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Abstract 

A practical computing algorithm has been developed for calculating the macroscopic energy of 
nuclei. Four different models of the macroscopic energy are examined and their influence on the 
results is discussed. 

The results of the calculations are presented in the form of curves to illustrate how the different 
macroscopic models influence on the spontaneous fission energy barriers of super-heavy nuclei. 
 

1. Introduction 
For the first time, the charged liquid-drop model was successfuly applied 

about 70 years ago [1]. Brilliant employment of the nuclear drop concept was 
used to explain the nuclear fission phenomenon [2]. 

Since then, many papers have been devoted to the nuclear model formalism 
and its improvements. Since then those times, various new terms in the 
corresponding energy expressions have been proposed. 

The contemporary expressions commonly used for the nuclear energy are 
given by the liquid drop model [3], the droplet expansion [4], the folded-
Yukawa plus exponential approximation [5] and recently developed the Lublin-
Strasbourg drop (LSD) [6]. The LSD model represents the revised and improved 
version of the charged liquid drop formula, in which the parameters were 
adjusted to the known masses and isotopes. 

Although, in the above mentioned formulae, the various new terms have been 
proposed, but the basic concept of the charged liquid drop which could deform 
and fission remained valid. 

The formulae from [3-6] have been used to construct a universal computing 
algorithm, written in FORTRAN 77, allowing to calculate the nuclear liquid 
drop energy in different, popular in literature models.  
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It is well known that the smooth part of the nuclear energy, represented by the 
various drop models considerably influences on the spontaneous fission half-
lives (Tsf) [7-8].  

The code introduced in our publication is a very important unit of programme 
to obtain the estimations of spontaneous fission (Tsf) as well as the α-decay half-
life times of the heavy and super-heavy nuclei within the macroscopic-
microscopic model [9-12]. 

 
2. Theory 

2.1. Nuclear shape parametrisation 
The shape of the nucleus is defined by the surface Σ: 

 : ( , , ) 0f r θ ϕ =∑ . (1) 
There are many multi-parameter descriptions of nuclear shapes used in 

literature. One which is the most familiar and general is the expansion of the 
radius R into spherical harmonics: 
 0

2

ˆ( , , ) [1 ( , )]R R Yλµ λµ
λ µ

θ ϕ α α θ ϕ
≥

= +∑∑ . (2) 

In the above equation 1/ 3
0 0R r A=  is the radius of the spherical nucleus with 

the atomic number A and α̂  denotes the full set of deformation parameters. For 
the axial shapes only eq. 2 simplifies to: 
 0 0
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ˆ( , ) [1 ( )]R R Yλ λ
λ

θ β β θ
≥

= +∑ . (3) 

The β-expansion defined by eq. (3) is usually limited to the low order 
coefficients: β2~~(quadrupole), β3~~(octupole) and β4~~(hexadecapole) degrees of 
freedom. But for strongly elongated and mass-asymmetric shapes, it is necessary 
to have a freedom of choosing higher order multipoles. In our code the upper 
limit on the multipoles is λmax = 9. 
 

2.2. Various nuclear liquid-drop models. 
If we normalize the energy to zero at spherical shape [8], the formulae for 

liquid drop model [3] including the surface and Coulomb energy can be written: 
 0 0

ˆ ˆ ˆ( ) ( ( ) 1) ( ( ) 1)C S
LD C SE E B E Bβ β β= − + − . (4) 

The numerical value of the parameters 0
CE  and 0

SE  is taken from a mass 
formula[3]. All deformation dependence is contained in ˆ( )SB β  and ˆ( )CB β  
coefficients. They both can be expressed by the two or three dimensional 
integrals: 
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= ∫v  (6) 

here W(r) denote the Coulomb potential: 

 ( )
| |V

drW r
r r

′
=

′−∫ K Kv . (7) 

The improved version of liquid drop model was proposed by Myers and 
Świątecki [5] in 1969 as the liquid drop model extension in the form of 
curvatures and corrections resulting from non – uniform distribution of charges 
on the nucleus surface.  

The macroscopic energy can expressed in that model as: 

 
( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
ˆ ˆ ˆ ˆ1 1 1

ˆ ˆ                      1 1 .

DROPLET S S CUR CUR C C

R R w W

E b B b B b B

b B b B

β β β β

β β

= − + − + − +

− + −
 (8) 

The free parameters included in this Equation (bi, i=s, c, cur, r, w) are 
determined phenomenologically by their adjustment to nuclear masses, 
multipolar moments and barriers for fission. The functions Bi (i = s, c, cur, r, w) 
depend on nuclei shapes only. Two of them i.e. the relative surface energy BS 
and the relative Coulomb energy BC are defined as in the liquid drop model (Eqs. 
5, 6).  

