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Abstract
We present two fast polynomial interpolating algorithms with knots generated in a field K by

the recurrent formula of the form x, =ax, ,+f (i=12,..,n-1; x,=y). The running time of
them is C(n) + O(n) base operations from K, where C(n) = O(nlog2 n) denotes the time needed

to compute the wrapped convolution in K". Moreover, we give an application of these algorithms
to threshold secret sharing schemes in cryptography.

1. Introduction and preliminaries
Let K" = (K”,+,-) be an n-dimensional linear space of vectors
a= (ao,al,...,a,kl ), a, €K
over a field K =(K,+,-) with a primitive root y from the unity of degree 2x.

Additionally, let the vector addition and scalar multiplication be defined in the
usual coordinatewise way. In the same coordinatewise way we also define the
vector subtraction, multiplication and division. For example, if
) and b=(b,,b,,...,b, ) are two vectors in K", then we set

>~ n-1

a/b:(ao/bo,al/bl ,...,an_l/bn_l), a, ceK ,

where a,/b, =a,-b"' and b #0 (i=0,1,.,n—1). Moreover, we define the

a=(a0,a1,...,a

n-1

wrapped convolution
a®b= (co,cl,..,cn_1 ),
where
), b= (bo,bl,...,bn_l)

a=(a0,a1,...,a

n-1
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and
¢ =Zakbi7k (i=0,1,..,n-1). (1)
k=0

It is well known that wrapped convolutions can be computed by an algorithm,
which has a running time of O(nlog2 n) base field operations in K. Such an
algorithm is based on the following fundamental identity

a®b={F"[F(a)-F(b)]+F'[F(¥-a)-F(¥-b)]/¥}/2, ()
which is implicitly presented and used in [1]. In this formula we have
Y= ( Ly,..., y/”'l) . Moreover, discrete Fourier transformations

F=F,:K'">K"and F'=F,":K" ->K" (a)zt//z) are defined by
sz(a), az(ao,al,..,an_l), b:(bo,bl,..,bn_l),

n-1 . 3
b=Y a" (i=0,1,.n-1) ©

k=0
and

n—1
4, =25 b (i=0.1..n-1)

n k=0

-1
l=[1+1+...+1] , 1—the unity in K.
%/_/

n

n—items
Now the claim follows directly from the well known fact that Fourier
transformations F and F~' can be evaluated by the famous FFT-algorithm [1],

which has a running time of O(n log, n) base operations from the field K.

For the completeness, we now present a simple proof of the formula (2). In
order to do this, we recall that the coordinates ¢, (0<k<n) of c=a®b are
identical with the corresponding coefficients of the polynomial product

c(x) = a(x)b(x), xekK
with

and

Since we have

¢, = Zakbi—k and ¢, ;= Z ab,.. )
k=0
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we can use the auxiliary vectors d,h € K" with the coordinates defined by
d=c¢+c,, and h=c-c,, (i=01..,n-1)

to get

k
for i=0,1,...,n—1. Clearly, this is equivalent to
d=F"[F(a)-F(b)]. F=F,.
On the other hand, one can apply the formulae " =—1 and (4) to obtain
n—1 2n-1 2n-1
zy/khkwik _ Z chkmik _ Z [Zl/jjajwkjbkj]a)ik ,
k=0 k=0 k=0 \_

whenever 0<i<n. Hence the division by ¥ = (1,1//,...,1//”'1) yields
h=F"'[F(¥-a)-F(¥-b)]/¥.
Finally, it remains to compute (d +h) / 2 to finish the proof of the formula

2).

2. Fast interpolation with special knots
Let us suppose that the points x, e K (i =0,1,..,n— 1) are pairwise distinct and
that y eK (i =0,1,....n— 1) are arbitrary. Then the unique interpolating

polynomial p(x) in the space K, | [x] of all polynomials of degree less than n
is defined under the interpolating conditions
p(x,.) =y, (i =0,1,...,n —1) .

