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Abstract 

This work presents one of the regular graphs algebra possible variants and its application in 
designing and analysis of computer network topologies characteristics, focused on fault tolerance 
of computer networks.  
    

1. Introduction 
This work is a continuation of surveys presented in papers [1,2]. The 

proposed regular graphs algebra came into being according to tasks of designing 
the computer networks (CN) topologies and an analysis of their characteristics 
from the fault tolerance of computer network links and nodes point of view. The 
CN is modeled as an undirected graph with the nodes corresponding to 
computers and edges – corresponding to connection links between computers. 
Selection of one or another CN topology is related with determining the 
topology fault tolerance degree in the case of CN connection links or nodes 
failure. If correctly designed topology is an undirected coherent graph then a 
coherency degree of such a graph may be used as a CN fault tolerance measure. 
In this end, this paper presents a variant of a regular graphs algebra by means of 
which the CN fault tolerance degree is determined and also the CN topology 
from these algebra operations point of view. 
 

2. Preliminary information 
The graph G(V,E) is called an undirected graph, where V – the number of 

graph nodes; E – the number of graph edges, which consists of unordered pairs 
of elements from V (where pairs (u,v) and (v,u) are considered as the same). 
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Graph G is called a finite graph if its nodes number V is finite. If (u,v)∈E, then 
nodes u, v are called the ends of this edge. The edge e∈E is called incident to 
node u∈V, if this node is the edge e end. The node u∈V degree is called a 
number of edges incident to this node. The node u degree is denoted as n(u). If a 
node degree is equal zero, then such a node is called isolated and if a node 
degree is equal one then such a node is called ending or hanging [1,2]. 

In this work as a graph, the finite undirected graph is meant.  
Let the graph G(V,E) and two nodes u,v∈V of this graph, are given. It is said, 

that nodes u and v are connected between one another with a path in a graph, if 
there exists intermediate nodes 1 2, ,..., ku u u  of the graph G such that u = u1, 
v = uk and for all 1,2,..., 1i k= −  the 1( , )i iu u E+ ∈  respectively. The number k – 1 
is called a length of this path. The path, where the first and the last node covers, 
is called a cycle. The graph, where no cycle exists is called an acyclic graph [3].  

 
Definition 1. Graph G(V,E) is called coherent, if any two nodes of this are 
connected between one another with a path. Coherent acyclic graph is called  
a tree. 
 

A tree node is called internal if its node degree is greater than one (otherwise 
the node is an ending node) [4]. 

If between nodes u and v there exists a path with the length 1k − , then in 
particular if 1k =  then the path length equals 0 . It means that u = u1 = uk = v, 
i.e. that from node u to node u there exists a path of length 0 . As follows from 
this observation the relation R describing a “coherent path between itself” is 
reflexive, secondly, in the case of an undirected graph this relation is symmetric 
and of course transitive. It means this is the equivalency relation and there exists 
a quotient set 1 2/ { , ,..., }mV R V V V= , where Vi is an equivalency class of this 
relation such that i jV V∩ = ∅  where , , 1,2,...,i j i j m≠ = . 

From this simple observation the below theorem, follows.  
 
Theorem 1. Graph G(V,E) is coherent if and only if when V/R = {V}, where R  
– the above introduced equivalency relation.  
 

Proof of the above theorem directly results from the definition and properties 
of the relation R.  
 

From this theorem there follows a simple and efficient algorithm for 
determining the graph G(V,E) coherency. In reality, to this end from any chosen 
node u∈V we should walk around all nodes of the graph G and denote all nodes 
which have already been visited. If walking around is done and if any node is 
left indented then the graph is incoherent, otherwise coherent. It is obvious that 
in order to do it a depth search algorithm is used  (DFS – Depth First Search). 
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Depth search algorithm is widely presented in book [4] thus it is not presented in 
this work.  

Depth search algorithm turns out to be very important in analyzing the graphs 
coherency and its importance increases if in coherent graph or graphs there are 
some operations performed. Some of these operations may result in graphs 
incoherency and then the correct result will not be received. Obligatory, the 
operations must be checked from its performance influence point of view on 
network coherency [3,5].  
 

3. The coherency degree of a coherent graph 
3.1. The edge removal operation in a coherent graph 

Let us remind that an edge ( , )e u v=  removal operation in a graph G = (V,E) 
leads to the graph ( , \{( , )})G e V E u v− = . Let us consider one question, how 
many edges may be removed from the coherent graph G = (V,E) in order that the 
realization of these operations would not cause the state in which the connection 
graph is incoherent. Let us introduce the following definition [4].  
 
