

Annales UMCS Informatica AI 6 (2007) 5-13
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Fault tolerant control for RP* architecture of Scalable

Distributed Data Structures

Grzegorz ukawski*, Krzysztof Sapiecha**

Department of Computer Science, Kielce University of Technology,
Al. Tysi clecia Pa stwa Polskiego 7, 25-314 Kielce, Poland

Abstract

Scalable Distributed Data Structures consist of two components dynamically spread across a
multicomputer: records belonging to a file and a mechanism controlling record placement in the
file space. Record (data) faults may lead to invalid computations at most, while record placement
faults may bring whole file to crash. In this paper, extended SDDS RP* (Range Partitioning)
architecture tolerant to the latter faults is presented and evaluated.

1. Introduction
High Performance Computing (HPC) can be achieved in different ways [1].

The cheapest one consists in multicomputing. For example, a multicomputer
may be built from desktop or server PCs, connected through fast Ethernet and
supervised by Linux-based operating system (Linux supplemented with cluster
controllers).

Scalable Distributed Data Structures (SDDS) [2,3] consist of two components
dynamically spread across a multicomputer: records belonging to a file and a
mechanism controlling record placement in the file space. Record placement
mechanism is spread between SDDS servers and their clients.

Two factors are crucial for SDDS dependability: fault-tolerance of data stored
in records and fault-tolerant record placement in file space. Methods of making
fault-tolerant records, such as LH*M [4], are developed. Fault-tolerant record
placement architectures for SDDS LH* were presented and evaluated in [5,6]. In
this paper fault-tolerant record placement architecture for SDDS RP* is
introduced.

*E-mail address: g.lukawski@tu.kielce.pl
**E-mail address: k.sapiecha@tu.kielce.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Grzegorz ukawski, Krzysztof Sapiecha 6

In section 2 brief outline of SDDS RP* architecture is presented. Possible
SDDS RP* failures are analyzed in section 3. A new fault-tolerant SDDS RP*
architecture is presented in section 4. The paper ends with conclusions.

2. Scalable Distributed Data Structures

The smallest SDDS component is a record. Each record is equipped with a
unique key. Records with keys are stored in buckets1. Each bucket’s capacity is
limited. If a bucket's load reaches some critical level, it performs a split. A new
bucket is created and a half of data from the splitting bucket is moved into a new
one.

A client is another SDDS file component. It is a front-end for accessing data
stored in the SDDS file. The client may be a part of an application. There may
be one or more clients operating the file simultaneously. The client may be
equipped with so called file image (index) used for bucket addressing. Such file
image not always reflects actual file state, so client may commit addressing
error. Incorrectly addressed bucket forwards such message to the correct one,
and sends Image Adjustment Message (IAM) to the client, updating his file
image, so he will never commit the same addressing error again.

All the SDDS file components are connected through a network. Usually, one
multicomputer node maintains single SDDS bucket or a client, but there may be
more components maintained by single node. In an extreme situation all SDDS
RP* buckets, clients and additional components may be run on single PC.

2.1. SDDS RP* architecture

RP* (Range Partitioning) [2] is a family of record order preserving SDDS
architectures. Each bucket holds records with keys in a specific key range, so
records having consecutive key values are usually stored in the same single
bucket. Hence, if lucky one may hold all required records for the corresponding
RP* file in only single bucket.

For communication between RP* components, three kinds of messages are
used as follows:

– Unicast – point to point connection,
– Multicast – message is sent to given address group,
– Broadcast – message is sent to all machines in a network segment.
Usually, multicast and broadcast messages allow more data to be sent at once.

Such messages are the most effective for operations performed simultaneously

1As data storage, multicomputer nodes’ local memories are usually used, so SDDS offers

outstanding data processing performance.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Fault tolerant control for RP* architecture of Scalable … 7

on many multicomputer nodes. There are three RP* subarchitectures, using
different message types:

– RP*N – no bucket index (file image) is used at all. Broadcast/multicast
messages are mostly used.

– RP*C – RP*N plus client file image, IAM messages are sent if a client
commits addressing error. Unicast messages are used mostly and
broadcast/multicast for message forwarding. Each client has its own file
image.

– RP*S – RP*C plus bucket file image, stored at distinct buckets called the
kernel. Almost every operation may be executed using unicast messages.

Each bucket stores records ordered by keys usually in ascending order. Each
bucket has its header with minimal () and maximal () key the values. The
range (,] is so called bucket range. A bucket may store records with keys c
fitting its range only:
 c .

2.2. RP* file expansion
Newly created RP* file consists of a single bucket only (Fig. 1) with number

0 (logical address) and infinite range = – and = + . All queries are sent to
this lonely bucket.

