components and their individual state spaces. So, an extensive research is 
being done on various techniques that can help to manage the problem. First, 
multiple forms of reduction of state space are proposed, aimed at removal of the 
states and transitions which are irrelevant w.r.t. the evaluation of a given 
formula. The other approach is to calculate the state space just during the 
evaluation, as one can expect that in order to obtain the outcome of the 
evaluation only the bounded model will do. Still another technique consists in 
compositional model checking, where some individual parts of a system (of 
more acceptable size) are subject to an exhaustive state space search while the 
conclusion as to the behavior of a whole system is reached by some logical 
reasoning. Unfortunately, most ideas of reduction found in literature (e.g. [7,8]) 
usually cannot be applied for Concurrent State Machines. This model admits 
coincident execution of actions rather than their  interleaving, while most finite 
state models assume just the interleaved executions. Also, other known forms of 
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reduction (e.g. slicing and abstraction [9-11]) make the use of specific properties 
of  programs and can not be applied directly to more abstract CSM models. 

In this paper we briefly describe three techniques used in a COSMA-style 
methodology of system verification. First, we will analyze the system behavior 
step-by-step, using so-called multi-phase reduction [12,13] which exploits some 
compositional features of the CSM model [14]. As a result, the system which (as 
naively estimated) may have as much as 4*1014 states is finally reduced to a 
model of 323 states and 1406 edges, easily representable and algorithmically 
checkable in a split second. Then, as some properties proved to be evaluated to 
false, we illustrate how the counterexample can be obtained and analyzed. 
Finally, using timed version of the model, we present how real time 
dependencies may be analyzed. 

 
2. Two-phase procedure of obtaining the reduced reachability graph 

Let us recall the basic facts about the CSM model of a pipeline, described in 
more details in [1]. It consists of three complex modules and three individual 
components (data source, data sink and the arbiter) common to the whole 
system. Each module can be internally subdivided into six components (see also 
left-hand part of Fig. 2). In total, this makes a set of 21 cooperating components. 
For each of them, a separate (finite state) CSM model has been developed, 
aimed at specifying its behavior as well as the communication to/from its 
communication partners. The goal was to obtain the large system’s behavioral 
model or a graph of reachable system states, containing all the reachable states 
and possible execution paths among them. Then, some temporal formulas 
representing desirable behavioral properties of the system have been evaluated 
(true or false). 

In [1] the emphasis was put on the specification of components and temporal 
properties, while the technique of obtaining the product of all the components 
was not analyzed. Now we proceed to the method of determining the system’s 
behavioral model that can (to an extent) help to cope with problems of the graph 
size. The main idea devoted to is the following. In order to obtain a system 
behavioral model, one has to perform the product (⊗) of CSM models of system 
components. This operation is associative and commutative. Associativity 
supports the important compositional property. Now, if we have – for instance – 
a system Z = {m, n, p} of three components, then (due to the associativity) we 
can obtain the behavioral model either immediately, as a ‘flat’ product 
⊗Z = m ⊗ n ⊗ p or in two steps: first computing the local product of some 
subsystem e.g. r = m ⊗ n, then  ⊗Z = r ⊗ p. Meanwhile, before the second, final 
product is obtained, we can apply some reduction procedure to the partial 
product r. While the associativity of the product applies to other finite state 
models as well, this reduction makes the use of intrinsic features of CSM model 
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itself. If machines m and n do communicate intensively with each other – it may 
result in a considerable reduction of a total computational effort, necessary for 
the computation of ⊗Z.  

Below, we show how this general rule applies to our system of 21 
components, briefly recalled above. We will proceed in the two steps or phases. 

Generally, each phase consists in the selection of some subsystem, obtaining 
its CSM product and removing the irrelevant states and edges from it. However, 
one has to decide first which elements of the model are relevant ones and 
therefore have to be preserved. Relevant – in this sense – are the selected output 
symbols (produced by individual system components) and thus also the system 
states in which these symbols are generated. Typically, among relevant symbols 
are: 

1. symbols that are referred to in the temporal formulas to be evaluated, 
2. symbols that should be preserved for designer’s convenience, e.g. because 

they make the complex behavior more readable, 
3. symbols that are necessary from the viewpoint of the communication 

among the currently reduced subsystem and remaining components1. 
The former two groups of symbols are decided upon by the designer while the 

latter one is determined by the specification of system components. Assume that 
in our case the relevant symbols of types 1 and 2 above are the following ones: 
 msg_1, msg_4, doProc_1, doProc_2, doProc_3 

In order to obtain the ‘phase-1’ model of our example system we perform the 
following procedure: 
Phase-1 