Definition 2. The maximal number d of graph edges whose removal from a 
graph does not cause changing of the graph coherency class whereas removing 
of d + 1 -th edge causes the graph incoherence, is called a coherency degree of 
the coherent graph.  
 

It is obvious that the graph obtained as a result of applying the edge removal 
operation in the coherent graph, is coherent if this edge belongs to one of its 
cycles. As a consequence, the following theorem is obtained [3].  
 
Theorem 2. The coherency degree d of the coherent graph G = (V,E) is equal to 
its cyclic number | | | | 1E V− + . 
 

Proof of the above theorem results from the fact that a coherent graph stays 
coherent if not more than | | | | 1E V− +  edges are removed. Edge removal from 
such a graph results in obtaining a tree of the graph G. However, even if one 
edge in a tree is removed it causes the graph incoherency. 
 
Conclusion 1. Number of possible edge removal operations in a coherent graph 
G(V,E) not causing the change of a graph coherency is equal to its cyclic 
number | | | | 1d E V= − + . 

3.2. The node removal operation in a coherent graph  
The node u removal operation from a graph G = (V,E) is simplified to 

removing the node u from the nodes set V, and removing from an edge set E all 
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incident edges to the node u. Directly from the above theorem the following 
theorem is obtained [4].  
 
Theorem 3. Graph, received as a result of applied node removal operation in a 
coherent graph is still coherent, if all incident edges to this node belong to some 
of its cycles or this node is an end node.  
 
Example 1. Let us consider the graph G, from which the node number 3 is 
removed.  
 
 

 
 

In the case a) all edges incident to node 3, i.e. (1,3),(2,3),(4,3),(5,3) belongs to 
the cycles (1,3,4),(2,3,5),(4,3,5),(5,3,2),(5,3,4). 

In the case b) the edge )3,2(  does not belong to any cycle of this graph.  
In the conclusion of the previous theorem, the following dependencies occur: 
– if n(u) = 1 the coherency degrees of graphs G and G u−  are equal, where 

u is a node of a graph G, 
– the coherency degree of a graph obtained after applying m node removal 

operations from a coherent graph G = (V,E) equals:  
 ( ) ( )1' 1 ... 1md d k k= − − − − − ,  
where: d – the coherency degree of a graph G, ki – the node ui degree, ui – a node 
removed from a graph where i = 1,2,…,m. 
 

4. The finite coherent undirected graphs algebra operations  
In order to build the coherent graphs algebra it is necessary to determine the 

operations with respect to those whose set of all finite coherent undirected 
graphs is finite. It means that if as arguments of these operations the coherent 
graphs are taken then as a result of applying these operations the coherent graphs 
are also obtained. 

If such algebra is built in the first step then in the second step it is necessary 
to examine properties of such algebra operations and to set its identity and type. 
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Let us notice that depending on applying the algebra operations set may vary. 
Because of that in this paper only one of such algebra possible variants is 
presented, which is focused on analysis of CN fault tolerance [1,2].  
 

4.1. Fully specific operations  
Let coherent graphs G = (V1,E1) and G2 = (V2,E2) be given. Let us consider 

the operations for which the coherent graphs set is finite. Appropriate operations 
and principles of applying follows from the below theorems: 
 
Theorem 4. If for the coherent graphs the following operations are applied  

a) a bijective join (an isomorphic join operation),  
b) a join operation, 
c) the Cartesian Product operation, 
d) an edge add operation, 
e) a node add operation, 

then as a result a coherent graph is obtained. 
 
Proof.  

a) The bijective join operation joins only two nodes u and f(u), where f is a 
bijective operation. Naturally, it is enough to get a coherent graph 
coherent, thus in the obtained graph all nodes are connected with a certain 
path. 

b) Because each node of the first graph is connected by a link with each node 
of the second graph, thus it is obvious that the property of coherency is 
preserved in a received graph.  

 
Let us notice that bijective mapping existing in an isomorphic joint operation 

may be, in particular, graph isomorphism. If this bijection is isomorphism, thus 
the bijective join is called an isomorphic join.   

The proof of the other theorems is obvious.  
 

4.2. Partial operations  
The operations which belong to this group may come from the coherent 

graphs class, thus these operations are partial. To this group of operations an 
edge and node removal operation belongs. These two operations need some 
explanations. 
 
