

Annales UMCS Informatica AI 5 (2006) 79-86
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Prolog, Mercury and the termination problem

Anna Sasak*

Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

This paper shortly introduces the two logic programming languages Prolog and Mercury. On
this background we introduce the problem of analysing termination of programs. Then we present
Mercury’s termination analyser, that the authors of the language incorporated into its compiler. We
will also discuss the proposition based on the same method analyser for Prolog’s predicates.

1. Prolog
Prolog is a logic programming language with its roots in automated theorem

proving. Its terminology and concept are based on the first-order predicate logic.
There are a few definitions required to understand the rules of programming in
Prolog.

Facts are used to describe some relations between the objects and they are
always true. They consist of relation name, predicate and the list of coma-
separated arguments enclosed with brackets. Each fact ends with full stop. For
example, the fact expressing the relation of admiration and referring to two
objects could have a form like(kate, flowers). Names of used object and
predicates must start with lower case letters.

The second type of statement in Prolog are rules. Rules comprise two parts, a
head and a body connected with ‘:-‘ (neck symbol also read as ‘if’) and end with
a full stop. Head is a name of the defined rule with the list of its arguments.
Body is a set of goals separated with commas which state for logic ‘and’. That
conditional form means that to satisfy the rule it is required for all its goals to
succeed. While defining a rule it is allowed to use variables both in its head and
body. A variable in Prolog is a string of letters, digits, and underscores
beginning either with a capital letter or with an underscore. They are used to
replace objects that can not be named at the moment. For example, if we want to
describe a person who is a brother of somebody, in Prolog we would use the
following form: brother(X,Y) :- man(X), parents(O,M,X), parents(O,M,Y).

*E-mail address: asasak@poczta.fm

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Anna Sasak 80

Collection of facts and rules creates a database. With this database, we can
ask Prolog questions. To answer a question about the database, or in other
words, to satisfy all the goals that build that query, Prolog has to search the
database. Binding variables always go from left to right, backtracking if
necessary. When Prolog finishes satisfying the goals, the answer is given.
Extending the previous rule with a few facts the following database is created:

 man(kriss).
 man(mathew).
 parents(mathew,anne,kriss).
 parents(mathew,anne,maggie).
 brother(X,Y) :- man(X), parents(O,M,X), parents(O,M,Y).

Now after putting the question
 ?- brother (kriss , melanie).
the answer ‘No’ will be obtained as there are no possible variables binding that
would satisfy every goal of ‘brother’ relation.

The basic method used in Prolog’s programs and data structures is recursion.
As the definition says: recursion or recurrency in programming and mathematics
is calling function on itself. Each recursive definition requires at least one
ending, nonrecursive state that would make the recursive calls stop. For
example, a predicate that computes factorial in Prolog could have the following
form:

 factorial(1,1):-!.
 factorial(X,Y):-X1 is X-1, factorial(X1,S), Y is S*X.

First clause is an ending state terminating the recursive calls. Goal written as
‘!’ is called cut. It is a goal that always succeeds, but cannot be backtracked. It is
used to prevent unwanted backtracking. The second clause is a recursive call
with its input arguments properly transformed.

2. Mercury

Mercury is a new, pure logic-functional programming language. Such as
other existing logic programming languages, it is a high level programming
language which allows programmers to concentrate on solving the problem
rather than thinking about low-level dependencies like memory management.
The project called Mercury was created at Melbourn Univeristy in 1995. For the
past years there has been done a lot of research and development work. As a
result, since December 2002, there has been the version 0.11.0 available that
supports most of system platforms.

Main features of Mercury:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Prolog, Mercury and the termination problem 81

1. It is purely declarative which means that predicates and functions do not
have non-logical side effects.

2. Strong type system.
3. Strong mode system.
4. Strong determinism system which catches many program errors at compile

time.
5. Module system.
6. Support for higher-order programming, with closures, currying and lambda

expressions.
7. In comparison with the existing logic programming languages Mercury is

very efficient.
The syntax of Mercury is based on the syntax of Prolog, although the

semantics differs a little. Program in Mercury is a set of modules. Each module
is a file that contains sequence of elements – declarations and clauses. Element
is a term ended with a full stop. Term is a set of tokens and token is a set of
characters. Each module starts with a ':-module Module_name' declaration
which specifies its name. Next, there should be interface section introduced by
':-interface' declaration. This section specifies the entities that are exported by
this module. An ':-implemenation' definition indicates the start of next section.
This is the place that must contain definitions for all declarations from the
interface section. The module may end with ':- end_module Module_name'
declaration. To make use of entities exported by other modules it is required to
explicitly import those modules using ':- import_module Module_list' or ':-
use_module Module_list' declaration. It is important is that one module must
export a predicate 'main/2' declared as either:

 :-pred main (io__state::di, io__state::uo) is det. or
 :-pred main (io__state::di, io_state::uo) is cc_multi.

Module arranging some list of operations could look like this:

 :-module list_operations.
 :-interface.
 :-type list (El).
 :-pred append(El , list(El), list(El)).
 :-implementation.
 :-type list (El) - - -> [] ; [El | list(El)].
 append(El , [] , [El]).
 append(El , L1 , [El|L1].
 :-end_module list_operations.