1. take a subsystem, consisting of the six components of module #1 (Fig. 2), 
2. compute its CSM product, 
3. reduce it, leaving as the relevant output symbols the following ones: 

– all the output symbols (from the subsystem) which are ‘watched for’ by 
the subsystem communication partners (i.e. the Arbiter, Trsm_0, 
Rcv_2), 

– symbols from the set selected above, which are produced within module 
#1 (this case: doProc_1), 

Let the product reduced this way be called Subsystem_1,  
4. repeat the above for modules #2 and #3 obtaining Subsystem_2 and 

Subsystem_3 (respectively), 
5. Substitute subsystems 1, 2, 3 in the place of just processed components. 

                                                 
1Note that among the ‘remaining components’ can be also the additional, auxiliary automata 

(e.g. Invariant, in our case) necessary for expressing the properties under checking.  
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Fig. 2. ‘Local’ product of a single module 

 
This way we obtain the phase-1 structural model, in which subsystems 1, 2 

and 3 are replaced by single automata. It is noteworthy that for Subsystem_1: 
– Cartesian product of its six components has 24300 states, 
– CSM product (before reduction) has 24 reachable states and 31 edges, 
– after reduction, Subsystem_1 is a graph of 10 states and 16 edges. 
For Subsystem_3, the situation is analogous. As an illustration, the reduced 

CSM product of six components making Subsystem_3 (Main_3, Rcv_3, Trsm_3, 
Proc_3, InpQ_3, OutQ_3) is shown in Fig. 3. At no surprise, it has 10 states and 
16 edges, the same as Subsystem_1. For Subsystem_2 (not shown), there are as 
few as 7 states and 12 edges. 
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Fig. 3. CSM model of Subsystem_3 (reduced product of six components of module #3) 

 
Now, the analogous procedure can be applied again to the structural elements 

of the reduced model, for instance: 
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Phase-2 
– Apply the procedure to a subsystem consisting of Subsystem_1 and 

Trsm_0, preserving all the output symbols which are ‘watched for’ by the 
communication partners (i.e. Arbiter and Subsystem_2) and symbols 
needed for temporal formulas to be evaluated (this case: doProc_1 and 
msg_1); 

– and to a subsystem consisting of Subsystem_3 and Rcv_4, preserving 
‘watched for’ symbols (i.e. Arbiter and Subsystem_2) and symbols for 
model checking (this case: doProc_3 and msg_4); 

– finally substitute Syst_1_Trsm_0 and  Syst_3_Rcv_4 in the place of just 
processed components. 

This way we obtain the phase-2 structural model as in Fig. 4. Notice that the 
phase-2 system now consists of four components (instead of 21 components of 
phase-0 structural model), each of significantly reduced size. This ‘downsizing’ 
the model can be continued, but each time the reduction is performed certain 
conditions have to be met [12] so that the reduction is not necessarily 
guaranteed. Nevertheless, in practice the degree of reduction can be substantial. 

Let the CSM product of the system from Fig. 4 be called New_System and 
serve as the new behavioral model in which the temporal requirements are 
evaluated. New_System, obtained again with the COSMA Product Engine, has 
323 states and 1406 edges and is expected to preserve at least these functional 
properties of the original, flat version which can be expressed in terms of 
symbols msg_1, msg_4, doProc_1, doProc_2, doProc_3.  
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Subsystem_2

doProc_2 

Syst_3_Rcv_4 

Prot_3 

doProc_3 

Arbiter 

Prot_2

4 4

others 

msg_1 msg_4 

 
Fig. 4. Phase-2 structural model of the system  

 
3. Verification of the reduced model  

To sum up, now we have two behavioral models of the same example system: 
– Flat-product (CSM product of 21 components, obtained as described in 

[1]) which had 8284 states and 34711 edges, 
– New_System, obtained in the above two-phase reduction procedure, with 

323 states, 1406 edges. 
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Both models have been verified in the COSMA environment. As in [1], an 
additional automaton Invariant was determined to conveniently specify the 
verified properties. The checked properties were the following: 

– Safety 1, saying – informally – that the number of messages within the 
pipeline never exceeds its capacity and the number of messages leaving the 
pipeline never exceeds the number of messages entering it, 

– Liveness 1, saying – informally – that for any system state it is possible 
that the pipeline eventually would get empty, 

– Liveness 2, saying – informally – that for any system state it is possible 
that the pipeline eventually would get full. 

Experiments have been performed on PC computer with 800MHz processor 
and 512 MB RAM. The results are summarized in Table 1. 