Theorem 5. 

a) The graph sum ( )1 2 1 2 1 2,G G V V E E∪ = ∪ ∪  is a coherent graph if these 
graphs have at least one common node, i.e. 1 2 0V V∩ > .  
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b) Graph obtained as a result of coherent graphs intersection is coherent, if 
as a result of applying graph nodes removal operation 

( )1 2 1 2 1 2,G G V V E E∪ = ∪ ∪ , not belonging to the set 1 2V V∩ , all edges 
incident to this nodes belong to some cycles of this graph or these nodes 
are incident with the edge ends.  

 

Proof. 
a) If 1 2v V V∈ ∩  then towards graphs G1 and G2 coherence it is received that 

from any node u of the graph G1 exists a path to the node v in a graph G2, 
and from node v exists a path to any node v’ in a graph G2. Then, from 
node u  exists a path to node v’, crossing a node v. 

b) Proof follows from the definition of node removal operation. The result of 
this operation is not specified if as a result of applying this operation in 
the next step it leads to an incoherent graph. Besides, it is obvious that a 
graph intersection operation may be expressed by the operations of a node 
removal and a sum.  

 
Simple and sufficient condition of not applying the node removal operation is 

its negative meaning of the graph coherency degree which is received in the next 
step. Generally, in the case of ending of all node removal operations it is 
essential to apply the DFS algorithm for checking the coherency of a received 
graph. Its computing complexity, as known, is in proportion to the value of 

(max( , )O E V . 
 

5. Algebra definition 
From the above considerations the finite coherent undirected graphs algebra 

follows. This algebra is partial.  
 
Definition 3. Pair AG = (A,Ω) is called the finite coherent undirected graphs 
algebra, if A – the algebra carrier – consists only of finite coherent undirected 
graphs, Ω – the algebra signature – includes operations such as: a sum, an 
intersection, the Cartesian product, a bijective join, a join, an edge and node 
input operation, an edge and node removal operation.  
 

Let us introduce a notation for these operations: 2 2 2 2 3 3 3, , , , , , ,f ik iw okw w w∪ ∩ × ∗ ∗ , 
2
oww  where the upper indices represent arity respectively to each operation.  

5.1. Properties of the graph algebra  
At the beginning, let us prove the theorem below.  
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Theorem 6. The algebra AG = (A,Ω) as regards the sum and the intersection 
operations is a mesh. 
 

In order to prove genuineness of the principles we have to show idempotency 
of operations of the intersection and the sum, the commutation and unity, as well 
as right of absorption. 

Let G = (V,E) and G1 = (V1,E1) – any graphs.  
Idempotency: at the basics of algebra we have: 

a) ( ) ( ), ,G G V V E E V E G∪ = ∪ ∪ = = . 
b) ( ) ( ), ,G G V V E E V E G∩ = ∩ ∩ = = . 

The commutation and the unity of operations result directly from 
specifications of operations of the intersection and unity of graphs and 
truthfulness of analogous rights in algebra of multiplicity. 

 
Absorption. At the basis of analogous rules of algebra of sets we have: 

a) ( ) ( ) ( )( ) ( )1 1 1, ,G G G V V V E E E V E G∪ ∩ = ∪ ∩ ∪ ∩ = = . 

b) ( ) ( ) ( )( ) ( )1 1 1, ,G G G V V V E E E V E G∩ ∪ = ∩ ∪ ∩ ∪ = =  
As a consequence of the statement that all parts (elements, constituent parts) 

of the algebra of graphs presented above determine partly ordered multiplicity 
(ordered sets). Let us explain the order. 

The order on the grid is being determined in the following way: 
12121 GGGGG =∩⇔≤  or with the second method 1 2G G≤ ⇔  

1 2 2G G G∪ =  but that means that ( )1 2 1 2, 1 2G G V V E E∩ = ∩ ∩ =  

( )1, 2 1V V G=  and as a result of the equivalence of conditions BA ⊆  and 
ABA =∩  we obtained 2121 GGGG ⊆⇔≤ . 

Now we will explain components which are minimal in this algebra (it is 
obvious that such components should exist). Existence of such components 
(type, kind, appearance) gives. 
 
Conclusion 2. The minimal components of AG = (A,Ω) algebra are the trees in 
the form of 0

uT , where { }( )0 ,uT V u E φ= = =  – empty tree consisting of only one 
node at u.  
 