The coefficient BCUR is associated with the average curvature of nucleus 
surface, BR is associated with the non-uniform charge distribution, BW is used to 
describe the non-uniformity of charge distribution on the nucleus surface. The 
explicit equations for function Bi in the liquid drop model are as follows: 
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The integration is carried out over the nucleus surface S or over the volume 
V. The value W(r) is proportional to the Coulomb potential (Eq. 7). 

The Yukawa – plus – exponential model [5] presented in 1979 is a more 
universal model of macroscopic energy of nucleus. The following term 
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describing the broadening of nucleus surface is added to the surface energy ES 
and the relative Coulomb energy EC  in that model: 

 3 3
2 2 3

08

r r
a

S
Y

c eE d rd r
R a r rπ

′−
−

′= −
′−∫  (14) 

with R0 constituting the nucleus radius with sharp cut-off of matter density on 
the surface and a  constituting the broadening function range (for a → 0 this 
term disappears). The known fact that the matter density on the surface of actual 
nuclei is not changed abruptly, but decreased in accordance with the Yukawa 
model has been considered in the present model. 

The macroscopic nuclear energy according to the curvature dependent LSD 
model proposed in [6] is given by the formula:  
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Definitions of the curvature BCUR, Coulomb BC and the surface BS coefficients 
remain the same as in the standard drop model (Coulomb and surface 
coefficients) or in the Droplet model (curvature coefficient BCUR. The parameters 
appearing in Eq. 7 are the following 
 bV  = -15.4920 MeV, 
 κV  = 1.8601, 
 bS  = 16.9707 MeV, (16) 
 κS  = 2.2938, 
 bCUR = 3.8602 MeV, 
 κCUR = -2.3764. 

Such a liquid drop formula results in rms mass deviations equal to 
0.698~MeV for binding energies of 2766 nuclei with Z > 8 and N > 8$ and 
rms = 0.88 MeV for 40 fission barrier heights experimentally known. 

 
3. Program organization 

The program has been prepared in FORTRAN77, but it is also compatible 
with the previous versions of that language. 

The file contains the module of main program ENERGY and several 
procedures associated with that program. 

The whole program may be subdivided into three main blocks: 
1. The main program named ENERGY (main) reading the data, opening the 

required files and calling the procedures LIQDROP, ENZ, YUKAWA, 
ELSD. 

2. Four principal procedures, counting the nucleus energy in the four applied 
models:  
– LIQDROP – liquid drop model, 
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– ENZ – liquid droplet model, 
– YUKAWA –Yukawa + exponential model, 
– ELSD – Lublin-Strasbourg liquid drop model. 

3. Auxiliary procedures 
– QG32 – calculating the integrals using 32-point Gauss-Legendre’ 

formula, 
– QG16 – ditto, but for 16-point Gauss formula, 
– QG12 – ditto, but for 12-point Gauss formula, 
– CEL2 – calculating the elliptical integrals; first and second kind, 
– BC1 – calculating the constant value Bc in liquid drop model, 
– FPBC1 – defining the integrand in calculation of Bc, 
– BS1 – calculating the constant value Bs in liquid drop model, 
– FPBS1 – defining the integrand in calculation of Bs, 
– COEF – calculating the remaining factors in liquid drop model, 
– RSUR – calculating the value of nucleus radius vs. angle θ. 

The procedures BC1, BS1 and a part of procedure COEF, liquid droplet 
coefficients and other required coefficients for the remaining macroscopic 
nucleus models are presented below: 
 

C****************************  BS1  ***************************** 
FUNCTION BS1(CMALE) 
 COMMON /DEF/ BET1,BET2,BET3,BET4,BET5,BET6,BET7,BET8,BET9 
C 
C         BS1 CALCULATES CONSTANT BS 
C 
 EXTERNAL FPBS1 
 XG=1. 
 IF(ABS(BET3)+ABS(BET5)+ABS(BET7)+ABS(BET9).EQ.0.) XG=0. 
 XD=-1. 
 UM1=(XG-XD)*0.5 
 CALL QG32(XD,UM1,FPBS1,RA) 
 CALL QG32(UM1,XG,FPBS1,RB) 
 RES=RA+RB 
 BS1=RES*CMALE**2 
 IF(XG.EQ.1.) BS1=BS1*0.5 
C 
 RETURN 
 END 
 