Moreover, it is given by the Newton interpolatingformula

p(x)=c,+c(x=x)+...+¢c, (x—x,)(x=x)..(x—x,,), &)
where the divided differences

¢ = [yo,yl,...,y,.] (i =0,1,..,n —1)

can be computed by the usual recurrent formulae, which require O(nz) base
operations from the field K. However, if the knots form an arithmetic or

geometric progression, then the running time of the algorithm based on the
recurrent formulae can be reduced to O(n log, n) [2].

More generally, let us suppose that pairwise distinct knots x,,x,,...,x, , €K
are generated by the following recurrent formula
Xo = Vs

x=ax_ +pf (i=12,.,n-1),
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where a #0, 4,y are fixed in K. Then one can insert
X =a'y+ ﬂ(ai’] ra Tt 1)

into the formula

[y()ayla Vi ] ZL (i=0,1,..,n—1)

and use the identity
o —1=(a-1)(a" " +a’ 7+ +1)

¢ - [2%%/ J/’ (i=0.1...n-1)
=0

in order to get

or equivalently

c=(p®q)/r,
where
o fe
a
_ Y _
pj_j—lk > qj_ j]k
[1>e 2.a"
k=0 m=0 k=0 m=0
and

r =[(a—1)7+ﬁ]jﬁak (j=0,1,...,n—1).

Here and in the following it is assumed that products and sums are equal to 1,
whenever their upper indices are smaller than the lower. Furthermore, note that
the coordinates

of vector s = (SO 38 seeesS ) satisfy the following recurrent formula

> n-1
s, =5, a+l (k:1,2,...,n—1; S():O)~
Hence we get Algorithm 1 to compute the required divided differences in the

Newton interpolating formula. This algorithm uses two classes KType and
KTypeVector, which enable to perform operations in K and K".

It is clear that Algorithm 1 has a running time of C(n)+O(n) base

operations from the field K, where C(n) denotes the time needed to compute the
wrapped convolution

conv(p,q) =pQ®gq.
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INPUT: KTypeVector y; KType a, b, g;
OUTPUT: KTypeVector c;
KTypeVector p, q, 1;
KType d=(a-1)*g+b, s=0,
v=1/a,u=1, z=1;
p[0]=yI[0]; q[0]=1; r[0]=1;
for(int k=1; k<c.length(); k++){
s=s*a+1; u=u*s; p[k]=ylk]/u;
v=v*a; z=-z*v; qlk]|=2z/u;
rlk]=r[k-11*v*d;
}

c=conv(p,q)/r;

Algorithm 1. The divided differences with knots x, = ax,_, +b (i =12,.,n-1; x,= g)

3. Fast evaluation of Newton polynomial at special knots

In this section we present the inverse algorithm to Algorithm 1, which is
useful in the threshold secret sharing scheme [3,4]. More precisely, we consider
the problem of fast computation of the polynomial

p(x)=c,+c(x—x))+...+c, (x—x,)(x=x,)..(x—x, ,)
at the knots
x=ax_ +f (i=12,.,n-Lx,=7).
For this purpose, we insert
X, = a’j/+ﬂ(a"'1 +a'? +...+1)

into the formula (5) to derive

B

=(Zp,-q,~_,]-r,- (i=0,1,...n-1)
j=0
or equivalently

y:(yoaylv"ayn,]):(p®q)'l",

where
j-l
p,=c; [(a —1)7/+ﬁ]‘/ Ha"
k=0
and

k
Za”.

0 v=0

1 Vi
—=r =
J

q/‘ k
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These identities immediately yield Algorithm 2, which is an inversion of
Algorithm 1.

INPUT: KTypeVector ¢, KType a, b, g;
OUTPUT: KTypeVector y;
KTypeVector p, 1;
KType d=(a-1)*g+b, s=0,
v=1/a, w=1;
p[0]=clO0]; £[0]=1;
for(int k=1; k<c.length(); k++){
v=v*a; w=w*v*d; p[k]=c[k]*w;
s=s*a+1; r[k]=r[k-1]*s;

}

y = conv(p,1/1)*r;
Algorithm 2. Newton’s polynomial evaluation at the knots
X, =ax,_, +b (i= L2,...,n—-1 x, :g)

The running time of this algorithm is again C(n)+O(n) base operations
from the field K.