Proof. Certainly trees play a particular part in this algebra since any coherent 
graph is built of trees. It means that the trees are generative in AG algebra. 
However, if we apply operations of removing the utmost node in regard to the 
tree, it will be reduced to the tree 0

uT . That is why empty trees play the role of 
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minimal elements in this algebra. It is also obvious that empty trees consisting of 
only one node will not be reduced. 

Taking advantage of this conclusion we will introduce into the analysis trees 
in the form of: 
a) { } ( ){ }( ), , , ,u vT V u v E u v= = = , 

b) { } ( ) ( ){ }( ), , , , , , , .w
u vT V u w v E u w w v= = =  

These trees are being introduced by minimal members by means of the 
operation of AG algebra in the following way: 

a) 
{ } ( ){ }( ) ( )

( )( )

0 0
,

0 0 0 0
,

, , , , ,

      * *

u v ik u v

v u u v u f v

T V u v E u v w T T u v

T T T T T f u v

= = = = ∪ =

= = = =
 

b) 

{ } ( ) ( ){ }( )
( ) ( )

( ) ( )

,

0 0 0 0
, ,

0 0 0

, , , , , ,

      , , , ,

      

w
u v

u w w v ik u w ik w v

o
u w v w

T V u w v E u w w v

T T w T T u w w T T w v

T T T T

= = = =

= ∪ = ∪ ∪ ∪ =

= ∗ ∪ ∗

 

Let us also notice that the operation of the combination of two graphs is 
giving in effect the coherent graph even if one of the graphs is not coherent or 
both of them are so. In particular graphs corresponding to the 
expressions: ( )0 0

u vT T G∪ ∗  and ( ) ( )0 0 0 0
u v w sT T T T∪ ∗ ∪ , where G – the coherent 

graph and u, v, w, s – the pairs of various tops will be coherent.  
 

5.2. Dependence of the operation 
Now we are testing the problem – which operations are basic, and which are 

not basic (i.e. these operations which are being expressed through basics). 
1) The operation of add of the node into the edge. Let ( ),G V E AG= ∈  and 

( , )e u v E= ∈ . The operation of the insertion of the node w into the edge 
e = (u,v) will transform the edge into 2 edges e1 = (u,w) and e2 = (w,v) in the 
graph G with removing the edge e = (u,v). It is possible to realize this 
operation with the method: 

 ( ) ( ) ( ), ,, , , ,w w
iw u v ok u vw G e w G T e w G T u v= ∪ − = ∪ . 

Correctness of such a notation result from the fact that combination of two 
coherent graphs having common nodes, will also be a coherent graph but the 
edge e in the graph ,

w
u vG T∪  belongs to the u, w, v, u series. And therefore 

removing it from the graph will not infringe its coherence. 
2) The operation of add of the edge into the coherent graph G = (V,E) is 

included in the fact that an edge is being introduced into the graph G between 
two not bordering (not encountering) nodes u and v. This operation, like the 
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previous one, is being expressed with the combination of the graph G and the 
tree Tu,v. Formally it is put down in the following way: 

 ( ) ( ) ( ) ( ), ,, , , ,ik u v v u ikw G u v G T G T w G v u= ∪ = ∪ = . 
Correctness of such a notation result from the fact, that combination of two 

coherent graphs having common nodes, will also be a coherent graph. It is clear 
that also right is the identity in the form: 
 ( )( ) ( )( ), , , , , , , ,ok ik ik okw w G u v u v w w G u v u v G= = . 
3) The operation of the combination of two coherent graphs G1 = (V1,E1) and 

G2 = (V2,E2) where 1 2V V φ∩ = , is presented in the obvious way through 
operations of the combination of graphs and sequences from |V1| * |V2| of the 
operation of the insertion of the edge. This expression has the form: 

 
 ( ) ( )( )

1 2 1 2

1 2 1 2 1 2 ,* , ,ik u v
u V v V u V v V

G G w G G u v G G T
∈ ∈ ∈ ∈

= ∪ = ∪ ∪∪ ∪ ∪ ∪ . 