Z
R
B
A
+

X

R
B
A
R

R
+

Z
X

0 0 1

R
C
B
A
R

R
+

Z
Y
X

0 1

K

C
B
A
C

R
+

Z
Y
X

0 1
C
R

R
K

2

- -

--

Fig. 1. RP* file expansion

Just as this bucket load reaches some critical level, a split is performed and

new bucket with number 1 is created. Generally, newly created bucket gets
number (logical address) M, if the file consists of M buckets while split is
initiated.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Grzegorz ukawski, Krzysztof Sapiecha 8

Each split partitions the file into ranges and record key order in each bucket is
preserved. At any moment of file evolution, each bucket stores records with keys
in its range.

2.3. RP* file access

The data stored in the RP* file may be accessed and modified with three
kinds of queries sent by the RP* file clients:

– Single key queries – concerning a record.
– Range queries – concerning records with keys in given range c1 < c2.
– General queries – send to all records in the file.
A client may perform record traversal operation on the whole RP* file or

some part of the file in the ascending or descending order. RP*N architecture
uses no file image and all queries are sent using broadcast/multicast messages.
Each bucket receives such a message and only the bucket holding the required
key range replies. Reply messages are usually unicast type, as the bucket
performing operation obviously knows the sender's network address.

RP*C and RP*S scheme uses the file image made of bucket addresses and
ranges. In RP*C clients are equipped with such a file image, in RP*S another file
image is maintained for servers (buckets), so each forwarding is done with
unicast.

2.4. RP*S file kernel

Kernel is a set of specific buckets, used in the RP*S scheme only. Kernel
buckets store a bucket file image. The image structure is similar to the client file
image and consists of addresses and ranges of other kernel and data buckets.
Owing to the kernel, RP*S file uses unicast messages mostly.

The kernel is organized in a tree-like hierarchical structure with data buckets
as leaves. RP*S file may be multi-level. The RP*S tree structure may be
traversed in all directions, so each bucket header is supplemented with the
backward pointer (parent node address). The kernel is used for client addressing
error resolving. If such an error is committed, incorrectly addressed data bucket
uses its parent pointer for forwarding. A message with an unknown recipient is
sent to the parent node, and after the simple range and address comparison, and
maybe some more forwarding, reaches proper bucket at last. The correct buckets
send an IAM message to the client, with information (address and range) about
every node visited by the forwarded message. Kernel buckets are updated after
each successful split operation. Kernel bucket may also be overloaded and split,
parent pointers in some buckets may then become invalid. In such a situation
wrongly addressed messages are forwarded, just as client’s messages are.
Similarly, a bucket may receive IAM message with a new backward pointer.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Fault tolerant control for RP* architecture of Scalable … 9

More technical details concerning the RP* file operation may be found in [2].

3. Range partitioning fault model
3.1. The client

A client failure is not a big danger for the SDDS file structure. Client
operational faults are following:

– Empty file image – every new RP* client’s image is empty and consists of
only one bucket (number 0) with an infinite range, without respect to the
actual file state. It is a normal situation for the SDDS scheme, such client’s
file image will be updated with IAM messages, just as the client will start
to operate the RP* file.

– Deaf client – stops sending and receiving any messages. Such a client is
not a danger for the file structure, because he stops to function just as a
turned off client. A client is not necessary for correct RP* file operation.

– Berserk client – a client sends his queries to incorrectly chosen buckets
(wrong destination address calculation or damaged file image) at random
moments. Such client’s reaction for any message is unpredictable. A
message sent by a berserk client may a have correct structure, so it could
be properly processed by a bucket and correct reply message could be sent
then.

Because the RP*N client send all his queries with broadcast/multicast
messages, he will never commit any addressing error (as long as the network is
working properly). The RP*C and RP*S client may commit such an error,
forwarding will be used then, and a message will reach correct bucket at last.

In fact, the berserk client is also not a danger for the RP* file structure, but
unfortunately his addressing errors cause many unnecessary messages to be sent
through the network, and decrease the RP* file efficiency [8].

3.2. The bucket

A bucket may send a message to another bucket only when an addressing
error is committed (forwarding) or some bucket overloads and is making a split.
In fact, any bucket from another bucket’s point of view may be treated as client
performing data operations. Bucket faults are following:

– Deaf bucket – stops reacting to all messages, its content is practically lost
(in the case of persistent fault).

– Berserk bucket – sends messages to randomly chosen destinations. Its
content is lost, but it is not a danger for the file structure. As for a berserk
client, the network efficiency is decreased due to many unnecessary
messages sent to correct addressing errors.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Grzegorz ukawski, Krzysztof Sapiecha 10

– Invalid recipient – a client commits an addressing error, the message will
be forwarded to the correct bucket. Normal RP* file operation.

– Overload (collision) – again, normal SDDS RP* file event, leading to
bucket split and file scaling.