C****************************  BC1  ***************************** 
FUNCTION BC1(CMALE) 
C 
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C         BC1 CALCULATES CONSTANT BC 
C         CALLED FROM INTRO 
C 
 COMMON /DEF/ BETA1,BETA2,BETA3,BETA4,BETA5,BETA6,BETA7, 
 *             BETA8,BETA9 
 EXTERNAL FPBC1 
 DATA PI /3.14159265/ 
 XG=PI 
 IF(ABS(BETA3)+ABS(BETA5)+ABS(BETA7)+ABS(BETA9).EQ.0.) XG=PI/2. 
C 
 CALL QG16(0.,XG,FPBC1,RES) 
 BC1=RES*3./4./PI*CMALE**5 
 IF(XG.EQ.PI) BC1=BC1*0.5 
C 
 RETURN 
 END 
 
C 
C.....EVALUATION OF THE LIQUID DROPLET PARAMETERS...................... 
C 
 CALL QG16(-1.,1.,RIG,W) 
 BJ=0.375*W 
 CALL QG16P(-1.,1.,CUR,W) 
 BK=0.25*W 
 IF(I.EQ.2) RETURN 
 CALL QG12(-1.,1.,WDS,W) 
 BP=3./(8.*PI)*W 
 BV=6.*BC*BS-5.*BP 
 CALL QG12(-1.,1.,WSDS,W) 
 BQ=9./(32.*PI**2)*W 
 BW=25.*BQ-60.*BC*BP+36.*BC**2*BS 
 CALL QG12(-1.,1.,WBM,W) 
 BM=315./(544.*PI*PI)*W 
 BR=85.*BM-84.*BC**2 
 RETURN 
 END 
 

The application of Gauss procedures for integration with various numbers of 
knot points should be emphasized, owing to its impact on computation time. The 
procedures have been tested in order to maintain the error of obtained 
macroscopic nucleus energy δ ≤ 0.001MeV in the whole range of applied 
deformations βλ. 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 05/02/2026 03:37:20

UM
CS



Algorithm and numerical modelling of macroscopic barriers … 243 

The application of the basic procedures used for energy values calculations in 
various models has been illustrated by means of the following code fragment. 
 

C 
 DO 105 IJ=1,NJ 
 IN = IN0 + (IJ - 1) * 2 
 IA = IN + IZ 
 A = IA 
C 
C      WRITE (IJ+31,103) IZ, IA, NJ 
C      WRITE (IJ+31,104) 
C 
C     *************** YUKAWA *********************** 
C 
 CALL YUKMOD(Z,A,OM,BC,YS,YSC,ECOUL,YXMAS0,YDEF) 
 YXMAS = YXMAS0 + YDEF 
C 
C     ***************** DROP ************************* 
C 
 CALL LIQDROP(Z,A,BS,BC,DBSURF,DBCOUL) 
 
 DROP = DBCOUL + DBSURF 
C 
C     **************** DROPLET ********************* 
C     
 DLIQQP=ENZ(Z,A,BS,BK,BC,BV,BW,BR) 
 DLIQQK=ENZ(Z,A,1.,1.,1.,1.,1.,1.) 
 DLIQQ=DLIQQP - DLIQQK 
C 
C    **************** DROP LSD*********** ********** 
C 
 DDLSD=ELSD(Z,A,BS,BK,BC) 
C 
C   ************************************************ 
C  
C  
 105 CONTINUE 
 

Input data 
The creation of a text file with the name DATA.INP is required for the input 

data in the same directory. The input data is organized as NAMELISTE. Refer to 
the data sequence example presented below: 
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$JADDAT   IZ=100,         IA=260,         NJ=8, $END 
$DEFOR   NBET2=24, BETA2D= 0.0,  DBETA2=0.05, 
                  NBET4=12, BETA4D=-0.08, DBETA4=0.04, $END 
 

Where 
IZ – nucleus atomic number 
IA – nucleus mass number 
NJ – nucleus isotopic number 
NBET2 – number of deformation points β2 
BETA2D – initial deformation value β2 
DBETA2 – deformation change step β2 

NAMELIST $DEFOR encompasses only the deformations to be actually 
considered in our calculations. Remaining deformations, not specified in the list, 
will be equal to zero. The macroscopic energies for even – even nuclei, with the 
atomic number of IŻ and the mass numbers of IA, IA + 2, ... successively are 
calculated by the program until NJ range is exhausted.  

The deformation points create a multidimensional lattice (in our example two 
– dimensional only β2, β4) with the initial values constituting (BETA2D and 
BETA4D) correspondingly and modified every (DBET2, DBET4), with the 
ranges specified in the variables NBET2 and NBET4. 
 