Correctness of such law result from the fact that linking 2 nodes of coherent 
graphs with even one edge will result in receiving a coherent graph. It is obvious 
that the given operation is commutating and uniting. 
4) The operations of mutually unique combination of two coherent graphs 

G1 = (V1,E1) and G2 = (V2,E2) depend on the connection with the 
corresponding nodes with mutually unique map. This operation is being 
expressed through operations of the combination of graphs and the sequence 
of the operation of the insertion of the edge. The expression is following for 
this form is: 

 ( ) ( )( )
1 2 1 2

1 2 1 2 1 2 , ( )
( ) ( )

* , , ( )f ik u f u
u V f u V u V f u V

G G w G G u f u G G T
∈ ∈ ∈ ∈

= ∪ = ∪ ∪∪ ∪ ∪ ∪ . 

Correctness of such a term, as in the previous case results from the fact that 
having linked 2 nodes of coherent graphs to at least one edge a coherent graph 
will be obtained. This and previous operations are commutating and uniting. 
5) The operation of the intersection of two coherent graphs G1 = (V1,E1) and 

G2 = (V2,E2) depends on removing nodes in the graph 1 2G G∪ , which are not 
common for these graphs. The expression for this activity is as follows: 

 ( )
1 2

1 2 1 2 ,ow
u V V

G G w G G u
∉ ∩

∩ = ∪∪ . 

When drawing a conclusion let us notice that it is possible to show 
dependence on the operation of the Cartesian Product from other operations of 
this algebra, however, we will stop here and the algebra of coherent, ended not-
directed graphs is assumes the form: 
 ( ) { }( ), , , , , ,ow okAG A A w w= Ω = ∪ ∩ × . 
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We will apply this algebra to examine various SK topologies and we will 
characterize them.  

 
6. Characteristics of various SK topology 

Let us consider some graphs often utilized to the construction of SK topology 
(look [3]) and we will characterize this topology of AG algebra determined from 
this algebra. We will introduce the term which will be utilized for the analysis of 
SK topology singly on this purpose.  
 
Definition 4. We call the nodes of the coherent graph the point of the connection 
if removing this node from the graph lead to the incoherent graph. 
 

Certainly any internal node is the point of the connection in the tree. 
This definition results in the obvious way that the certain node will be a 

connection point to the point if he is adjacent to the final node. As follows from 
this simple remark the result of removing a node in the coherent graph will be 
indeterminate if this node is the point of the connection. 
1) Single-channel bus (tree). In order to present SK with this topology we will 

consider the bus as the computer, representing the node of the graph. The 
graph lying at the basis of this topology has the form of the tree, shown below 
in Fig.1, where s1,s2,...,sr – servers, k1,k2,...,kn – computers, M – bus. 
The given graph is the tree and it has 1 internal node (bus) with the degree of 

n(M) = r+n and r+n of terminal nodes. The algebraic expression in AG algebra 
has the form: 
 0 0 0 0 0

1 1( ... ... )S Sr k kn MT T T T T∪ ∪ ∪ ∪ ∪ ∗ . 
As we can see the topology is resistant to removing any number of terminal 

nodes and non-resistant in regard to removing the internal node (of bus) and 
removing at least one edge. Usage of reliable lines of the contact and the reliable 
bus is necessary for the usage of this topology.  
 

 
 
2) Multichannel bus (tripartite graph). Improvement of the single-channel bus 

in the sense of raising SK reliability is a multichannel bus. The graph lying at 
the basis of this topology is the tripartite graph (Fig. 2), where s1,s2,...,sr – 
servers, k1,k2,...,kn – computers, M1,...,Mm – buses. 
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The degree of cohesion of the graph equals d = |E|-|V|+1 = rm+nm-r-n-
m+1 = (r+n-1)(m-1). If we compare this topology with the previous one (in the 
previous topology m = 1 and d = 0), the degree of reliability increases m-1 times 
for this SK. The algebraical notation for this topology: 

 
( ) ( ) ( ) ( )

( ) ( )

0 0 0 0 0 0 0 0
1 1 1 1

0 0 0 0 0 0
1 1 1

... ... ... ...

... ... * ... .

S Sr M Mm M Mm k kn

S Sr k kn M Mn

T T T T T T T T

T T T T T T

∪ ∪ ∗ ∪ ∪ ∪ ∪ ∪ ∗ ∪ ∪ =

= ∪ ∪ ∪ ∪ ∪ ∪ ∪
 

As we can see, falling out any m-1 buses leaves SK working (in this 
exception SK reduces to the single-channel bus, it is time to compare the 
notation with that of single-channel bus). Analogical statement refers to the 
edges. 
3) Cube. The graph lying at the basis of this topology is a cube (Fig.3). 