If a bucket is damaged and its content is lost (for persistent faults mostly),
then a part of data stored in the RP* file is lost and becomes unrecoverable. To
prevent from such a loss, the data fault tolerant scheme with some kind of
redundancy should be used. Data fault tolerant schemes for SDDS LH* have
been developed, such as LH*M [4], and similar method could be used for RP*. In
such a scheme, a damaged bucket with all its content could be recovered and
replaced with a new, correctly working instance. For such a data fault tolerant
scheme another file component for recovery coordination is required. This
component will be called Recovery Coordinator (RC). In LH*, recovery
management is done by the Split Coordinator (used in centralized LH* scheme).

If a berserk bucket is a correct message recipient, but not accepting this
message, a message may be forwarded many times and will never reach the
correct bucket. Unfortunately, it leads to significant efficiency decrease, but
could be easily tolerated with some TTL (Time To Live) parameter added to
each message, just as the one defined for the IP network protocol.

3.3. RP*S kernel buckets

Kernel buckets are used for correcting all addressing errors. If such a bucket
goes deaf or berserk, some addressing errors could not be resolved. Incorrectly
sent query may never reach a correct bucket, so can hold the file evolution.
Fortunately, it seems that kernel bucket damage is not a danger for the bucket
and the data integrity [8]:

– Berserk kernel bucket – forwards badly addressed queries to incorrect
buckets. It causes more messages to be sent and may lead to removing the
query in question from the network (if message's Time To Live expires).
The sender (client or another bucket) will probably never receive any reply
message.

– Deaf kernel bucket – does not respond to any message, access to records
stored in the file is complicated or even impossible.

3.4. Bucket faults propagation

The berserk bucket (kernel bucket) may become a source of many incorrect
IAM messages. Such messages, if received and processed by other components,
may lead to client’s file image disruption. Buckets’ parent/child pointers
(addresses) may be set to incorrect values also. This way, a faulty bucket may

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Fault tolerant control for RP* architecture of Scalable … 11

cause many other components’ bad operation. A client with invalid file image
should be treated as a berserk one.

A kernel bucket may receive an invalid update message (invalid address and
range of a new bucket), thus leading to the berserk state of one or more kernel
buckets.

More detailed RP* fault analysis along with the experiment results may be
found in [8].

4. Fault tolerant control for RP*

To study SDDS behaviour under fault conditions a specialized Software
Implemented Fault Injector called SDDSim, was developed [7]. Earlier
experiments proved that the client or the bucket in a deaf or berserk state is not
really danger for the RP* file structure. Hence, their behaviour will not be
analyzed further in this paper. We have focused on the RP*S kernel buckets
instead.

4.1. Client

If a client is turned off, it is not a danger for the file structure. In the case of
berserk client, every addressing error made is corrected (if all other components
are working correctly). So client faults are not danger for the RP* file structure,
network throughput is affected only.

A client may behave unpredictably if his file image was damaged (as a result
of internal or propagated fault). Clearing his file image may, in many situations,
help and bring him back to correct operation. File image may be cleared in the
following situations:

– The client receives no response to some or many of his queries. This could
mean that there are no buckets where the file image shows up (queries are
being sent beyond the file space). Such a client should clear his file image
due to his own decision.

– The Recovery Coordinator receives information sent by a client, reporting
broken bucket, but such bucket does not really exist. The RC should send a
message ‘clear image’ to the sender.

After clearing the client’s file image, it should be quickly updated by IAM
messages, according to the RP* rules, if all other file components work
correctly, of course.

4.2. Bucket

Data fault tolerant RP* architectures should work correctly, if a bucket’s
failure is detected as fast as possible, and reported to the Recovery Coordinator.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Grzegorz ukawski, Krzysztof Sapiecha 12

In the case of deaf bucket, a failure will be detected if it stops responding to all
messages.

In the case of berserk one, message sent from a bucket to a bucket many
times should be removed from a network if its TTL (Time To Live) expires. For
such a message both its sender and recipient should be reported to the RC, as
one of them may be in the berserk state.

If a bucket goes berserk and sends incorrect IAM messages, a client's file
image may become invalid, leading to a client’s berserk state. In such a
situation, this client’s file image should be cleared as it was explained in section
4.1, so it may bring this client back to correct operation.

4.3. RP*S file kernel

The kernel is used for correcting clients’ and buckets’ addressing errors only,
so its failure is not a danger for the file structure. Unfortunately, as it was
proved, its failure may lead to serious data access problems. If a client or a
bucket detects kernel bucket’s failure (deaf or berserk state), effects of such a
fault may be tolerated as follows:

– RP*S structure degradation – kernel buckets are no more used, RP*C rules
are used for correcting client addressing errors. Instead of kernel
forwarding, broadcast/multicast messages should be used. Possible to use
if the network is capable of sending such message types. May be used to
tolerate both persistent and transient faults.