 
Table 1. Summary of experiments 

Flat model Reduced model 
 

Result Evaluation time Result Evaluation time 
Safety 1 true 17 s True < 1 ms 

Liveness 1 false 54 s False < 1 ms 
Liveness 2 false 4 min 40 s False 60 ms 

 
Notice that both formulas referring to the liveness have been evaluated false 

in both (flat and reduced) models. This negative result means that the system 
may enter such a state (states) that – from this state on – the pipeline is never 
empty again (i.e. it never terminates the processing of messages) or is never able 
to process three messages at once, which it was designed for.  

The differences in evaluation times are really noteworthy: in all cases the 
ratio of 103-104 in favor of reduced model was achieved, even though in terms of 
state space size the reduced model is only approximately 25 times less than the 
flat one. 

Finally, the model verification can be summarized as follows; 
– The system itself performs wrong: there must be a synchronization bug in 

the specification of components. This calls for the analysis of a 
counterexample. 

– The reduced model well preserves the relevant properties of the primary, 
flat one. Indeed, each case the same temporal formula was evaluated the 
same way (true or false) in both models. 

– The multi-phase reduction method provides a significant gain in the 
evaluation time, even greater than the savings in the state space itself. 

– The advantages of the evaluation algorithm used in the COSMA tool have 
been also confirmed. The algorithm terminates the evaluation as soon as 
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the result (true, false) is certainly determined. It is why the evaluation 
times of rather similar formulas (1) and (2) differ by a few dozen of times. 

 
4. Analysis of a counterexample  

In the case of negative evaluation, the TempoRG checker [15-17] produces a 
counterexample. Often, it is a path (a sequence of states) in the reachability 
graph that leads to the state where it was decided that the temporal formula is to 
be certainly evaluated false. In the case of more complex temporal formulas  
involving several operators, the counterexample can be a tree [15], showing 
which particular part of the formula (a sub-formula) is responsible for the 
negative result. Tracing the consecutive states along the counterexample, the 
designer is able to identify the synchronization bug.  

However, in the case of reduced models, the model states can be unreadable. 
As a result of reduction, some states are eliminated, the remaining ones are 
usually renamed etc., so that the analysis of counterexample should be based on 
the sequences of symbols (events) produced by the system instead of on 
sequences of states.  

The evaluation of both formulas representing the liveness condition yields the 
same counterexample, presented in Fig. 5. The counterexample itself pretends to 
be a CSM, in order to enable the use of animation feature of COSMA tool. 
Using it, one can trace the states of individual components (and their change) 
corresponding to consecutive states of an counterexample. Also, some additional 
symbols (not used in ‘regular’ CSM) are introduced as first elements of states’ 
output field. @ marks the starting state of the formula (in this case it is the 
system initial state) while F and G stand for the operators of sub-formulas 
(G stands for AG and F stands for AF).  
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Fig. 5. Counterexample to the formula AG AF in Invariant.s3 
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The counterexample is constructed as follows: 
– it begins in the starting state of evaluation (the initial state in this 

example), 
– it contains sub-paths responsible for sub-formulas (which may produce a 

tree-like counterexample), 
– for four states two successors are shown: one which leads towards an 

erroneous state (in which the error is possible, transition labelled with 
Error), the other one which leads to a ‘proper’ state (transition labelled 
with OK), 

– the fifth state in an upper sequence, namely s1:Busy:m5:m2:n2:Cos is 
referred to as a Trap. The rules of constructing counterexamples [24] say 
that this state is a representative of so-called Ending Strongly Connected 
Subgraph (ESCS) of states in which the most nested formula 
(in Invariant.state; state∈{s0,s3}) is not satisfied. When the system falls 
into one of these states, the error is inevitable (the desired state state of 
Iinvariant is never reached). 

The analysis starts with finding the last one of states (in the sequence) that 
has two outgoing transitions: one labelled OK and the other labelled Error. This 
state is referred to as a Checkpoint. In the example, it is 
(s1:Busy:m4:m2:n2:Cos), with two successors: (s1:Busy:m5:m2:n2:Nic) as a 
‘proper’ state and (s1:Busy:m5:m2:n2:Nic) as a ‘wrong’ one. This time, the 
‘wrong’ state is actually the Trap itself, but often it is only the initial state of a 
sequence of states which inevitably ends in a trap. Analysis of signals generated 
in the triangle {Checkpoint, its ‘proper’  successor, its ‘wrong’ successor} 
reveals the nature of error. We see that in the Checkpoint a request of access to 
the shared resource is generated (signal req_Access_1), and the resource is 
granted to another user (signal others is present). For this state, its ‘proper’ 
successor does not produce others, while in the Trap the symbol others is still 
present. So, OK-labelled transition (to a ‘proper’ state) is executed only if the 
signal others is withdrawn, otherwise the system chooses a transition to a 
‘wrong’ state which leads to the Trap. In other words, the error is inevitable, if 
the request (req_Access_1) is issued while other users do use the shared 
resource.  