Organization of the results obtained by means of program 
The macroscopic energies for even – even nuclei, with the atomic number of 

IZ and the mass numbers of IA, IA+2, IA+4,... successively are calculated by the 
program until NJ range is exhausted.  

The deformation points creates a multidimensional lattice (in our example 
two – dimensional only β2, β4) with the initial values constituting (BETA2D, 
BETA4D) correspondingly and modified every (DBETA2 and DBETA4), with 
the ranges specified in the variables NBET2 and NBET4. 

The purpose of ENERGY program is to obtain the macroscopic energies of 
the nuclei for the scope of deformations occurring in the case of nuclear fission. 
It can be easily stated [9,10] that the quadrupole deformation β2, responsible for 
increasingly elongated shape and hexadecapole deformation β4, responsible for 
developing of narrowing (necking) leading to the nucleus breaking into two 
fragments, are the most important deformations in the case of fission. 

The role of other kinds of deformations may be also significant, for instance 
deformation β3 leading to the unsymmetrical distribution of masses or β5 and β6 
affecting the value of energy minimum and the thickness of fission barrier [12]. 

In order to enable general considerations, the program has been adapted to the 
range of deformations between β2 and β9 (refer to Equation 3). 

ENERGY program constitutes a part of a wider project performed in order to 
calculate the lifetimes of nuclei being subject to fission. Refer to studies [8-12] 
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for the results. Therefore the results are organized in the manner enabling further 
data processing i.e. in the form of files containing formatted tables containing 
required numerical data. The files are automatically generated by the program 
and provided with the name composed of atomic number and extension in the 
form of neutrons number for the specific isotope e.g. the file with the name 
100.154 with the results for the Fermium isotope (Z = 100, N = 154). Therefore 
the results can be easily applied for further processing. The block generating the 
names of needed files is illustrated by means of the following code fragment. 
 

C    
 DO 110 INJ=1,NJ 
 IN0=IA - IZ    
 IN=IN0+(INJ-1)*2 
 WRITE(CHZ,'(I3.3)') IZ 
 WRITE(CHN,'(I3.3)') IN 
 OPEN(UNIT=31+INJ,FILE=CHZ//'.'//CHN) 
 110 CONTINUE 
C 
 

Refer to Figure 1 for the example of results fragment for the nucleus Z=100, 
N=158. The meaning of the successive columns is as follows: 
BET1..BET6 – nucleus deformations, 
YUK – energy in YUKAWA-FOLDED model, 
DROP – energy in droplet model, 
DROPLET – energy in small droplet model, 
DLSD – energy in Lublin-Strasbourg Drop (LSD) model. 

The results presented below are used for preparation of nucleus macroscopic 
energy map. 
 

 
Fig. 1. The example of results obtained by means of ENERGY program for the Fermium isotope 
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The tables used for determination of fission static barriers for macroscopic 
energies for four models being used are another type of the results. The energy 
for a nucleus has been illustrated as the function of quadrupole deformation β2, 
with the minimization of all remaining deformation parameters. Refer to Figure 
2 for the example of results fragment for the nucleus Z = 110 N = 150. 
 

 
Fig. 2. Potential barriers obtained in various models of charged droplet for Z=110 isotope 

 
The numerical results enable the comparison of barriers curves for various 

models and various isotopes of atomic nuclei in an easy and simple manner. The 
diagrams for potential barriers for various isotopes of Z = 110 nucleus have been 
illustrated in Figure 3. 

On the basis of the presented diagrams it appears that macroscopic potential 
barriers significantly differ for various isotopes. The differences in energy may 
be as high as 2MeV, for the deformation β2 ≈ 1.0 resulting in significantly 
diversified lifetimes of atomic nuclei, depending on the applied model [8]. 
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Fig. 3. The diagrams illustrating microscopic barriers in Drop, Droplet, Folded-Yukawa (Fold-

Yuk) and Lublin-Strasbourg (LSD-drop) models for various isotopes of nucleus Z = 110 
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Conclusions 
An universal algorithm for calculations of atomic nuclei macroscopic energy 

has been presented in the present study. 
The present algorithm enables the estimation of atomic nuclei potential 

barriers for four (4) various macroscopic models. Therefore the execution of 
comparison researches is possible for the models most frequently applied in 
literature. 

The obtained results demonstrate the significant numerical differences, 
depending on the applied model. The differences in energy may be as high as 
2MeV, for the deformations close to the exit point from the barrier (β2 ≈ 1.0). 
Therefore the obtained lifetimes for heavy and super-heavy nuclei are 
significantly modified.  

Such results suggest that further intensive efforts are required in order to 
define the uniform model describing the nucleus energy in the course of fission 
process. 
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