– Kernel bucket recovery (Algorithm 1) – the invalid kernel bucket is
replaced with a brand new instance.

Algorithm 1: RP*S kernel bucket recovery

{New kernel bucket m0 replaces the failed bucket m}
1. If a parent node for m exists then:

– send a query to the root node, requesting bucket's m range and its parent
node address;

– fill bucket’s m0 header with received data;
2. else

– set bucket’s m0 range to (– , +) and its parent node pointer to null;
m0 is a new root node.

3. end if
4. Send a broadcast/multicast message to all file buckets, containing address

of m, m0 and actual range.
5. For each bucket whose m is a parent node:

– set a new parent pointer (address) to m0;
– send a message to m0, reporting this bucket's range.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Fault tolerant control for RP* architecture of Scalable … 13

6. The m0 bucket receives all information required to rebuild its content, so it
does.

4.4. RP* file degradation

Simpler RP* architectures are also more tolerant of control faults. In RP*N no
file images are used at all, so berserk components are not danger for the file
structure and even data processing efficiency. The most complicated RP*S
architecture uses two kinds of file images, and is the most volatile for all types
of faults.

For successful tolerance of transient or even persistent faults, less
complicated RP* rules may be used:

– In the case of kernel bucket faults, RP*C forwarding rules may be used, as
the RP*C uses no bucket file image. For addressing error correcting
broadcast/multicast messages are used.

– In the case of client faults, the RP*N client rules may be used. In RP*N
there is no client file image, broadcast/multicast messages are used instead,
so to help tolerate client file image faults.

– In the case of bucket faults, the RP*N rules may be applied without the
need of any file image, which may be helpful to tolerate bucket-related
faults.

5. Conclusions

The RP* version of Scalable Distributed Data Structures uses Range
Partitioning for record addressing. It is more resistant to faults than LH* [5,6],
especially if control faults are considered. However, control faults still may lead
the whole file to crash, just as in the LH* architecture.

The simplest RP*N architecture uses no special control components and very
simple addressing rules, so it may be useful in faulty environments. On the other
hand, RP*S is the most complex RP* version, supplemented with file images,
and unfortunately, it is the most vulnerable to control faults.

Considering the RP* architecture’s nature, we proposed the RP* structure
degradation mechanism, allowing more complex RP* versions to use addressing
rules from less complex sub-architectures. As it was shown, it is the most useful
for tolerating transient faults.

So called “kernel” buckets are used in RP*S for correcting addressing errors.
Unfortunately, breakdown of one or many kernel buckets may become serious
danger for the file structure and operation. We have proposed the RP*S kernel
recovery algorithm, useful especially for permanent faults, similar to
mechanisms developed for data fault tolerant LH* architectures [4].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Grzegorz ukawski, Krzysztof Sapiecha 14

Efficiency of our new, modified RP* architectures is almost not affected by
additional fault tolerance rules. Structure degradation and/or kernel bucket
recovery takes place only if some problems occur, so normal file activity in
correct mode is not affected at all. Moreover, the file can properly function even
if some transient or permanent faults arise, what would not be possible for basic
RP* architectures.

References

[1] Dongarra J., Sterling T., Simon H., Strohmaier E., High-Performance Computing: Clusters,
Constellations, MPPs, and Future Directions. IEEE Computing in Science and Engineering,
(2005).

[2] Litwin W., Neimat M-A., Schneider D., RP*: A Family of Order-Preserving Scalable
Distributed Data Structures. 20th Intl. Conf. on Very Large Data Bases (VLDB), (1994).

[3] Litwin W., Neimat M-A., Schneider D., LH*: A Scalable Distributed Data Structure. ACM
Transactions on Database Systems ACM-TODS, (1996).

[4] Litwin, W., Neimat, M-A., High-Availability LH* Schemes with Mirroring. Intl. Conf. on
Coope. Inf. Syst. COOPIS-96, Brussels, (1996).

[5] Sapiecha K., ukawski G., Fault-tolerant Control for Scalable Distributed Data Structures.
Annales Universitatis Mariae Curie-Sk odowska, Informatica, (2005).

[6] Sapiecha K., ukawski G., Fault-tolerant Protocols for Scalable Distributed Data Structures.
Springer-Verlag LNCS, 3911 (2006).

[7] ukawski G., Sapiecha K., Software Functional Fault Injector for SDDS. GI-Edition Lecture
Notes in Informatics (LNI), ARCS’06 Workshop Proceedings, (2006).

[8] ukawski G., Sapiecha K., Cause-effect operational fault analysis for Scalable Distributed
Data Structures. Submitted for publication in Technical Journal (Czasopismo Techniczne)
PK, Kraków.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 11:14:21

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