Actually, in the system the two-state dead-end subgraph (causing a livelock 
of the whole system) can be found. The system performs incorrectly because 
reqAccess_1 is not stored. Recall that in the CSM framework no implicit 
buffering of events is assumed: this should be provided by the model itself, e.g. 
by an additional (e.g. two-state) buffering component or by a simple 
modification of Proc_1. The same conclusion refers to the third module which 
accesses the shared resource as well. Both modules (#1 and #3) have been easily 
corrected and positively verified.  
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Finally, we may add that the flat product of the corrected system has 8086 
states, 33588 edges instead of 8284 states and 34711 edges of the (incorrect) flat 
product discussed in [1]. This confirms the observation that the better the 
synchronization is, the less is the behavioral model of a system.  

 
5. Real-time dependencies 

Now we may convert automata to TSCM (Timed CSM, derived from CSM as 
Timed Automata [18,19]) by adding time constraints and clock resets on some 
transitions in automata Proc_i and control units Main_i (Fig. 2). All time 
dependencies are shown as multiples of a basic time period, a tick. The 
constraints in Proc_i (Fig. 6) inform what is the minimal time of processing 
(tim1: by the constraint on the transition outgoing from the state useshared) and 
the maximal time (tim2: the constraint on self-loop of the state useshared). The 
constraints are based on a clock Ti local to Proc_i. The fixed time of staying in 
states in Main_i models delays in control unit. The clock is reset every time the 
automaton enters useshared. The constraints guarantee that the time of using a 
shared resource is finite. The constants tim1_i and tim2_i, tim1_i < tim2_i, may 
be specific to subsystems 1,2 and 3. Auxiliary automaton which guarantees finite 
time of using the resource by others must be modelled (instead of the external 
signal others). Also, maximal time of a time period between generation of items 
should be specified. 
 

 
Fig. 6. Timed automaton Proc_1 

 
Unfortunately, TCSM does not specify the succession relation 

unambiguously. The RCSM (Region CSM automaton) may be calculated from 
the product TCSM, following the rules given in [20]. Storing a timed automaton 
in the RCSM form allows the verification system to compute its products with 
various testing automata. For this purpose, rules for multiplication of RCSM 
automata were developed [20]. 

Based on the RCSM state space, a testing automaton may be constructed, as 
shown in Fig. 7. This automaton checks if a time period between two items on 
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output of the whole system is <0,1), <1,2), <2,3) ... ticks. If we impose minimal 
and maximal time on the system, states violating the limits should produce the 
error signal (period <1 or >4 in this case).  
 

 
Fig.7. Testing timed automaton 

 
The presented verification should be completed by former tests for liveness 

and safety (but in the RCSM state space), because time constraints may change 
the behavior of the system and the results obtained for CSM may be no longer 
valid. 

 
6. Conclusions 

The advantage of (Timed) Concurrent State Machines formalism is that in 
order to understand (or even to design) the behavioral specification of a system 
component one has to be familiar with only a few elementary notions: a state, a 
transition, an atomic symbol, a Boolean formula, a time constraint. Generally, 
the semantics of an individual CSM is not far from the conventional finite state 
machines or basic UML’s state diagram. However, given a collection of such 
CSM components, one can select a subsystem and obtain its product, 
representing (in one, large graph) all possible subsystem’s executions or runs. 
Consequently, the model of a system can be subject to formal model checking 
methods and techniques. This advantage is not provided by standard 
specification methods based on UML.  

Moreover, as we have shown, the COSMA software environment supports 
the additional functional features, like stepwise model reduction, defining 
behavioral invariants, imposing time dependencies etc., as well as the means for 
the analysis of counterexamples. This makes the (Timed) Concurrent State 
Machines (and COSMA tool) a good candidate for a convenient framework for 
preliminary specification of concurrent, reactive systems. Once verified and 
corrected, such a specification can be refined, enhanced and otherwise 
developed in other professional software development environments. Moreover, 
if some components are to be hardware – implemented (which is often the case 
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in embedded systems), the automata-like CSM specification is also close to 
common forms of behavioral specification of sequential circuits. 

This work has been supported by grant No.7 T 11 C  013 20  from the Polish 
State Committee for Scientific Research (Komitet Badań Naukowych). 
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