The degree of cohesion of the graph equals d = 12-8+1 = 5. It is possible for 
this graph to construct the algebraic expression with two methods: 
a) ( ) ( )1,2 2,3 3,4 4,1 5,6 6,7 7,8 8,5* fT T T T T T T T∪ ∪ ∪ ∪ ∪ ∪ , 

b) ( )1,2 2,3 3,4 4,1 5,6T T T T T∪ ∪ ∪ × . 
 

 
 
Graphs obtained from these expressions are isomorphic, which is easy to 

make sure directly. From expression a) it results that a given topology is 
functioning in reference to removal of any two nodes and any two edges. 
Additionally, as follows from this notion from the first argument (the 
independent variable of function) we can remove four edges, from the second 
argument we can remove one edge and vice versa. 

Really unambiguous connection gives coherent a graph, even if one of the 
arguments is a coherent graph. Removal of all edges in the first (second) 
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argument means replacement of graphs Ti,j by other graphs 0
iT  and 0

jT  properly 

(i,j = 1,2,3,4) and then the graph ( ) ( )0 0 0 0
1 2 3 4 5,6 7,8 8,5*T T T T f T T T∪ ∪ ∪ ∪ ∪  will 

be coherent.  
Note that from the expression a) it results that in a given graph it is possible 

to remove all nodes belonging to one wall and the outcome graph will be 
coherent. Indeed in this case, expression a) receives the form 1,2 5,6*T fT  and if 
both arguments are coherent graphs then the result will be a coherent graph. 

Expression b) for this graph shows how the hypercube arises. 
4) Hypercube. The graph lying on the basis of this topology is a hypercube  

(Fig. 4). 
It is possible to receive more thorough detailed characteristics if an algebraic 

expression is analysed for this graph. The algebraic expression is as follows: 
 ( ) ( )1,2 2,3 3,4 4,1 5,6 6,7 7,8 8,5T T T T T T T T∪ ∪ ∪ × ∪ ∪ ∪  

As follows from this expression removing two arbitrary adjacent nodes in the 
arbitrary argument lead to the shared graph which is isomorphic to the cube. 
And from this we obtain, that removing arbitrary edges (nodes of these edges 
and two arbitrary edges) does not infringe the consistency of the hypercube 
[5,6]. 

Besides, removing an arbitrary edge in the arbitrary argument in the 
expression quoted above means the coherent graph remains. It means that it is 
possible to remove 8 edges in the final graph which correspond to the removed 
edge. The maximum number of edges which we can be removed from this graph 
equals d = |E| – |V| + 1 = 32 – 16 + 1 = 21. From this estimation follows, that 
this graph is more reliable in the relation to operation of removing the edge than 
cube.  
 

 
 
5) Mesh. N – the dimensional mesh on the basis of this topology (Fig. 5, two-

dimensional-ness of the mesh was taken for simplicity). 
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The algebraic expression for this graph is as follows: 
 ( ) ( ) ( ) ( )1,2 2,3 1 4,5 5,6 7,8 8,9 2 4,5 5,6* *f fT T T T T T T T⎡ ⎤ ⎡ ⎤∪ ∪ ∪ ∪ ∪⎣ ⎦ ⎣ ⎦ , 

where f1(i) = i + 3,  f2(j) = j + 3, i = 1,2,3,  j = 4,5,6.   
From this expression, it can be seen that removing the arbitrary node in one of 

the arguments and the suitable node in the other argument means that the 
coherent graph remains. That means that it is possible in the final graph to delete 
two arbitrary adjacent nodes without infringing coherency of the graph. It is 
possible to present the given graph in the different way: 
 ( ) ( )1,2 2,3 4,5 5,6T T x T T∪ ∪ . 

As follows from this expression it is not allowed to remove a single edge 
since the accident graph will be incoherent. It means that arguments of this 
product can not be reduced to simpler coherent graphs which form those grids. It 
is possible, in the analogous way to analyse topology, at the base of which de 
Bruijn’s and Kautz’s graphs be fulfilling certain conditions. 

 
Conclusions 

Algebra presented in this work was applied for research of the property of 
various topologies in the process of designing the computer network. The basic 
advantage of the presentation of network topology in the form of algebraic 
expression is in the fact that from this presentation there can be seen what 
elements should participate in the construction of the network and what is 
structure of these elements and reliability (resistance) of networks compared to 
disadvantages when particular components will fall out of the move. 
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