4. An application to secret sharing schemes
Let us consider a secret sharing scheme of Shamir type [3,4] with respect to a
Newton interpolating polynomial in K, [x], where K = Z ., is a field of

integers modulo 65537 and n =128 is an artificially small number. More
precisely, let us suppose that a dealer does the following:
— in a random way chooses numbers a =6, f=2257, y =528, w =62750

and a polynomial
p(x) =578+3452(x—x0)+218(x—x0)(x—x1)...(x—x]22)+
+947 (x - x, )(x =X, )e(x =25 )+ 5321(x - X, )(x - X )(x — X2 )5
where x, =528 and x, =6x_, +2257 (i=1,2,..,127);

— defines the polynomial key x =57834522189475321, which guarantees
opening an access gate to the secret;

— applies Algorithm 2 with a=«a, b= and g=y to compute the
shares y, = p(xi) (i = 0,1,...,127) and distributes a fixed number (say 6)
of the following shares

(xo,yo) = (528,578), (xl,yl) = (5425,62013), (xz,yz) = (34807,37401),

(x,,0,) =(14488,20803), (x,,7,)=(23648,52289), (x;,;)=(13071,44594)
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among participants of the secret sharing scheme, and the remaining 122
shares (xi,yi) (6Si<128) together with n, a, f, y and y gives to the

combiner.
Then the combiner can recover the key x and get the required access after
receiving all shares from the participants of the secret sharing. For this purpose,
he has only to apply Algorithm 1 in order to show that the nonzero coefficients

of the polynomial
127 i—1

P(X)=ZCiH(x—xk)

i=0 k=0
are equal to
¢, =578, ¢, =3452, c,, =218, c,, =947, c,, =5321.
Consequently, he recovers the key
K =57834522189475321.

It is important that the secret sharing scheme can be changed in such a way
that combiner can check if shares are falsified, and consequently can verify
authenticity of recovered key. For this purpose the dealer should be allowed to generate

more shares than n =128 with respect to pairwise distinct interpolating knots x;

127

(i =0,1,..,m—-1;, m> 128) . Then the combiner ought to verify that
=0.

m-1 —

C128 = 6129 =...=¢C

Finally, we note that the dealer and combiner can save about 99 percent of
base operations in the field K, whenever the dealer chooses n of order 2'*.

Indeed, if n=2'* then Algorithm 1 requires 5799888 base operations in the
field K. On the other hand, the classical algorithm based on usual recurrent
formulae uses 402628608 such operations. Hence the number of based
operations in Algorithm 1 equals 1.44% of the number of operations in the
classical algorithm.
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Fig. 1. The numbers of base operations in the classical recurrent algorithm and Algorithm 1
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Further, if n=2"° then the dealer saves

GH6531501, 00, g0 60
6442352640

of base operations in the field K, whenever he uses Algorithm 2 instead of the
extended Horner algorithm. Moreover, the graphs of numbers of base operations
are presented in Figures 1 and 2 for these four algorithms. In view of the huge
difference between the numbers of operations in the corresponding algorithms,
we use the logarithmic scale in these graphs.
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Fig. 2. The numbers of base operations in the extended Horner algorithm and Algorithm 2

Conclusions
In this paper, we have presented fast polynomial interpolating and evaluating
algorithms in the case of n knots generated dynamically in a field K by the
recurrent formula of the form
X, =ax,_ +p (i =1,2,.,n-1;, x,= }/).
The first algorithm computes divided differences with the running time of
C(n)+0(n) base operations from the field K, where C(n)zO(nlog2 n)

denotes the complexity of computation of the wrapped convolution in K”. In
comparison, the classical algorithm using usual recurrent formulae requires

O(nz) of base operations in K. The second algorithm evaluates Newton

polynomial at n knots given by the above recurrent formula in the same time as
the first one. Numerical experiments show that these both algorithms can be
useful in practice, whenever # is sufficiently large. For example, such a situation
occurs during the computation of shares and recovering keys in the secret
sharing schemes of Shamir type [4].
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