It is also worth mentioning that there are new kinds of clauses in Mercury,
called functions or more precisely: function rules and function facts. If the top-
level functor of the head of a rule or a predicate is '=/2', that clause is suitable

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Anna Sasak 82

function rule (having the form: head=return_value:-body) or the function fact
(having form: head=return_value). In both cases head can not be a variable and
its arguments must be valid terms.

The type system of Mercury, is based on many-sorted, polymorphic logic.
Next to built-in primitive types there are predicate types - pred, function types –
func and universal type univ. Apart from those types new types can be
introduced with ':-type' declaration. There are several categories of derived
types, such as: discriminated unions, equivalence types and abstract types.

Discriminated unions are similar to records or enumeration types known from
other programming languages. Their declarations have the form: :-type name
[(T1,...,TN)] - - -> body where body is a comma separated the sequence of
constructors. For example, the type designed to contain personal data could
have the following form:
 :-type pers_data - - -> pers_data (firstname :: string , familyname :: string).

Equivalence types are declared with ‘==’ operator. They are considered as
simplification of the type situated on the right side of the declaration f.e. :-type
liczba_calkowita == int.

Types with hidden implementation are called abstract types. In the interface
section there is only type’s name and arguments whereas its definition (list of
constructors) is situated in the implementation section.

For each predicate or function it is necessary to explicitly determine which
arguments are input and which are output. These two primary modes are called
‘in’ and ‘out’ respectively. Mode declaration in the form :- mode term_name(
mode , ... , mode) [= mode] should be situated in the module interface section,
usually just after the corresponding predicate or the function declaration.

For each declared mode there should be appropriate determinism declaration.
Term, which call ends not throwing exception, can have one of the following
determinism kinds: det, semidet, multi, nondet, failure, erroneous.

In Mercury full declaration and definition of predicate appending two lists
could look as follows:

 :- pred append (list (T) , list (T) , list (T)).
 :- mode append (in , out , out) is det.
 :- mode append (out , out , in) is multi.
 :- mode append (in , in , in) is semidet.
 append (L1 , L2 , L3) :- (L1 = [] , L3 = L2;
 L1 = [G|O] , append(O , L2 ,L33),L3=[G|L33].

3. Termination problem
Termination problem or halting problem in computability theory there is a

decision problem that could be expressed as follows: for a program’s description
and its initial input, determine whether the program, when executed on this

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Prolog, Mercury and the termination problem 83

input, ever completes. In 1936 Alan Turing proved that general algorithm to
solve the halting problem for all possible inputs cannot exist. It is said that the
halting problem is undecidable over Turing machines. There are many methods
that are used to analyse termination of programs. I would like to present the
Gröger-Plümer approach to the problem.

That method has two stages:
1. Assigning an integer to each clause of analysed predicate that estimates

maximum difference between the total size of the output and input
arguments.

2. Using the solution from the first stage to check if in each cycle in the
predicate’s call graph, input arguments decrease in size

The subject of this article is only first stage analysis which involves
producing and solving a set of linear inequalities in the form:
 Σi€Ipi+φp≥Σj€Jpj
where pi stands for the size of argument i predicate p, I is a subset of the set of
the input arguments and J is a subset of the set of its output arguments. The aim
is to solve for the minimum integer value of φp satisfying the inequalities
inferred for the predicate.

Let us consider the predicate append(H1,H2,H3), which attaches a list to the
back of another, and its arguments modes are in, in, out respectively. Starting
with the recursive clause, the first stage analysis would have the following
course:

 append (H1, H2, H3) :-
 H1 = [X | Xs],
 append (Xs, H2, Zs),
 H3 = [X | Zs]. %h3

Starting from the right side of the inequality for this clause is output variable
H3. On the strength of the last goal it can be replaced by the sum of variables X
and Zs and 1 representing the size of cons cell.

 append (H1, H2, H3) :-
 H1 = [X | Xs],
 append (Xs, H2, Zs), %x + zs + 1
 H3 = [X | Zs]. %h3

The second goal is a recursive call that also defines one of the active variables
Zs. We cannot estimate the exact size of Zs precisely but we know that its upper
bound is: xs+h2+φa

 append (H1, H2, H3) :-
 H1 = [X | Xs], %x + xs + h2 + ϕa + 1
 append (Xs, H2, Zs), %x + zs + 1

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Anna Sasak 84

 H3 = [X | Zs]. %h3

First goal states that h1=x+xs+1 so x+xs on the right side can be replaced by
h1-1

 append (H1, H2, H3) :- %h1 + h2 + ϕa + 1 - 1
 H1 = [X | Xs], %x + xs + h2 + ϕa + 1
 append (Xs, H2, Zs), %x + zs + 1
 H3 = [X | Zs]. %h3

As a result inequality of the form h1+h2+φa ≥ h1+h2+φa+1-1 is gained
which is always true.

The annotation for the other, nonrecursive clause would be:

 append (H1, H2, H3):- %h2
 H1 = [], %h2
 H3 = H2. %h3

which gives the inequality of the form h1+h2+φa ≥ h2 also always true which
finally allows us to estimate φa equals 0.

4. Algorithms
A few of Mercury’s creators: Chris Speirs, Zoltan Somogyi and Harald

Søndergaard have implemented a termination analyzer and incorporated it into
the Mercury compiler. Their algorithm is mainly based on the previously
described method, however with small modifications. The first stage analysis is
based around the inequalities
 _ _ _output supplier variables output variablesϕ+ ≥∑ ∑ ,
where output_supplier_variables represent the set of these input variables whose
value contribute to the size of the output variables. The set of output variables
from the right side of inequality is calculated by using the fixed point analysis.
At first it is assumed that none of the procedures use none of its input arguments
to produce output. Then in each of the following steps the output_suppliers set is
being completed by M set which is subset of input arguments of pj procedure.
This process is repeated until reaching a fixed point. The code of Stage 1
algorithm is as follows:

For each procedure p€S set new_output_suppliers(p) to []
 Do
 old_output_suppliers:=new_output_suppliers
 Step1(old_output_suppliers, new_output_suppliers)
 while new_output_suppliers ≠ old_output_suppliers
 output_suppliers:=new_output_suppliers

If I is unsatisfable then for each p€S set φp to ∞

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Prolog, Mercury and the termination problem 85

 else set (ϕ1,…, ϕn) to (d1,...,dn)
 where(d1,...,dn) is the least solution satisfying I

Proc step1(in old_output_suppliers, out new_output_suppliers) is
Set I to true

 For j:=1 to n:
 Let B0:-B1,...Bm be the clause defining pj (m≥0)
 M:=outvars(pj)
 δ:=0
 For i:=m to 1:

 If M∩outvars(Bi)≠∅ then
 M:=(M\outvars(Bi))Uold_output_suppliers(Bi)
 δ := δ +change(B_{i})

If M⊈invars(pj) then for each p€S set φp to ∞ and exit
 new_output_suppliers(pj):=M

If δ contains ∞ then I:=false
else I := I Λ φpj ≥ δ

Proposition of algorithm realising Stage 1 analysis in Prolog could have the
following form:

 compare(InVar, OutVar):- …
 replace(VarSet, OutVar, InVar, VarSetNew) :- …

 step([],Var,Var):-!.
 step(Body,Var,VarX):-last(Body,Clause),
 not recursiveCall(Clause),
 replace(Var, outvar(Clause),
 invar(Clause), Var1),
 remove(Body, Clause, Body1),
 step(Body1, Var1, VarX).
 step(Body,Var,VarX):-last(Body,Clause),
 recursiveCall(Clause),
 add(Var, Gamma, Var1),
 replace(Var, outvar(Clause),
 invar(Clause), Var1),
 remove(Body, Clause, Body1),
 step(Body1, Var1, VarX).

 step1_check(X:-Body):-Var = outvar(H),
 step(Body, Var, VarNew),
 In = invar(H)+Gamma,
 compare(In, VarNew).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Anna Sasak 86

The presented algorithm’s framework has been partially written with some
informal language to improve clarity. It assumes that there is information about
predicate’s modes available and also that predicates are allowed to make
recursive calls only to itself. Predicate step1_check for each predicate orders to
perform stage 1 analysis. Predicate step for each goal of analyzed predicate’s
body converts set of input variables including new active variables. Predicate
compare for variables sets it gains, builds up proper inequality and returns its
solution. Predicate replace does some required list operations.

Conclusions

Unfortunately stage 1 analysis is not enough to get a reliable answer whether
that predicate terminates or not. To prove it, let us again consider the predicate
calculating factorial.

 factorial (1 , 1).
 factorial (X, Y) :- X>1 ,
 X1 is X – 1,
 factorial (X1 , Y1),
 Y is Y1 * X.

The inequality that is obtained is of the form x + φ ≥ x + φ and it is always
true. Yet it is enough to change only one sign

 factorial (1 , 1).
 factorial (X, Y) :- X>1 ,
 X1 is X + 1,
 factorial (X1 , Y1),
 Y is Y1 * X.

to see that:
1. It changes nothing in the obtained inequality and its solution.
2. Causes that this predicate’s call will never terminate.
To draw some further conclusions about termination of a given predicate it is

necessary to make stage two analysis.

References
[1] Małuszynski J., Nilsson U., Logic, Programming and Prolog, JohnWiley & Sons, (1990).
[2] Colmerauer A., Roussel P., The birth of Prolog, (l992).
[3] Apt K.R., The logic programming Paradigm and Prolog, (2001).
[4] Clocksin W.F., Mellish C.S., Prolog programowanie, Helion, (2003).
[5] The Mercury group. Available from http://www.cs.mu.oz.au/research/mercury.
[6] Speirs C., Somogyi Z., Søndergaard H., Termination Analysis for Mercury, Proceedings of

the Fourth Static Analysis Symposium, (1997) 157.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 00:40:35

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

